Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.066
Filtrar
1.
CNS Neurosci Ther ; 30(8): e14901, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39097922

RESUMO

BACKGROUND: It has been demonstrated that progressive supranuclear palsy (PSP) correlates with structural abnormalities in several distinct regions of the brain. However, whether there are changes in the morphological similarity network (MSN) and the relationship between changes in brain structure and gene expression remain largely unknown. METHODS: We used two independent cohorts (discovery dataset: PSP: 51, healthy controls (HC): 82; replication dataset: PSP: 53, HC: 55) for MSN analysis and comparing the longitudinal changes in the MSN of PSP. Then, we applied partial least squares regression to determine the relationships between changes in MSN and spatial transcriptional features and identified specific genes associated with MSN differences in PSP. We further investigated the biological processes enriched in PSP-associated genes and the cellular characteristics of these genes, and finally, we performed an exploratory analysis of the relationship between MSN changes and neurotransmitter receptors. RESULTS: We found that the MSN in PSP patients was mainly decreased in the frontal and temporal cortex but increased in the occipital cortical region. This difference is replicable. In longitudinal studies, MSN differences are mainly manifested in the frontal and parietal regions. Furthermore, the expression pattern associated with MSN changes in PSP involves genes implicated in astrocytes and excitatory and inhibitory neurons and is functionally enriched in neuron-specific biological processes related to synaptic signaling. Finally, we found that the changes in MSN were mainly negatively correlated with the levels of serotonin, norepinephrine, and opioid receptors. CONCLUSIONS: These results have enhanced our understanding of the microscale genetic and cellular mechanisms responsible for large-scale morphological abnormalities in PSP patients, suggesting potential targets for future therapeutic trials.


Assuntos
Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/metabolismo , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Estudos de Coortes , Estudos Longitudinais
2.
Eur Heart J Suppl ; 26(Suppl 4): iv33-iv40, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39099578

RESUMO

The primary cellular substrates of atrial fibrillation (AF) and the mechanisms underlying AF onset remain poorly characterized and therefore, its risk assessment lacks precision. While the use of omics may enable discovery of novel AF risk factors and narrow down the cellular pathways involved in AF pathogenesis, the work is far from complete. Large-scale genome-wide association studies and transcriptomic analyses that allow an unbiased, non-candidate-gene-based delineation of molecular changes associated with AF in humans have identified at least 150 genetic loci associated with AF. However, only few of these loci have been thoroughly mechanistically dissected, indicating that much remains to be discovered for targeted diagnostics and therapeutics. Metabolomics and metagenomics, on the other hand, add to the understanding of AF downstream of the primary substrate and integrate the signalling of environmental and host factors, respectively. These two rapidly developing fields have already provided several correlates of prevalent and incident AF that require additional validation in external cohorts and experimental studies. In this review, we take a look at the recent developments in genetics, transcriptomics, metagenomics, and metabolomics and how they may aid in improving the discovery of AF risk factors and shed light into the molecular mechanisms leading to AF onset.

3.
Heliyon ; 10(14): e34357, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100494

RESUMO

Fabry disease (FD) is an X-linked lysosomal disease caused by an enzyme deficiency of alpha-galactosidase A (α-gal A). This deficiency leads to the accumulation of glycosphingolipids in lysosomes, resulting in a range of clinical symptoms. The complex pathogenesis of FD involves lysosomal dysfunction, altered autophagy, and mitochondrial abnormalities. Omics sciences, particularly transcriptomic analysis, comprehensively understand molecular mechanisms underlying diseases. This study focuses on genome-wide expression analysis in an FD human podocyte model to gain insights into the underlying mechanisms of podocyte dysfunction. Human control and GLA-edited podocytes were used. Gene expression data was generated using RNA-seq analysis, and differentially expressed genes were identified using DESeq2. Principal component analysis and Spearman correlation have explored gene expression trends. Functional enrichment and Reporter metabolite analyses were conducted to identify significantly affected metabolites and metabolic pathways. Differential expression analysis revealed 247 genes with altered expression levels in GLA-edited podocytes compared to control podocytes. Among these genes, 136 were underexpressed, and 111 were overexpressed in GLA-edited cells. Functional analysis of differentially expressed genes showed their involvement in various pathways related to oxidative stress, inflammation, fatty acid metabolism, collagen and extracellular matrix homeostasis, kidney injury, apoptosis, autophagy, and cellular stress response. The study provides insights into molecular mechanisms underlying Fabry podocyte dysfunction. Integrating transcriptomics data with genome-scale metabolic modeling further unveiled metabolic alterations in GLA-edited podocytes. This comprehensive approach contributes to a better understanding of Fabry disease and may lead to identifying new biomarkers and therapeutic targets for this rare lysosomal disorder.

4.
Environ Monit Assess ; 196(9): 789, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105824

RESUMO

Heavy metals are extremely hazardous for human health due to their toxic effects. They are non-biodegradable in nature, thus remain in the environment and enter and accumulate in the human body through biomagnification; hence, there is a serious need of their remediation. Phytoremediation has emerged as a green, sustainable, and effective solution for heavy metal removal and many plant species could be employed for this purpose. Plants are able to sequester substantial quantity of heavy metals, in some cases thousands of ppm, due to their robust physiology enabling high metal tolerance and anatomy supporting metal ion accumulation. Identification and modification of potential target genes involved in heavy metal accumulation have led to improved phytoremediation capacity of plants at the molecular level. The introduction of foreign genes through genetic engineering approaches has further enhanced phytoremediation capacity manifolds. This review gives an insight towards improving the phytoremediation efficiency through a better understanding of molecular mechanisms involved, expression of different proteins, genetic engineering approaches for transgenic production, and genetic modifications. It also comprehends novel omics tools such as genomics, metabolomics, proteomics, transcriptomics, and genome editing technologies for improvement of phytoremediation ability of plants.


Assuntos
Biodegradação Ambiental , Metais Pesados , Plantas , Poluentes do Solo , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Biotecnologia/métodos , Engenharia Genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-39098508

RESUMO

BACKGROUND: Non-infectious (inflammatory) cutaneous granulomatous disorders include cutaneous sarcoidosis (CS), granuloma annulare (GA), necrobiosis lipoidica (NL), and necrobiotic xanthogranuloma (NXG). These disorders share macrophage predominant inflammation histologically, but the inflammatory architecture and the pattern of extracellular matrix alteration varies. The underlying molecular explanations for these differences remain unclear. OBJECTIVE: To understand spatial gene expression characteristics in these disorders. METHODS: We performed spatial transcriptomics in cases of CS, GA, NL, and NXG to compare patterns of immune activation and other molecular features in a spatially resolved fashion. RESULTS: CS is characterized by a polarized, spatially organized T helper (Th) 1 predominant response with classical macrophage activation. GA is characterized by a mixed, but spatially organized pattern of Th1 and Th2 polarization with both classical and alternative macrophage activation. NL showed concomitant activation of Th1, Th2, and Th17 immunity with a mixed pattern of macrophage activation. Activation of type 1 immunity was shared among, CS, GA, and NL and included upregulation of IL-32. NXG showed upregulation of CXCR4-CXCL12/14 chemokine signaling and exaggerated alternative macrophage polarization. Histologic alteration of extracellular matrix correlated with hypoxia and glycolysis programs and type 2 immune activation. CONCLUSIONS: Inflammatory cutaneous granulomatous disorders show distinct and spatially organized immune activation that correlate with hallmark histologic changes.

6.
Best Pract Res Clin Haematol ; 37(2): 101561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39098801

RESUMO

HLA class II antigen presentation is modulated by the activity of the peptide editor HLA-DM and its antagonist HLA-DO, with their interplay controlling the peptide repertoires presented by normal and malignant cells. The role of these molecules in allogeneic hematopoietic cell transplantation (alloHCT) is poorly investigated. Balanced expression of HLA-DM and HLA-DO can influence the presentation of leukemia-associated antigens and peptides targeted by alloreactive T cells, therefore affecting both anti-leukemia immunity and the potential onset of Graft versus Host Disease. We leveraged on a large collection of bulk and single cell RNA sequencing data, available at different repositories, to comprehensively review the level and distribution of HLA-DM and HLA-DO in different cell types and tissues of the human body. The resulting expression atlas will help future investigations aiming to dissect the dual role of HLA class II peptide editing in alloHCT, and their potential impact on its clinical outcome.


Assuntos
Antígenos HLA-D , Leucemia , Humanos , Leucemia/terapia , Leucemia/imunologia , Leucemia/genética , Antígenos HLA-D/genética , Antígenos HLA-D/imunologia , Transplante de Células-Tronco Hematopoéticas , Apresentação de Antígeno , Peptídeos/imunologia , Peptídeos/genética , Aloenxertos
7.
Development ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39099456

RESUMO

Multiplexed spatial profiling of mRNAs has recently gained traction as a tool to explore the cellular diversity and the architecture of tissues. We propose a sensitive, open-source, simple and flexible method for the generation of in-situ expression maps of hundreds of genes. We exploit direct ligation of padlock probes on mRNAs, coupled with rolling circle amplification and hybridization-based in situ combinatorial barcoding, to achieve high detection efficiency, high throughput and large multiplexing. We validate the method across a number of species, and show its use in combination with orthogonal methods such as antibody staining, highlighting its potential value for developmental and tissue biology studies. Finally, we provide an end-to-end computational workflow that covers the steps of probe design, image processing, data extraction, cell segmentation, clustering and annotation of cell types. By enabling easier access to high-throughput spatially resolved transcriptomics, we hope to encourage a diversity of applications and the exploration of a wide range of biological questions.

8.
Insect Biochem Mol Biol ; 173: 104165, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089389

RESUMO

Aestivation is a form of seasonal dormancy observed in various insect species, usually coinciding with the summer season. The cabbage stem flea beetle, Psylliodes chrysocephala (Coleoptera: Chrysomelidae), is a key pest of oilseed rape that obligatorily aestivates as adult in late summer. Since the physiological and transcriptional processes linked to aestivation in P. chrysocephala are still little understood, we analyzed relevant physiological parameters and performed RNA-seq analyses on laboratory-reared beetles in their pre-aestivation, aestivation, and post-aestivation stages. We found that the beetles reached aestivation at 15 days post-eclosion, showing strongly reduced metabolic activity, with less than 50% CO2 production, compared to pre-aestivating individuals. Under constant laboratory conditions, the beetles aestivated for about 25 days. Female beetles reached reproductive maturity at a median of 52 days post-eclosion. Furthermore, aestivating beetles had significantly reduced carbohydrate reserves and increased lipid reserves compared with pre-aestivating beetles, indicating that aestivation is associated with drastic changes in energy metabolism. Aestivating beetles contained 30% less water and their survival rates under high-temperature conditions (30 °C) were 40% higher compared to pre-aestivating beetles. RNA-seq studies showed that, in particular, gene ontology terms related to carbohydrate and lipid metabolism, digestion, and mitochondrial activity were enriched, with clear differences in transcript abundance between beetles in aestivation compared to pre- or post-aestivation. Specifically, mitochondrial transcripts, such as respiratory chain I subunits, and digestion-related transcripts, such as trypsin, were less abundant during aestivation, which supports the idea that aestivation is associated with decreased metabolic activity. This study represents the first exploration of the transcriptomic and physiological processes linked to aestivation in P. chrysocephala.

9.
Animal ; 18(8): 101250, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39096599

RESUMO

In recent years, rising prices for high-quality protein-based feeds have significantly increased nutrition costs. Consequently, investigating strategies to reduce these expenses and improve feed efficiency (FE) have become increasingly important for the dairy sheep industry. This research investigates the impact of nutritional protein restriction (NPR) during prepuberty and FE on the milk transcriptome of dairy Assaf ewes (sampled during the first lactation). To this end, we first compared transcriptomic differences between NPR and control ewes. Subsequently, we evaluated gene expression differences between ewes with divergent FE, using feed conversion ratio (FCR), residual feed intake (RFI), and consensus classifications of high- and low-FE animals for both indices. Lastly, we assess milk gene expression as a predictor of FE phenotype using random forest. No effect was found for the prepubertal NPR on milk performance or FE. Moreover, at the milk transcriptome level, only one gene, HBB, was differentially expressed between the NPR (n = 14) and the control group (n = 14). Further, the transcriptomic analysis between divergent FE sheep revealed 114 differentially expressed genes (DEGs) for RFI index (high-FERFI = 10 vs low-FERFI = 10), 244 for FCR (high-FEFCR = 10 vs low-FEFCR = 10), and 1 016 DEGs between divergent consensus ewes for both indices (high-FEconsensus = 8 vs low-FEconsensus = 8). These results underscore the critical role of selected FE indices for RNA-Seq analyses, revealing that consensus divergent animals for both indices maximise differences in transcriptomic responses. Genes overexpressed in high-FEconsensus ewes were associated with milk production and mammary gland development, while low-FEconsensus genes were linked to higher metabolic expenditure for tissue organisation and repair. The best prediction accuracy for FE phenotype using random forest was obtained for a set of 44 genes consistently differentially expressed across lactations, with Spearman correlations of 0.37 and 0.22 for FCR and RFI, respectively. These findings provide insights into potential sustainability strategies for dairy sheep, highlighting the utility of transcriptomic markers as FE proxies.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39096759

RESUMO

Among terrestrial ectotherms, hibernation is a common response to extreme cold temperatures and is associated with reduced physiological rates, including immunity. When winter wanes and temperatures increase, so too do vital rates of both ectothermic hosts and their parasites. Due to metabolic scaling, if parasite activity springs back faster than host immune functions then cold seasons and transitions between cold and warm seasons may represent periods of vulnerability for ectothermic hosts. Understanding host regulation of physiological rates at seasonal junctions is a first step toward identifying thermal mismatches between hosts and parasites. Here we show that immune gene expression is responsive to transitions into and out of the cold season in a winter-adapted amphibian, the wood frog (Lithobates sylvaticus), and that frogs experienced parasitism by at least two nematode species throughout the entirety of the cold season. In both splenic and skin tissues, we observed a decrease in immune gene expression going from fall to winter, observed no changes between winter and emergence from hibernation, and observed increases in immune gene expression after hibernation ended. At all timepoints, differentially expressed genes from spleens were more highly enriched for immune system processes than those from ventral skin, especially with respect to terms related to adaptive immune processes. Infection with nematode lungworms was also associated with upregulation of immune processes in the spleen. We suggest that rather than being a period of stagnation, during which physiological processes and infection potential cease, the cold season is immunologically dynamic, requiring coordinated regulation of many biological processes, and that the reemergence period may be an important time during which hosts invest in preparatory immunity.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39096758

RESUMO

Spider venom is a natural source of diverse biomolecules, but due to technical limitations, only a small fraction has been studied. With the advancement of omics technologies, research on spider venom has broadened, greatly promoting systematic studies of spider venom. Agelena limbata is a common spider found in vegetation, known for constructing funnel-shaped webs, and feeding on insects such as Diptera and Homoptera. However, due to its small size and the difficulty in obtaining venom, the composition of Agelena limbata venom has never been studied. In this study, a transcriptomics approach was used to analyze the toxin components in the venom of Agelena limbata, resulting in the identification of 28 novel toxin-like sequences and 24 peptidases. Based on sequence similarity and differences in cysteine motifs, the 28-novel toxin-like sequences were classified into 10 superfamilies. According to the results annotated in the database, the 24 peptidases were divided into six distinct families, with the serine protease family being the most common. A phylogenetic tree was constructed using the toxin-like sequences of Agelena limbata along with Psechrus triangulus and Hippasa lycosina. An analysis of the structural domains and motifs of Agelena limbata was also conducted. The results indicated that Agelena limbata is more distantly related to the other two species of funnel-web spiders, and that the toxin superfamily IX has a unique function compared to the other superfamilies. This study reveals the components of the Agelena limbata venom, deepening our understanding of it, and through bioinformatics analysis, has identified unique functions of the toxin superfamilies, providing a scientific basis for the development of bioactive drugs in the future.

12.
Genome Biol ; 25(1): 203, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090647

RESUMO

Typical clustering methods for single-cell and spatial transcriptomics struggle to identify rare cell types, while approaches tailored to detect rare cell types gain this ability at the cost of poorer performance for grouping abundant ones. Here, we develop aKNNO to simultaneously identify abundant and rare cell types based on an adaptive k-nearest neighbor graph with optimization. Benchmarking on 38 simulated and 20 single-cell and spatial transcriptomics datasets demonstrates that aKNNO identifies both abundant and rare cell types more accurately than general and specialized methods. Using only gene expression aKNNO maps abundant and rare cells more precisely compared to integrative approaches.


Assuntos
Análise de Célula Única , Transcriptoma , Análise de Célula Única/métodos , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Humanos , Algoritmos , Software
13.
Ann Biomed Eng ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095638

RESUMO

PURPOSE: Flow diverting stents (FDS) are used to treat cerebral aneurysms, by promoting thrombosis and occlusion of the aneurysm sac. However, retreatment is required in some cases, and the biologic basis behind treatment outcome is not known. The goal of this study was to understand how changes in hemodynamic flow after FDS placement affect aneurysmal endothelial cell (EC) activity. METHODS: Three-dimensional models of patient-specific aneurysms were created to quantify the EC response to FDS placement. Computational fluid dynamic simulations were used to determine the hemodynamic impact of FDS. Two identical models were created for each patient; into one a FDS was inserted. Each model was then populated with human carotid ECs and subjected to patient-specific pulsatile flow for 24 h. ECs were isolated from aneurysm dome from each model and bulk RNA sequencing was performed. RESULTS: Paired untreated and treated models were created for four patients. Aneurysm dome EC analysis revealed 366 (2.6%) significant gene changes between the untreated and FDS conditions, out of 13909 total expressed genes. Gene set enrichment analysis of the untreated models demonstrated enriched gene ontology terms related to cell adhesion, growth/tensile activity, cytoskeletal organization, and calcium ion binding. In the FDS models, enriched terms were related to cellular proliferation, ribosomal activity, RNA splicing, and protein folding. CONCLUSION: Treatment of cerebral aneurysms with FDS induces significant EC gene transcription changes related to aneurysm hemodynamics in patient-specific in vitro 3D-printed models subjected to pulsatile flow. Further investigation is needed into the relationship between transcriptional change and treatment outcome.

14.
Curr Opin Toxicol ; 382024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39086983

RESUMO

Human exposure to the metal lead (Pb) is prevalent and associated with adverse neurodevelopmental and neurodegenerative outcomes. Pb disrupts normal brain function by inducing oxidative stress and neuroinflammation, altering cellular metabolism, and displacing essential metals. Prior studies on the molecular impacts of Pb have examined bulk tissues, which collapse information across all cell types, or in targeted cells, which are limited to cell autonomous effects. These approaches are unable to represent the complete biological implications of Pb exposure because the brain is a cooperative network of highly heterogeneous cells, with cellular diversity and proportions shifting throughout development, by brain region, and with disease. New technologies are necessary to investigate whether Pb and other environmental exposures alter cell composition in the brain and whether they cause molecular changes in a cell-type-specific manner. Cutting-edge, single-cell approaches now enable research resolving cell-type-specific effects from bulk tissues. This article reviews existing Pb neurotoxicology studies with genome-wide molecular signatures and provides a path forward for the field to implement single-cell approaches with practical recommendations.

15.
iScience ; 27(8): 110471, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39091463

RESUMO

We performed long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors to discover new transcript and protein isoforms expressed during immune responses to diverse pathogens. Long-read transcriptome profiling reveals novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. Widespread loss of intron retention occurs as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. RNA expression differences did not result in differences in the amounts of secreted proteins. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and poly(I:C)-stimulated PBMCs. Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.

16.
Front Neural Circuits ; 18: 1436915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091993

RESUMO

We provide a brief (and unabashedly biased) overview of the pre-transcriptomic history of somatostatin interneuron taxonomy, followed by a chronological summary of the large-scale, NIH-supported effort over the last ten years to generate a comprehensive, single-cell RNA-seq-based taxonomy of cortical neurons. Focusing on somatostatin interneurons, we present the perspective of experimental neuroscientists trying to incorporate the new classification schemes into their own research while struggling to keep up with the ever-increasing number of proposed cell types, which seems to double every two years. We suggest that for experimental analysis, the most useful taxonomic level is the subdivision of somatostatin interneurons into ten or so "supertypes," which closely agrees with their more traditional classification by morphological, electrophysiological and neurochemical features. We argue that finer subdivisions ("t-types" or "clusters"), based on slight variations in gene expression profiles but lacking clear phenotypic differences, are less useful to researchers and may actually defeat the purpose of classifying neurons to begin with. We end by stressing the need for generating novel tools (mouse lines, viral vectors) for genetically targeting distinct supertypes for expression of fluorescent reporters, calcium sensors and excitatory or inhibitory opsins, allowing neuroscientists to chart the input and output synaptic connections of each proposed subtype, reveal the position they occupy in the cortical network and examine experimentally their roles in sensorimotor behaviors and cognitive brain functions.


Assuntos
Interneurônios , Somatostatina , Animais , Somatostatina/metabolismo , Interneurônios/classificação , Interneurônios/fisiologia , Interneurônios/metabolismo , Interneurônios/citologia , Humanos
17.
Neuro Oncol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093629

RESUMO

BACKGROUND: Advances in our understanding of the molecular biology of meningiomas have led to significant gains in the ability to predict patient prognosis and tumor recurrence and to identify novel targets for therapeutic design. Specifically, classification of meningiomas based on DNA methylation has greatly improved our ability to risk stratify patients, however new questions have arisen in terms of the underlying impact these DNA methylation signatures have on meningioma biology. METHODS: This study utilizes RNA-seq data from 486 meningioma samples corresponding to three meningioma DNA methylation groups (Merlin-intact, Immune-enriched, and Hypermitotic), followed by in vitro experiments utilizing human meningioma cell lines. RESULTS: We identify alterations in RNA splicing between meningioma DNA methylation groups including individual splicing events that correlate with Hypermitotic meningiomas and predict tumor recurrence and overall patient prognosis and compile a set of splicing events that can accurately predict DNA methylation classification based on RNA-seq data. Furthermore, we validate these events using RT-PCR in patient samples and meningioma cell lines. Additionally, we identify alterations in RNA binding proteins and splicing factors that lie upstream of RNA splicing events, including upregulation of SRSF1 in Hypermitotic meningiomas which we show drives alternative RNA splicing changes. Finally, we design splice switching antisense oligonucleotides to target RNA splicing changes in NASP and MFF observed in Hypermitotic meningiomas, providing a rationale for RNA-based therapeutic design. CONCLUSIONS: RNA splicing is an important driver of meningioma phenotypes that can be useful in prognosticating patients and as a potential exploit for therapeutic vulnerabilities.

18.
Ecotoxicol Environ Saf ; 283: 116828, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094458

RESUMO

The neonicotinoid pesticide acetamiprid has been widely used in agricultural pest control and was frequently detected in the water environment. There have been some studies of the toxic effects of acetamiprid on fish, but studies on aquatic lower vertebrates are still very limited. As a primitive jawless vertebrate, Lethenteron reissneri has a special position in evolution and is now listed as a national second level protected animal in China. The present study aimed to investigate the toxic effect of acetamiprid on the liver of L. reissneri larvae. A conjoint analysis of the transcriptomics and metabolomics was performed to determine the responses of L. reissneri larvae liver to acetamiprid at different concentrations (L for low concentration 25 mg/L and H for high concentration 100 mg/L). Even low concentrations of acetamiprid can cause significant liver damage to L. reissneri larvae in a short period. In omics analyses, 2141 differentially expressed genes (DEGs) and 183 differentially abundant metabolites (DAMs) were identified in the H/Control group, and 229 DEGs and 144 DAMs were identified in the L/C group. Correlation analyses revealed acetamiprid affected the metabolic pathways of L. reissneri larvae liver such as the glycerophospholipid metabolism and arachidonic acid metabolism. This study not only enriches the basis for understanding the toxic effect of acetamiprid exposure to L. reissneri larvae liver and provides more information on the breeding and conservation of L. reissneri, but also further causes attention on toxicity risk from acetamiprid to aquatic lower vertebrate species.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39089334

RESUMO

BACKGROUND: Palmoplantar pustulosis (PPP) is an inflammatory disease characterized by relapsing eruptions of neutrophil-filled, sterile pustules on the palms and soles that can be clinically difficult to differentiate from non-pustular palmoplantar psoriasis (palmPP) and dyshidrotic palmoplantar eczema (DPE). OBJECTIVE: To identify overlapping and unique PPP, palmPP, and DPE drivers to provide molecular insight into their pathogenesis. METHODS: We performed bulk RNA sequencing of lesional PPP (n=33), palmPP (n=5), and DPE (n=28) samples, as well as 5 healthy non-acral and 10 healthy acral skin samples. RESULTS: Acral skin shows a unique immune environment, likely contributing to a unique niche for palmoplantar inflammatory diseases. Compared with healthy acral skin, PPP, palmPP, and DPE displayed a broad overlapping transcriptomic signature characterized by shared upregulation of pro-inflammatory cytokines (TNF, IL36), chemokines, and T cell-associated genes, along with unique disease features of each disease state, including enriched neutrophil processes in PPP and to a lesser extent in palmPP, and lipid antigen processing in DPE. Strikingly, unsupervised clustering and trajectory analyses demonstrated divergent inflammatory profiles within the three disease states. These identified putative key upstream immunological switches, including eicosanoids, interferon responses, and neutrophil degranulation, contributing to disease heterogeneity. CONCLUSION: We demonstrate the molecular overlap between different inflammatory palmoplantar diseases that supersedes clinical and histologic assessment, yet highlighting the heterogeneity within each condition, suggesting limitations of current disease classification and the need to move toward a molecular classification of inflammatory acral diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA