Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.886
Filtrar
1.
Trauma Case Rep ; 52: 101067, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39021888

RESUMO

Introduction: Proximal radio-ulnar translocation (PRUT) with elbow dislocation, without a fracture, is an extremely unusual injury. Case: A 6-year-old female child presented to us with posterior elbow dislocation, PRUT and incomplete ulnar nerve palsy. A hematoma aspiration and reduction of the elbow joint were done with a hyper-supination manoeuvre to reverse the translocation. She was managed with an above-elbow cast for 4 weeks and showed good radiological and functional outcomes on subsequent follow-ups until 1 year. Conclusion: Early recognition of PRUT and a thorough clinico-radiological assessment are mandatory when dealing with paediatric elbow injuries. Our cadaveric study with illustrations defines the mechanism of this rare injury for better understanding.

2.
Environ Monit Assess ; 196(8): 752, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028326

RESUMO

Metal uptake by vegetables is becoming a threat to the life of consumers. Therefore, continuous monitoring of metals in vegetables and soils is becoming a necessity. In this study, the occurrence of 18 metals in amadumbe (Colocasia esculenta L.), sweet potatoes (Ipomoea batatas L.), potatoes (Solanum tuberosum L.), and carrots (Daucus carrota L.) grown in small-scale South African agricultural farms was monitored using inductively coupled plasma-optical emission spectroscopy. All the 18 investigated elements were detected in soils and different vegetative plants parts. Bioaccumulation factors indicated the transfer of selected metals from soils into the plant roots. Toxic metals Cd, Cr, and Pb had their concentrations exceeding the maximum permissible levels set by the World Health Organization in the edible parts of all root vegetables. Cd and Pb varied between 18.89 and 19.19 mg kg-1 and 10.46 and 11.46 mg kg-1, respectively, while Cr remained constant at 16.78 mg kg-1. The exact metals together with As and Ni had their total hazard quotients exceeding the threshold value of 1, which indicated that the daily consumption of the investigated root vegetables is likely to pose health risks to both adults and children. Therefore, this study points out to a possibility of toxic health effects that could arise when these vegetables are consumed daily.


Assuntos
Monitoramento Ambiental , Fazendas , Poluentes do Solo , Verduras , África do Sul , Verduras/química , Verduras/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Medição de Risco , Monitoramento Ambiental/métodos , Bioacumulação , Metais/metabolismo , Metais/análise , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Humanos , Contaminação de Alimentos/análise , Solanum tuberosum/metabolismo , Solanum tuberosum/química , Metais Pesados/análise , Metais Pesados/metabolismo , Daucus carota/metabolismo , Daucus carota/química , Colocasia/metabolismo , Ipomoea batatas/metabolismo
3.
Environ Sci Pollut Res Int ; 31(32): 44900-44907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954337

RESUMO

Seed coating with pesticides is used extensively for the protection of both seeds and plants against pests. In this study, the uptake and transport of seed-coating pesticides (insecticides), including cyantraniliprole (CYN) and thiamethoxam (THX), were investigated. The translocation of these pesticides from the soil to the plant and their accumulation in different plant parts were also calculated. After sowing the seeds with seed coating pesticides, soil and plant samples were taken across the study area. These samples were extracted and analyzed in liquid chromatography with tandem mass spectrometry (LC-MS/MS). CYN and THX were used in maize plants for the first time to observe soil degradation kinetics, and CYN showed a higher half-life than THX in soil. Both pesticides have been taken up by the corn maize plant and transferred and accumulated to the upper parts of the plant. Although the THX concentration was between 2.240 and 0.003 mg/kg in the root, between 3.360 and 0.085 mg/kg in the stem, it was between 0.277 and 3.980 mg/kg in the leaf, whereas CYN was detected at higher concentrations. The concentration of CYN was 1.472 mg/ kg and 0.079 mg/kg in the roots and stems of the maize plant, respectively. However, the bioconcentration factor (BCF) indicates the soil-to-plant accumulation of CYN from 28 to 34.6 and that of 12.5 to 4567.1 for THX on different sampling days. The translocation factor (TFstem) represents the ratio of pesticides absorbed from the stem and transported to the roots. For CYN, TFstem ranges from 3.6 to 20.5, while for THX, it varies between 1.5 and 26.8, indicating a higher translocation rate for THX. The ratio of leaf to root concentration are 3.6 to 20.5 for CYN and 1.8 to 87.7 for THX, demonstrating effective translocation for both pesticides. The TF values for both pesticides are above 1, signifying successful root-to-stem-to-leaf movement. Notably, THX exhibits a notably higher transport rate compared to CYN.


Assuntos
Sementes , Tiametoxam , Zea mays , Zea mays/metabolismo , Pirazóis/metabolismo , Poluentes do Solo/metabolismo , ortoaminobenzoatos/metabolismo , Praguicidas/metabolismo , Solo/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-39053763

RESUMO

Tauopathy is a collective term for several neurodegenerative diseases characterized by the intracellular accumulation of hyperphosphorylated microtubule-associated protein Tau (P-tau). Our recent report has revealed the neuroprotective effect of dihydroartemisinin (DHA) on mice overexpressing human Tau (hTau) in the hippocampus by enhancing O-linked-N-Acetylglucosaminylation (O-GlcNAcylation) modification. However, whether DHA can improve synaptic and cognitive function in hTau transgenic mice by specifically promoting Tau O-GlcNAcylation is still unclear. Here, we introduced hTau transgenic mice, a more optimal tauopathy model, to study the effect of DHA on Tau O-GlcNAcylation. We reported that DHA treatment alleviated the deficits of hippocampal CA1 LTP and spatial learning and memory in the Barnes maze and context fear conditioning tests in hTau transgenic mice. Mechanically, we revealed that DHA exerted a significant protective effect by upregulating Tau O-GlcNAcylation and attenuating Tau hyperphosphorylation. Through molecular docking, we found a stable binding between DHA and O-GlcNAc transferase (OGT). We further reported that DHA treatment had no effect on the expression of OGT, but it promoted OGT nuclear export, thereby enhancing OGT-mediated Tau O-GlcNAcylation. Taken together, these results indicate that DHA exerts neuroprotective effect by promoting cytoplasmic translocation of OGT and rebuilding the balance of Tau O-GlcNAcylation/phosphorylation, enhancing O-GlcNAcylation of Tau, suggesting that DHA may be a potential therapeutic agent against tauopathy.

5.
Front Plant Sci ; 15: 1325052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988638

RESUMO

Little is known about how carbon integration and storage dynamics affect and are affected by demography in field populations. We sought to elucidate this link by examining dynamic patterns of carbon integration relative to the timing of demographically significant developmental decisions regarding shoot type determination in mayapple, Podophyllum peltatum, a clonal plant with large and persistent rhizomes. Individual rhizome systems growing in natural populations were fed 14CO2 either in late-April, early-May, or mid-June, then harvested at intervals throughout the current season and into the next. When distribution of label was examined we found that carbon fixed at different times in the growing season is used differently: April-fixed assimilate remained in the labeled shoot or was moved into the old rhizome, May-fixed assimilate was found predominantly in the old rhizome, while early-June fixed assimilate moved into the old rhizome and the extending new ramet. Movement of assimilate into the old rhizome appeared to have precedence over formation of additional new ramets. Despite significant within season changes in location of dominant sinks within rhizome systems, there was little redistribution of labeled assimilate: early fixed assimilate was not used to fuel later within season growth, however, assimilate was redistributed between seasons. Vegetative and sexual systems differed in the distribution only of April-fixed assimilate. This was observed even though early labeling occurred prior to anthesis. Sexual systems retained a greater proportion of assimilate in the stem than did vegetative ones, which exported more to the old rhizome. 14C-distribution patterns did not vary between systems differing in future demographic status suggesting that the developmental decision regarding shoot type is based on resources acquired in prior years. We explore the hypothesis that preformation and storage are functionally linked traits that permit plants to coordinate the developmental determination of structures differing in cost and demographic function with known resource status. We conclude that demography influences and is influenced by integrative physiology and that physiological restrictions on within season redistribution of assimilates constrain plants' capacities to respond to short-term environmental variation. Such constraints may affect plants' abilities to respond to rapid environmental change in the Anthropocene.

6.
Front Oncol ; 14: 1388880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988705

RESUMO

MiT family translocation renal cell carcinomas (tRCCs) primarily include Xp11.2/transcription factor E3 (TFE3) gene fusion-associated renal cell carcinoma (Xp11.2 tRCC) and t(6;11)/TFEB gene fusion-associated RCC. Clinical cases of these carcinomas are rare. Fluorescence in situ hybridization can be used to identify the type, but there are no standard diagnostic and treatment methods available, and the prognosis remains controversial. Herein, we present a case of a patient with Xp11.2 tRCC at 29 weeks of gestation. The baby was successfully delivered, and radical surgery was performed for renal cancer at the same time. This is a unique and extremely rare case. We have described the case and performed a literature review to report the progress of current research on the treatment and prognosis of pregnant patients with Xp11.2/TFE3 translocation renal cell carcinoma. This study aims to contribute to improving the diagnosis and treatment of Xp11.2 tRCC in pregnant patients.

7.
Comput Struct Biotechnol J ; 23: 2548-2564, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38989058

RESUMO

P-glycoprotein (P-gp) plays a crucial role in cellular detoxification and drug efflux processes, transitioning between inward-facing (IF) open, occluded, and outward-facing (OF) states to facilitate substrate transport. Its role is critical in cancer therapy, where P-gp contributes to the multidrug resistance phenotype. In our study, classical and enhanced molecular dynamics (MD) simulations were conducted to dissect the structural and functional features of the P-gp conformational states. Our advanced MD simulations, including kinetically excited targeted MD (ketMD) and adiabatic biasing MD (ABMD), provided deeper insights into state transition and translocation mechanisms. Our findings suggest that the unkinking of TM4 and TM10 helices is a prerequisite for correctly achieving the outward conformation. Simulations of the IF-occluded conformations, characterized by kinked TM4 and TM10 helices, consistently demonstrated altered communication between the transmembrane domains (TMDs) and nucleotide binding domain 2 (NBD2), suggesting the implication of this interface in inhibiting P-gp's efflux function. A particular emphasis was placed on the unstructured linker segment connecting the NBD1 to TMD2 and its role in the transporter's dynamics. With the linker present, we specifically noticed a potential entrance of cholesterol (CHOL) through the TM4-TM6 portal, shedding light on crucial residues involved in accommodating CHOL. We therefore suggest that this entry mechanism could be employed for some P-gp substrates or inhibitors. Our results provide critical data for understanding P-gp functioning and developing new P-gp inhibitors for establishing more effective strategies against multidrug resistance.

8.
Brain Dev ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972777

RESUMO

BACKGROUND: Glass syndrome, derived from chromosomal 2q33.1 microdeletions, manifests with intellectual disability, microcephaly, epilepsy, and distinctive features, including micrognathia, down-slanting palpebral fissures, cleft palate, and crowded teeth. Recently, SATB2 located within the deletion region, was identified as the causative gene responsible for Glass syndrome. Numerous disease-causing variants within the SATB2 coding region have been reported. OBJECTIVE: Given the presentation of intellectual disability and multiple congenital anomalies in a patient with a de novo reciprocal translocation between chromosomes 1 and 2, disruption of the causative gene(s) was suspected. This study sought to identify the causative gene in the patient. METHODS: Long-read whole-genome sequencing was performed, and the expression level of the candidate gene was analyzed. RESULTS: The detection of breakpoints was successful. While the breakpoint on chromosome 1 disrupted RNF220, it was not deemed to be a genetic cause. Conversely, SATB2 is located in the approximately 100-kb telomeric region of the breakpoint on chromosome 2. The patient's clinical features resembled those of previously reported cases of Glass syndrome, despite the lack of confirmed reduced SATB2 expression. CONCLUSION: The patient was diagnosed with Glass syndrome due to the similarity in clinical features. This led us to hypothesize that disruption in the downstream region of SATB2 could result in Glass syndrome. The microhomologies identified in the breakpoint junctions indicate a potential molecular mechanism involving microhomology-mediated break-induced repair mechanism or template switching.

9.
Environ Int ; 190: 108859, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38970982

RESUMO

Metal nanoparticles offer promising prospects in agriculture, enhancing plant growth and ensuring food security. Silver, gold, copper, and zinc nanoparticles possess unique properties making them attractive for plant applications. Understanding molecular interactions between metal nanoparticles and plants is crucial for unlocking their potential to boost crop productivity and sustainability. This review explores metal nanoparticles in agriculture, emphasizing the need to understand these interactions. By elucidating mechanisms, it highlights the potential for enhancing crop productivity, stress tolerance, and nutrient-use efficiency, contributing to sustainable agriculture and food security. Quantifying benefits and risks reveal significant advantages. Metal nanoparticles enhance crop productivity by 20% on average and reduce disease incidence by up to 50% when used as antimicrobial agents. They also reduce nutrient leaching by 30% and enhance soil carbon sequestration by 15%, but concerns about toxicity, adverse effects on non-target organisms, and nanoparticle accumulation in the food chain must be addressed. Metal nanoparticles influence cellular processes including sensing, signaling, transcription, translation, and post-translational modifications. They act as signaling molecules, activate stress-responsive genes, enhance defense mechanisms, and improve nutrient uptake. The review explores their catalytic role in nutrient management, disease control, precision agriculture, nano-fertilizers, and nano-remediation. A bibliometric analysis offers insights into the current research landscape, highlighting trends, gaps, and future directions. In conclusion, metal nanoparticles hold potential for revolutionizing agriculture, enhancing productivity, mitigating environmental stressors, and promoting sustainability. Addressing risks and gaps is crucial for their safe integration into agricultural practices.

10.
Front Plant Sci ; 15: 1401525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966140

RESUMO

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) seriously threatens wheat production worldwide. It is imperative to identify novel resistance genes from wheat and its wild relatives to control this disease by host resistance. Dasypyrum villosum (2n = 2x = 14, VV) is a relative of wheat and harbors novel genes for resistance against multi-fungal diseases. In the present study, we developed a complete set of new wheat-D. villosum disomic introgression lines through genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and molecular markers analysis, including four disomic substitution lines (2n=42) containing respectively chromosomes 1V#6, 2V#6, 3V#6, and 6V#6, and four disomic addition lines (2n=44) containing respectively chromosomes 4V#6, 5V#6, 6V#6 and 7V#6. These lines were subsequently evaluated for their responses to a mixture Bgt isolates at both seedling and adult-plant stages. Results showed that introgression lines containing chromosomes 3V#6, 5V#6, and 6V#6 exhibited resistance at both seedling and adult-plant stages, whereas the chromosome 4V#6 disomic addition line NAU4V#6-1 exhibited a high level of adult plant resistance to powdery mildew. Moreover, two translocation lines were further developed from the progenies of NAU4V#6-1 and the Ph1b mutation line NAU0686-ph1b. They were T4DL·4V#6S whole-arm translocation line NAU4V#6-2 and T7DL·7DS-4V#6L small-fragment translocation line NAU4V#6-3. Powdery mildew tests of the two lines confirmed the presence of an adult-plant powdery mildew resistance gene, Pm4VL, located on the terminal segment of chromosome arm 4V#6L (FL 0.6-1.00). In comparison with the recurrent parent NAU0686 plants, the T7DL·7DS-4V#6L translocation line NAU4V#6-3 showed no obvious negative effect on yield-related traits, providing a new germplasm in breeding for resistance.

11.
Cell Biosci ; 14(1): 89, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965641

RESUMO

Allergic diseases, characterized by a broad spectrum of clinical manifestations and symptoms, encompass a significant category of IgE-mediated atopic disorders, including asthma, allergic rhinitis, atopic dermatitis, and food allergies. These complex conditions arise from the intricate interplay between genetic and environmental factors and are known to contribute to socioeconomic burdens globally. Recent advancements in the study of allergic diseases have illuminated the crucial role of DNA methylation (DNAm) in their pathogenesis. This review explores the factors influencing DNAm in allergic diseases and delves into their mechanisms, offering valuable perspectives for clinicians. Understanding these epigenetic modifications aims to lay the groundwork for improved early prevention strategies. Moreover, our analysis of DNAm mechanisms in these conditions seeks to enhance diagnostic and therapeutic approaches, paving the way for more effective management of allergic diseases in the future.

12.
Gene ; 927: 148740, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955308

RESUMO

BACKGROUND: Osteoarthritis (OA) is a progressive condition affecting the joints that lacking effective therapy. However, the underlying molecular mechanism has not been fully clarified. METHODS: A model of OA was established in Sprague-Dawley (SD) rats through intra-articularly injected with monoiodoacetate (MIA). Western blot analysis was used to identify the levels of UBE2I and hnRNPA2B1 in articular cartilage. Overexpression and siRNA vectors for UBE2I were constructed and transfected into rat chondrocytes. CCK-8, TUNEL and transwell assay were utilized to assess the cell viability, apoptosis and migration ability. Western blot analysis was used to determine the levels of chondrogenic-specific genes including SOX9, COL2A1, Aggrecan, and PRG4. Then, molecular interactions were confirmed by immunoprecipitation. RESULTS: We observed significant upregulation of UBE2I and hnRNPA2B1 expression in articular cartilage samples of OA. The Pearson correlation analysis revealed positive correlation between UBE2I and hnRNPA2B1 levels. Functional experiments showed that increased UBE2I expression significantly suppressed cell growth, migration, and reduced the expression of chondrogenic-specific genes, while decreasing UBE2I levels had the opposite effects. Molecular interactions between UBE2I and hnRNPA2B1were determined via co-localization and immunoprecipitation. SUMO1 and SUMO3 proteins were enriched by immunoprecipitation using hnRNPA2B1 antibodies. Rescue experiments were performed using SUMOylation inhibitor (2-D08) and SUMOylation activator (N106). Overexpression of UBE2I increased the expression of hnRNPA2B1 in the cytoplasm and decreased the level in the nucleus, which was reversed by the treatment of 2-D08. Conversely, UBE2I knockdown and N106 treatment had the opposite effect. CONCLUSIONS: UBE2I modulated the nuclear translocation of hnRNPA2B1 by promoting SUMOylation in OA.


Assuntos
Condrócitos , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Osteoartrite , Ratos Sprague-Dawley , Sumoilação , Enzimas de Conjugação de Ubiquitina , Animais , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ratos , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Condrócitos/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Proliferação de Células , Núcleo Celular/metabolismo , Movimento Celular , Células Cultivadas
13.
J Control Release ; 373: 336-357, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38996921

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative condition characterized by metabolic imbalances and neuroinflammation, posing a formidable challenge in medicine due to the lack of effective treatments. Despite considerable research efforts, a cure for AD remains elusive, with current therapies primarily focused on symptom management rather than addressing the disease's underlying causes. This study initially discerned, through Mendelian randomization analysis that elevating pantothenate levels significantly contributes to the prophylaxis of Alzheimer's disease. We explore the therapeutic potential of pantothenate encapsulated in liposomes (Pan@TRF@Liposome NPs), targeting the modulation of CRM1-mediated PKM2 nuclear translocation, a critical mechanism in AD pathology. Additionally, we investigate the synergistic effects of exercise, proposing a combined approach to AD treatment. Exercise-induced metabolic alterations share significant similarities with those associated with dementia, suggesting a potential complementary effect. The Pan@TRF@Liposome NPs exhibit notable biocompatibility, showing no liver or kidney toxicity in vivo, while demonstrating stability and effectiveness in modulating CRM1-mediated PKM2 nuclear translocation, thereby reducing neuroinflammation and neuronal apoptosis. The combined treatment of exercise and Pan@TRF@Liposome NP administration in an AD animal model leads to improved neurofunctional outcomes and cognitive performance. These findings highlight the nanoparticles' role as effective modulators of CRM1-mediated PKM2 nuclear translocation, with significant implications for mitigating neuroinflammation and neuronal apoptosis. Together with exercise, this dual-modality approach could offer new avenues for enhancing cognitive performance and neurofunctional outcomes in AD, marking a promising step forward in developing treatment strategies for this challenging disorder.

14.
Mol Med ; 30(1): 104, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030473

RESUMO

Cholestatic liver diseases (CLD) are characterized by impaired normal bile flow, culminating in excessive accumulation of toxic bile acids. The majority of patients with CLD ultimately progress to liver cirrhosis and hepatic failure, necessitating liver transplantation due to the lack of effective treatment. Recent investigations have underscored the pivotal role of the gut microbiota-bile acid axis in the progression of hepatic fibrosis via various pathways. The obstruction of bile drainage can induce gut microbiota dysbiosis and disrupt the intestinal mucosal barrier, leading to bacteria translocation. The microbial translocation activates the immune response and promotes liver fibrosis progression. The identification of therapeutic targets for modulating the gut microbiota-bile acid axis represents a promising strategy to ameliorate or perhaps reverse liver fibrosis in CLD. This review focuses on the mechanisms in the gut microbiota-bile acids axis in CLD and highlights potential therapeutic targets, aiming to lay a foundation for innovative treatment approaches.


Assuntos
Ácidos e Sais Biliares , Colestase , Disbiose , Microbioma Gastrointestinal , Humanos , Ácidos e Sais Biliares/metabolismo , Animais , Colestase/metabolismo , Colestase/microbiologia , Hepatopatias/metabolismo , Hepatopatias/microbiologia , Hepatopatias/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/microbiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-39038810

RESUMO

Biological and solid-state nanopores are at the core of transformative techniques and nanodevices, democratizing the examination of matter and biochemical reactions at the single-molecule level, with low cost, portability, and simplicity in operation. One of the crucial hurdles in such endeavors is the fast analyte translocation, which limits characterization, and a rich number of strategies have been explored over the years to overcome this. Here, by site-directed mutagenesis on the α-hemolysin protein nanopore (α-HL), sought to replace selected amino acids with glycine, electrostatic binding sites were induced on the nanopore's vestibule and constriction region and achieved in the most favorable case a 20-fold increase in the translocation time of short single-stranded DNA (ssDNA) at neutral pH, with respect to the wild-type (WT) nanopore. We demonstrated an efficient tool of controlling the ssDNA translocation time, via the interplay between the nanopore-ssDNA surface electrostatic interactions and electroosmotic flow, all mediated by the pH-dependent ionization of amino acids lining the nanopore's translocation pathway. Our data also reveal the nonmonotonic, pH-induced alteration of ssDNA average translocation time. Unlike mildly acidic conditions (pH ∼ 4.7), at a pH ∼ 2.8 maintained symmetrically or asymmetrically across the WT α-HL, we evidenced the manifestation of a dominant electroosmotic flow, determining the speeding up of the ssDNA translocation across the nanopore by counteracting the ssDNA-nanopore attractive electrostatic interactions. We envision potential applications of the presented approach by enabling easy-to-use, real-time detection of short ssDNA sequences, without the need for complex biochemical modifications to the nanopore to mitigate the fast translocation of such sequences.

16.
Heliyon ; 10(13): e32627, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040374

RESUMO

As a part of the biogeochemical cycle, nutrient translocation plays an important role in enhancing the capacity of perennial plants to grow in nutrient-poor soils. Although leaf translocation has been extensively studied, nutrient translocation between wood rings has received considerably less attention, primarily because of methodological constraints. This study aimed to (i) evaluate the effects of different drying techniques on Ca, K, and Mn concentrations, (ii) calibrate a semi-quantitative method for obtaining ring-to-ring nutrient concentrations along wood cores, and (iii) develop a complete calculation chain for nutrient translocation. Three pairs of cores per tree were extracted from nine oaks, and three drying methods-103 °C, 65 °C, and freeze-drying-were applied to each core pair. For each core pair, the first core was analyzed using ITRAX. The second core was analyzed using ICP-OES following the mineralization of a 20 mg wood sample. Ca, K, and Mn concentrations and wood density were not affected by the drying methods (p > 0.05 for Ca, K, and Mn). After upscaling at the stand level, the total translocation was 10.8 ± 5.5 kg ha-1, 14.8 ± 11.4 kg ha-1, and 2.6 ± 0.9 kg ha-1 for Ca, K, and Mn, respectively, after 45 growing years. The total Ca, K, and Mn translocation showed a strong tree effect, partly explained by tree diameter. The study findings suggest that similar measurements can be performed on all wood cores sampled in previous studies and stored after air-drying. These results provide a reference for future analyses of Ca, K, and Mn translocations in different species from wide geographic areas.

17.
J Struct Biol X ; 10: 100106, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39040530

RESUMO

K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.

18.
J Hazard Mater ; 476: 135166, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991635

RESUMO

Minimization of cadmium (Cd) accumulation in wheat grain (Triticum aestivum L.) is an important way to prevent Cd hazards to humans. However, little is known about the mechanisms of varietal variation of Cd accumulation in wheat grain. This study explores the physiological mechanisms of Cd bioaccumulation through field and hydroponic experiments on two wheat varieties of low-Cd-accumulating variety (L-6331) and high-Cd-accumulating variety (H-6049). Field study showed that average Cd accumulative rates in spikes of H-6049 were 1.57-fold of L-6331 after flowering, ultimately grain-Cd of H-6049 was 1.70-fold of L-6331 in Cd-contaminated farmland. The hydroponic experiment further confirmed that more vegetative tissues of L-6331 were involved in the remobilization of Cd, which jointly mitigated the process of Cd loaded to grains when leaf-cutting conducted after Cd stress. Additionally, the L1 and N1 of L-6331 play an especially important role in regulating Cd remobilization, and the larger EVB areas in N1 have the morphological feature that facilitates the transfer of Cd to L1. Overall results implied that low-Cd-accumulating variety initiated more trade-offs of reproductive growth and Cd remobilizatoin under Cd-stress after flowering compared with high-Cd-accumulating variety, and provided new insights into the processes of Cd loaded into wheat grains among different varieties.

19.
Exp Ther Med ; 28(2): 334, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39011065

RESUMO

Numerous studies have reported the potential involvement of ferroptosis in the development of atherosclerosis (AS). Acyl-CoA synthetase long chain family member 4 (ACSL4) is an essential component in the promotion of ferroptosis. The present study aimed to investigate the role of ACSL4 and zinc finger translocation-associated protein (ZFTA) in the regulation of endothelial cell ferroptosis in AS. Human umbilical vein endothelial cells (HUVECs) with ACSL4 knockout were generated using CRISPR/Cas9 technology. To assess ferroptosis, malondialdehyde concentration, iron content and reactive oxygen species levels were quantified in the present study. In addition, western blot analysis was conducted to explore the potential mechanisms underlying ACSL4 and ZFTA in the modulation of ferroptosis in HUVECs. The results of the present study demonstrated that the expression levels of ACSL4 and ZFTA were significantly increased in human atherosclerotic plaques. In addition, ACSL4 knockout led to a reduced susceptibility to ferroptosis, while ZFTA contributed to ferroptosis in HUVECs. Results of the present study also demonstrated that ZFTA overexpression upregulated ACSL4 expression in HUVECs, whereas ZFTA knockdown led to decreased ACSL4 expression. Co-transfection experiments demonstrated that the ZTFA overexpression-mediated increase in ferroptosis was reversed following ACSL4 knockdown. Collectively, results of the present study highlighted that ACSL4 mediated the effects of ZFTA on the ferroptosis of HUVECs. Thus, the present study demonstrated the potential role of ACSL4 and ZFTA in the regulation of ferroptosis, and highlighted that ferroptosis-related pathways may act as potential targets in the treatment of AS.

20.
J Hazard Mater ; 476: 135154, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986410

RESUMO

It is known that selenium (Se) enhances plant growth and arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated mechanisms are unclear. In this study, P. vittata was exposed to 50 µM arsenate (AsV) under hydroponics plus 25 or 50 µM foliar selenate. After 3-weeks of growth, the plant biomass, As and Se contents, As speciation, malondialdehyde (MDA) and glutathione (GSH and GSSG) levels, and important genes related to As-metabolism in P. vittata were determined. Foliar-Se increased plant biomass by 17 - 30 %, possibly due to 9.1 - 19 % reduction in MDA content compared to the As control. Further, foliar-Se enhanced the As contents by 1.9-3.5 folds and increased arsenite (AsIII) contents by 64 - 136 % in the fronds. The increased AsV reduction to AsIII was attributed to 60 - 131 % increase in glutathione peroxidase activity, which mediates GSH oxidation to GSSG (8.8 -29 % increase) in the fronds. Further, foliar-Se increased the expression of AsIII antiporters PvACR3;1-3;3 by 1.6 - 2.1 folds but had no impact on phosphate transporters PvPht1 or arsenate reductases PvHAC1/2. Our results indicate that foliar-Se effectively enhances plant growth and arsenic accumulation by promoting the GSH-GSSG cycle and upregulating gene expression of AsIII antiporters, which are responsible for AsIII translocation from the roots to fronds and AsIII sequestration into the fronds. The data indicate that foliar-Se can effectively improve phytoremediation efficiency of P. vittata in As-contaminated soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA