Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.928
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39017736

RESUMO

Several cortical structures are involved in theory of mind (ToM), including the dorsolateral prefrontal cortex (dlPFC), the ventromedial prefrontal cortex (vmPFC), and the right temporo- parietal junction (rTPJ). We investigated the role of these regions in mind reading with respect to the valence of mental states. Sixty-five healthy adult participants were recruited and received transcranial direct current stimulation (tDCS) (1.5 mA, 20 min) with one week interval in three separate studies. The stimulation conditions were anodal tDCS over the dlPFC coupled with cathodal tDCS over the vmPFC, reversed stimulation conditions, and sham in the first study, and anodal tDCS over the vmPFC, or dlPFC, and sham stimulation, with an extracranial return electrode in the second and third study. During stimulation, participants underwent the reading mind from eyes/voice tests (RMET or RMVT) in each stimulation condition. Anodal left dlPFC/cathodal right vmPFC stimulation increased the accuracy of negative mental state attributions, anodal rTPJ decreased the accuracy of negative and neutral mental state attributions, and decreased the reaction time of positive mental state attributions. Our results imply that the neural correlates of ToM are valence-sensitive.

2.
Physiother Res Int ; 29(3): e2111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39014876

RESUMO

BACKGROUND: Aberrant movement in chronic low back pain (CLBP) is associated with a deficit in the lumbar multifidus (LM) and changes in cortical topography. Anodal transcranial direct current stimulation (a-tDCS) can be used to enhance cortical excitability by priming the neuromuscular system for motor control exercise (MCE), thereby enhancing LM activation and movement control. This study aimed to determine the effects of a 6-week MCE program combined with a-tDCS on cortical topography, LM activation, movement patterns, and clinical outcomes in individuals with CLBP. METHODS: Twenty-two individuals with CLBP were randomly allocated to the a-tDCS group (a-tDCS; n = 12) or sham-tDCS group (s-tDCS; n = 10). Both groups received 20 min of tDCS followed by 30 min of MCE. The LM and erector spinae (ES) cortical topography, LM activation, movement control battery tests, and clinical outcomes (disability and quality of life) were measured pre- and post-intervention. RESULTS: Significant interaction (group × time; p < 0.01) was found in the distance between LM and ES cortical locations. The a-tDCS group demonstrated significantly fewer discrete peaks (p < 0.05) in both ES and LM and significant improvements (p < 0.05) in clinical outcomes post-intervention. The s-tDCS group demonstrated a significant increase (p < 0.05) in the number of discrete peaks in the LM cortical topography. No significant changes (p > 0.05) in LM activation were observed in either group; however, both groups demonstrated improved movement patterns. DISCUSSION: Our findings suggest that combined a-tDCS with MCE can separate LM and ES locations over time while s-tDCS (MCE alone) reduces the distance. Our study did not find superior benefits of adding a-tDCS before MCE for LM activation, movement patterns, or clinical outcomes.


Assuntos
Terapia por Exercício , Dor Lombar , Estimulação Transcraniana por Corrente Contínua , Humanos , Dor Lombar/terapia , Dor Lombar/reabilitação , Feminino , Masculino , Adulto , Terapia por Exercício/métodos , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Córtex Motor/fisiopatologia , Resultado do Tratamento , Músculos Paraespinais/fisiologia , Qualidade de Vida , Dor Crônica/terapia , Dor Crônica/reabilitação
3.
Front Hum Neurosci ; 18: 1305446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015825

RESUMO

Introduction: Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods: We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results: Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion: These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.

4.
J Psychiatr Res ; 177: 39-45, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38971055

RESUMO

Obsessive-Compulsive Disorder (OCD) is characterized by intrusive thoughts and repetitive behaviors, with associated brain abnormalities in various regions. This study explores the correlation between neural biomarkers and the response to transcranial Direct Current Stimulation (tDCS) in OCD patients. Using structural MRI data from two tDCS trials involving 55 OCD patients and 28 controls, cortical thickness, and gray matter morphometry was analyzed. Findings revealed thicker precentral and paracentral areas in OCD patients, compared to control (p < 0.001). Correlations between cortical thickness and treatment response indicated a significant association between a thinner precentral area and reduced Yale-Brown Obsessive Compulsive Scale (YBOCS) scores (p = 0.02). While results highlight the complexity of treatment response predictors, this study sheds light on potential neural markers for tDCS response in OCD patients. Further investigations with larger datasets are warranted to better understand the underpinnings of these biomarkers and their implications for personalized treatment approaches.

5.
Brain Stimul ; 17(4): 816-825, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997105

RESUMO

INTRODUCTION: Fear extinction is a fundamental component of exposure-based therapies for anxiety-related disorders. The renewal of fear in a different context after extinction highlights the importance of contextual factors. In this study, we aimed to investigate the causal role of the left inferior frontal gyrus (LiFG) in the context-dependency of fear extinction learning via administration of transcranial direct current stimulation (tDCS) over this area. METHODS: 180 healthy subjects were assigned to 9 groups: 3 tDCS conditions (anodal, cathodal, and sham) × 3 context combinations (AAA, ABA, and ABB). The fear conditioning/extinction task was conducted over three consecutive days: acquisition, extinction learning, and extinction recall. tDCS (2 mA, 10min) was administered during the extinction learning phase over the LiFG via a 4-electrode montage. Skin conductance response (SCR) data and self-report assessments were collected. RESULTS: During the extinction learning phase, groups with excitability-enhancing anodal tDCS showed a significantly higher fear response to the threat cues compared to cathodal and sham stimulation conditions, irrespective of contextual factors. This effect was stable until the extinction recall phase. Additionally, excitability-reducing cathodal tDCS caused a significant decrease of the response difference between the threat and safety cues during the extinction recall phase. The self-report assessments showed no significant differences between the conditions throughout the experiment. CONCLUSION: Independent of the context, excitability enhancement of the LiFG did impair fear extinction, and led to preservation of fear memory. In contrast, excitability reduction of this area enhanced fear extinction retention. These findings imply that the LiFG plays a role in the fear extinction network, which seems to be however context-independent.

6.
Psychogeriatrics ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987229

RESUMO

BACKGROUND: Numerous studies have investigated the potential effects of transcranial direct current stimulation (tDCS) on improving symptoms related to Alzheimer's disease (AD). However, these studies have produced inconsistent results, leading to a need for further investigation. METHODS: A comprehensive search was conducted, including articles published from the initial availability date to 5 April 2024. The extracted study data were analyzed using STATA 12.0 software. The standard mean difference (SMD) and a 95% confidence interval (CI) were calculated to assess the effects of tDCS. RESULTS: A total of 18 studies assessing the effects of tDCS on AD were included in the study. The study revealed that tDCS has an immediate positive impact on general cognitive, executive, language, and visuospatial function. However, the study did not observe any other significant effect of tDCS treatment on improvements in brain function, including long-term effects on general cognitive, attention, language, and memory function, as well as immediate effects on attention and memory function. CONCLUSIONS: In conclusion, the study suggests that tDCS may be a promising intervention for improving the cognitive function of patients with AD. However, given the complex and multifactorial nature of AD, further well-designed studies with larger sample sizes are necessary to clarify the effectiveness of tDCS and determine the optimal combination of tDCS parameters.

7.
Scand J Pain ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956966

RESUMO

BACKGROUND: The aim of this systematic review is to analyze the efficacy of noninvasive brain stimulation (NBS) in the treatment of central post-stroke pain (CPSP). METHODS: We included randomized controlled trials testing the efficacy of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation versus placebo or other usual therapy in patients with CPSP. Articles in English, Portuguese, Spanish, Italian, and French were included. A bibliographic search was independently conducted on June 1, 2022, by two authors, using the databases MEDLINE (PubMed), Embase (Elsevier), Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and Web of Science Core Collection. The risk of bias was assessed using the second version of the Cochrane risk of bias (RoB 2) tool and the certainty of the evidence was evaluated through Grading of Recommendations Assessment, Development and Evaluation. RESULTS: A total of 2,674 records were identified after removing duplicates, of which 5 eligible studies were included, involving a total of 119 patients. All five studies evaluated repetitive TMS, four of which stimulated the primary motor cortex (M1) and one stimulated the premotor/dorsolateral prefrontal cortex. Only the former one reported a significant pain reduction in the short term, while the latter one was interrupted due to a consistent lack of analgesic effect. CONCLUSION: NBS in the M1 area seems to be effective in reducing short-term pain; however, more high-quality homogeneous studies, with long-term follow-up, are required to determine the efficacy of this treatment in CSPS.


Assuntos
Manejo da Dor , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Humanos , Manejo da Dor/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos
8.
Brain Behav ; 14(7): e3620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38989886

RESUMO

BACKGROUND: Research has shown that visual perceptual learning (VPL) is related to modifying neural activity in higher level decision-making regions. However, the causal roles of the prefrontal and visual cortexes in VPL are still unclear. Here, we investigated how anodal transcranial direct current stimulation (tDCS) of the prefrontal and visual cortices modulates VPL in the early and later phases and the role of multiple brain regions. METHODS: Perceptual learning on the coherent motion direction identification task included early and later stages. After early training, participants needed to continuously train to reach a plateau; once the plateau was reached, participants entered a later stage. Sixty participants were randomly divided into five groups. Regardless of the training at the early and later stages, four groups received multitarget tDCS over the right dorsolateral prefrontal cortex (rDLPFC) and right middle temporal area (rMT), single-target tDCS over the rDLPFC, and single-target tDCS over the rMT or sham stimulation, and one group was stimulated at the ipsilateral brain region (i.e., left MT). RESULTS: Compared with sham stimulation, multitarget and two single-target tDCS over the rDLPFC or rMT improved posttest performance and accelerated learning during the early period. However, multitarget tDCS and two single-target tDCS led to equivalent benefits for VPL. Additionally, these beneficial effects were absent when anodal tDCS was applied to the ipsilateral brain region. For the later period, the above facilitating effects on VPL induced by multitarget or single-target tDCS disappeared. CONCLUSIONS: This study suggested the causal role of the prefrontal and visual cortices in visual motion perceptual learning by anodal tDCS but failed to find greater beneficial effects by simultaneously stimulating the prefrontal and visual cortices. Future research should investigate the functional associations between multiple brain regions to further promote VPL.


Assuntos
Aprendizagem , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Córtex Visual , Percepção Visual , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Córtex Visual/fisiologia , Feminino , Córtex Pré-Frontal/fisiologia , Adulto Jovem , Aprendizagem/fisiologia , Adulto , Percepção Visual/fisiologia , Percepção de Movimento/fisiologia
9.
Psychophysiology ; : e14650, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997945

RESUMO

The neurovisceral integration model proposes that information flows bidirectionally between the brain and the heart via the vagus nerve, indexed by vagally mediated heart rate variability (vmHRV). Voluntary reduction in breathing rate (slow-paced breathing, SPB, 5.5 Breathing Per Minute (BPM)) can enhance vmHRV. Additionally, prefrontal transcranial direct current stimulation (tDCS) can modulate the excitability of the prefrontal region and influence the vagus nerve. However, research on the combination of SPB and prefrontal tDCS to increase vmHRV and other cardiac (heart rate (HR) and blood pressure) and peripheral (skin conductance) indices is scarce. We hypothesized that the combination of 20 min of SPB and prefrontal tDCS would have a greater effect than each intervention in isolation. Hence, 200 participants were divided into four groups: active tDCS with SPB, active tDCS with 15 BPM breathing, sham tDCS with SPB, and sham tDCS with 15 BPM breathing. Regardless of the tDCS condition, the 5.5 BPM group showed a significant increase in vmHRV over 20 minutes and significant decreases in HR at the first and second 5-min epochs of the intervention. Regardless of breathing condition, the active tDCS group exhibited higher HR at the fourth 5-min epoch of the intervention than the sham tDCS group. No other effects were observed. Overall, SPB is a robust technique for increasing vmHRV, whereas prefrontal tDCS may produce effects that counteract those of SPB. More research is necessary to test whether and how SPB and neuromodulation approaches can be combined to improve cardiac vagal tone.

11.
Appl Neuropsychol Adult ; : 1-11, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967481

RESUMO

Parkinson's disease is the second most common neurodegenerative disease, but therapeutic options such as neuromodulation continue to show variable effects, making clinical management of the disease difficult. This systematic review with meta-analysis and meta-regression aimed to analyze the isolated effect of cortical modulation with transcranial direct current stimulation (tDCS) compared to sham stimulation on cognitive changes in people with Parkinson's disease. The databases used were: Web of Science, Scopus, PsycINFO, PubMed, and Cochrane. The results showed that tDCS can influence the improvement of cognition in PD (Inverse Variance:0.24 [95% Confidence Interval: 0.09 to -0.40], p < 0.00). The meta-analysis showed that active tDCS can influence cognitive function by improving aspects related to memory (Inverse Variance:0.34 [95% Confidence Interval: 0.07 to 0.61], p < 0.01) and reducing reaction time in cognitive tasks (Inverse Variance:0.42 [95% Confidence Interval: 0.07 to 0.76], p < 0.02). Innovative meta-regression analyses showed that variables such as age (Q = 2.54, df = 1, p < 0.11), education level (Q = 2.62, df = 1, p < 0.10), disease duration (Q = 0.01, df = 1, p < 0.92), and Unified PD Rating Scale stage (Q = 0.01, df = 1, p < 0.92) did not influence the results. Thus, tDCS may be a therapeutic option for cognitive changes in people with PD, and we suggest further studies to identify protocols that can be replicated.

12.
Sci Rep ; 14(1): 16569, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019949

RESUMO

This randomised, crossover, sham-controlled study explored the neural basis of source-monitoring, a crucial cognitive process implicated in schizophrenia. Left superior temporal gyrus (STG) and dorsolateral prefrontal cortex (DLPFC) were the key focus areas. Thirty participants without neurological or psychological disorders underwent offline sham and active tDCS sessions with specific electrode montage targeting the left STG and DLPFC. Source-monitoring tasks, reality monitoring (Hear-Imagine), internal source-monitoring (Say-Imagine), and external source monitoring (Virtual-Real) were administered. Paired t-test and estimation statistics was performed with Graphpad version 10.1.0. The Benjamini-Hochberg procedure was employed to control the false discovery rate in multiple hypothesis testing. A significant improvement in internal source monitoring tasks (p = 0.001, Cohen's d = 0.97) was observed, but reality monitoring tasks demonstrated moderate improvement (p = 0.02, Cohen's d = 0.44). The study provides insights into the neural mechanisms of source monitoring in healthy individuals and proposes tDCS as a therapeutic intervention, laying the foundation for future studies to refine tDCS protocols and develop individualized approaches to address source monitoring deficits in schizophrenia.


Assuntos
Estudos Cross-Over , Alucinações , Esquizofrenia , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Alucinações/terapia , Alucinações/fisiopatologia , Adulto , Esquizofrenia/terapia , Esquizofrenia/fisiopatologia , Adulto Jovem , Córtex Pré-Frontal Dorsolateral/fisiologia , Lobo Temporal/fisiopatologia , Lobo Temporal/fisiologia
13.
J Psychiatr Res ; 177: 169-176, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39024741

RESUMO

BACKGROUND: Cognitive deficits in patients with schizophrenia have drawn widespread attention. Transcranial direct current stimulation (tDCS) can modulate cognitive processes by altering neuronal excitability. Previous studies have found that interim testing can enhance spatial route learning and memory in patients with schizophrenia. However, there has been limited research on the combined effects of these two methods on spatial route learning in these patients. OBJECTIVE: To investigate whether the combination of tDCS and interim testing can effectively contribute to the maintenance of spatial route memory in patients with schizophrenia. The study involved conducting route learning using interim testing after anodal tDCS treatment on the left dorsolateral prefrontal cortex (L-DLPFC). METHODS: Ninety-two patients with schizophrenia were recruited and divided into groups receiving anodal, sham, or no stimulation. The anodal group received L-DLPFC tDCS treatment 10 times over 5 days (twice daily for 20 min). After treatment, spatial route learning was assessed in interim testing. Correct recall rates of landmark positions and proactive interference from prior learning were compared among the groups. RESULTS: Regardless of stimulation type, the interim testing group outperformed the relearning group. Additionally, recall scores were higher following anodal stimulation, indicating the efficacy of tDCS. CONCLUSIONS: Both tDCS and interim testing independently enhance the ability to learn new information in spatial route learning for patients with schizophrenia, indicating that tDCS of the left DLPFC significantly improves memory in these patients.

14.
World J Clin Pediatr ; 13(2): 93138, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38947993

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) is proven to be safe in treating various neurological conditions in children and adolescents. It is also an effective method in the treatment of OCD in adults. AIM: To assess the safety and efficacy of tDCS as an add-on therapy in drug-naive adolescents with OCD. METHODS: We studied drug-naïve adolescents with OCD, using a Children's Yale-Brown obsessive-compulsive scale (CY-BOCS) scale to assess their condition. Both active and sham groups were given fluoxetine, and we applied cathode and anode over the supplementary motor area and deltoid for 20 min in 10 sessions. Reassessment occurred at 2, 6, and 12 wk using CY-BOCS. RESULTS: Eighteen adolescents completed the study (10-active, 8-sham group). CY-BOCS scores from baseline to 12 wk reduced significantly in both groups but change at baseline to 2 wk was significant in the active group only. The mean change at 2 wk was more in the active group (11.8 ± 7.77 vs 5.25 ± 2.22, P = 0.056). Adverse effects between the groups were comparable. CONCLUSION: tDCS is safe and well tolerated for the treatment of OCD in adolescents. However, there is a need for further studies with a larger sample population to confirm the effectiveness of tDCS as early augmentation in OCD in this population.

15.
Int Urogynecol J ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953997

RESUMO

INTRODUCTION AND HYPOTHESIS: Transcranial direct current stimulation (tDCS) can enhance muscle function in healthy individuals. However, it is unknown if tDCS associated with pelvic floor muscle training (PFMT) can improve pelvic floor muscle function (PFMF) in healthy women. The aim of this study was to investigate the acute effect of a single session of tDCS in PFMF compared with sham-tDCS in healthy women. METHODS: A double-blind, cross-over, randomized clinical trial was conducted with healthy, nulliparous and sexually active women. PFMF was assessed by bidigital palpation (PERFECT scale) and intravaginal pressure by a manometer (Peritron™). Participants randomly underwent two tDCS sessions (active and sham) 7 days apart. The electrode was positioned equal for both protocols, the anode electrode in the supplementary motor area (M1) and the cathode electrode in the right supraorbital frontal cortex (Fp2). The current was applied for 20 min at 2 mA in active stimulation and for 30 s in sham-tDCS. The tDCS applications were associated with verbal instructions to PFMT in a seated position. After each tDCS session PFMF was reevaluated. RESULTS: Twenty young healthy women (aged 23.4 ± 1.7 years; body mass index 21.7 ± 2.2 kg/m2) were included. No difference was observed in power, endurance, and intravaginal pressure of PFMF (p > 0.05). The number of sustained contractions improved from 3.0 (2.0-3.5) to 4.0 (3.0-5.0) after active-tDCS (p = 0.0004) and was superior to sham-tDCS (p = 0.01). CONCLUSION: The number of sustained contractions of PFM improved immediately after a single active-tDCS session, with a difference compared with the post-intervention result of sham-tDCS in healthy young women.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38955871

RESUMO

Previous research has indicated that the left dorsolateral prefrontal cortex (DLPFC) exerts an influence on attentional bias toward visual emotional information. However, it remains unclear whether the left DLPFC also play an important role in attentional bias toward natural emotional sounds. The current research employed the emotional spatial cueing paradigm, incorporating natural emotional sounds of considerable ecological validity as auditory cues. Additionally, high-definition transcranial direct current stimulation (HD-tDCS) was utilized to examine the impact of left dorsolateral prefrontal cortex (DLPFC) on attentional bias and its subcomponents, namely attentional engagement and attentional disengagement. The results showed that (1) compared to sham condition, anodal HD-tDCS over the left DLPFC reduced the attentional bias toward positive and negative sounds; (2) anodal HD-tDCS over the left DLPFC reduced the attentional engagement toward positive and negative sounds, whereas it did not affect attentional disengagement away from natural emotional sounds. Taken together, the present study has shown that left DLPFC, which was closely related with the top-down attention regulatory function, plays an important role in auditory emotional attentional bias.

17.
Cureus ; 16(6): e61511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957262

RESUMO

BACKGROUND AND OBJECTIVES: Cerebral palsy is a neurodevelopmental condition that results in impaired movement and posture, often accompanied by disturbances in balance and functional abilities. Recent advances in neurorehabilitation, including whole-body vibration therapy (WBVT), functional electrical stimulation, and transcranial direct current stimulation, show promise in enhancing traditional interventions and fostering neuroplasticity. However, the efficacy of their conjunct effects remains largely uncharted territory and warrants further exploration. The objective of the study was to compare the conjunct effects of functional electrical stimulation (FES) and WBVT with transcranial direct current stimulation (tDCS) and WBVT on lower extremity range of motion (ROM), dynamic balance, functional mobility, isometric muscle strength and hand grip strength in children with spastic cerebral palsy. METHODS: A randomized clinical trial was carried out on 42 children of both genders with spastic cerebral palsy, aged 5-15 years. The children were divided at random into three groups (14 in each group). In Group A, there were three (21.42%) males and 11 (78.57%) females, in Group B, eight (57.14%) were males and six (42.85%) were females, and in Group C, six (42.85%) children were males and eight (57.14%) were females. Group A received WBVT only, Group B received WBVT and FES, and Group C received WBVT and tDCS. The intervention was applied four times a week for four consecutive weeks. The data was collected two times before and immediately after four weeks of intervention. Lower extremity ROM was measured by a goniometer, functional mobility or dynamic balance was measured by a Time Up and Go test, isometric muscle strength was measured by a digital force gauge, and hand grip strength was assessed by a digital hand-held dynamometer. IBM SPSS Statistics for Windows, Version 27.0 (Released 2020; IBM Corp., Armonk, New York, United States) was utilized for statistical analysis. RESULTS: The mean age of the children in groups A, B, and C was 12.21±2.11 years, 11.71±2.01, and 11.07±2.01 years respectively. Intergroup analysis revealed a statistically significant difference (p<0.05) in the lower extremity range of motion, and functional mobility. Hand grip strength and isometric muscle strength between three groups. Post hoc analysis revealed that WBVT with transcranial direct current stimulation combined showed the most improvement. CONCLUSION: The study concluded that positive effects were seen in all three groups but tDCS with WBVT was found to be most effective in improving lower extremity ROM, functional mobility or dynamic balance, isometric muscle strength, and hand grip strength in children with spastic CP. The differences between the groups were statistically significant. The effect size was substantial enough to surpass established clinical benchmarks, indicating that the observed improvements are likely to have meaningful and beneficial impacts on patient outcomes.

18.
J Clin Sleep Med ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963076

RESUMO

STUDY OBJECTIVES: Idiopathic hypersomnia (IH) is characterized by excessive sleepiness during the day, prolonged sleep at night, and difficulty waking up. The true prevalence of IH is uncertain. ICSD provides criteria for diagnosing IH; however, the definition has evolved. Managing IH involves using pharmacologic and non-pharmacologic approaches, although the most effective strategies are still unclear. The objective of this scoping review was to identify the extent, range, and nature of the available evidence, identify research gaps, and discuss the implications for clinical practice and policy. METHODS: To conduct this review, a comprehensive search was conducted across scientific databases, without any restrictions on the date or study type. Eligible studies examined the effectiveness of pharmacologic and non-pharmacologic treatments for IH and reported the outcomes of these interventions. Data from the studies were screened, analyzed, and synthesized to provide an overview of the available literature landscape. RESULTS: 51 studies were included in this review, which used various methods and interventions. Pharmacological treatments, particularly modafinil, have been frequently studied and have yielded positive results. There is also emerging evidence for alternative medications such as low-sodium oxybate and pitolisant. Non-pharmacological approaches, such as CBT-H and tDCS have also shown promise in managing IH. CONCLUSIONS: This review highlights the complexity of managing IH management and emphasizes the need for personalized multidisciplinary approaches. Pharmacological interventions are important in managing IH and can be complemented by non-medication strategies. Larger-scale studies are necessary to advance our understanding of IH and to improve treatment outcomes.

19.
Front Aging Neurosci ; 16: 1414593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966802

RESUMO

Background: In recent years, an increasing number of studies have examined the potential efficacy of cognitive training procedures in individuals with normal ageing and mild cognitive impairment (MCI). Objective: The aims of this study were to (i) evaluate the efficacy of the cognitive Virtual Reality Rehabilitation System (VRRS) combined with anodal transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex compared to placebo tDCS stimulation combined with VRRS and (ii) to determine how to prolong the beneficial effects of the treatment. A total of 109 subjects with MCI were assigned to 1 of 5 study groups in a randomized controlled trial design: (a) face-to-face (FTF) VRRS during anodal tDCS followed by cognitive telerehabilitation (TR) (clinic-atDCS-VRRS+Tele@H-VRRS); (b) FTF VRRS during placebo tDCS followed by TR (clinic-ptDCS-VRRS+Tele@H-VRRS); (c) FTF VRRS followed by cognitive TR (clinic-VRRS+Tele@H-VRRS); (d) FTF VRRS followed by at-home unstructured cognitive stimulation (clinic-VRRS+@H-UCS); and (e) FTF cognitive treatment as usual (clinic-TAU). Results: An improvement in episodic memory was observed after the end of clinic-atDCS-VRRS (p < 0.001). We found no enhancement in episodic memory after clinic-ptDCS-VRRS or after clinic-TAU.Moreover, the combined treatment led to prolonged beneficial effects (clinic-atDCS-VRRS+Tele@H-VRRS vs. clinic-ptDCS-VRRS+Tele@H-VRRS: p = 0.047; clinic-atDCS-VRRS+Tele@H-VRRS vs. clinic-VRRS+Tele@H-VRRS: p = 0.06). Discussion: The present study provides preliminary evidence supporting the use of individualized VRRS combined with anodal tDCS and cognitive telerehabilitation for cognitive rehabilitation. Clinical trial registration: https://clinicaltrials.gov/study/NCT03486704?term=NCT03486704&rank=1, NCT03486704.

20.
J Cent Nerv Syst Dis ; 16: 11795735241258435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835997

RESUMO

We present the case of a 62-year-old woman with probable behavioral variant of frontotemporal dementia (bvFTD) with cognitive/language deficits who demonstrated improved performance on cognitive/language testing and in functional tasks following long-term, home-based transcranial direct current stimulation (tDCS) coupled with computerized cognitive training (CCT). The patient underwent home-based tDCS (anode on the left prefrontal cortex and cathode on the right homologue) for 46 sessions over 10 weeks along with CCT. On post-treatment testing, the patient improved by 3 points on the Mini-Mental State Exam (MMSE) (23 to 26). She also showed improvement on several cognitive/language tasks, such as immediate recall of single words and word pairs, total accurate words in sentence repetition, delayed recall, semantic processing, and sentence level comprehension. There was no decline in several other cognitive and language tasks. Family members reported subjective improvements in expressiveness, communication, and interaction with others as well as increased attention to grooming and style which contrasted with her pre-treatment condition. This report suggests that home-based tDCS combined with CCT for an extended period may slow decline, and improve cognitive/language performance and everyday function in FTD.


Long-term, Home-based Transcranial Direct Current Stimulation Coupled with Computerized Cognitive Training in Frontotemporal Dementia: A Case Report: A 62-year-old woman with probable behavioral variant of frontotemporal dementia (bvFTD) improved on cognitive/language testing and in functional tasks following long-term, home-based transcranial direct current stimulation (tDCS) coupled with computerized cognitive training (CCT). The patient underwent home-based tDCS for 46 sessions over 10 weeks along with CCT. On post-treatment testing, the patient improved by three points on the Mini-Mental State Exam (MMSE) (23 to 26). She also improved immediate recall of single words and word pairs, total accurate words in sentence repetition, delayed recall, semantic processing, and sentence level comprehension. There was no decline in several other cognitive and language tasks. Family members described improvements in expressiveness, communication, and interaction with others and increased attention to grooming and style which was different from her pre-treatment condition. This case report suggests that home-based tDCS combined with CCT for an extended period may slow decline and improve cognitive/language performance and everyday function in FTD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA