Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136602

RESUMO

Thickness of lipid bilayer membranes is a key physical parameter determining membrane permeability and stability with respect to formation of through pores. Most membrane inclusions or impurities like amphipathic peptides, transmembrane peptides, lipid inclusions of a different molecular shape, lipid domains, and protein-lipid domains, locally deform the membrane. The detailed structure of the locally deformed region of the membrane is a kind of "fingerprint" for the inclusion type. However, most experimental methods allow determining only averaged parameters of membranes with incorporated inclusions, thus preventing the direct obtaining of the characteristics of the inclusion. Here we developed a model that allows the obtaining of characteristic parameters of three types of membrane inclusions (amphipathic peptides, transmembrane peptides, monolayer lipid patches) from experimentally observable dependencies of the average thickness of lipid bilayer on the surface concentration of the inclusions. In the case of amphipathic peptides, the model provided the peptide parameters that were in qualitative agreement with the available experimental data.


Assuntos
Bicamadas Lipídicas , Peptídeos , Bicamadas Lipídicas/química , Peptídeos/química , Membranas
2.
Colloids Surf B Biointerfaces ; 228: 113396, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37311269

RESUMO

The fluid nature of lipid bilayers is indispensable for the dynamic regulation of protein function and membrane morphology in biological membranes. Membrane-spanning domains of proteins interact with surrounding lipids and alter the physical properties of lipid bilayers. However, there is no comprehensive view of the effects of transmembrane proteins on the membrane's physical properties. Here, we investigated the effects of transmembrane peptides with different flip-flop-promoting abilities on the dynamics of a lipid bilayer employing complemental fluorescence and neutron scattering techniques. The quasi-elastic neutron scattering and fluorescence experiments revealed that lateral diffusion of the lipid molecules and the acyl chain motions were inhibited by the inclusion of transmembrane peptides. The neutron spin-echo spectroscopy measurements indicated that the lipid bilayer became more rigid but more compressible and the membrane viscosity increased when the transmembrane peptides were incorporated into the membrane. These results suggest that the inclusion of rigid transmembrane structures hinders individual and collective lipid motions by slowing down lipid diffusion and increasing interleaflet coupling. The present study provides a clue for understanding how the local interactions between lipids and proteins change the collective dynamics of the lipid bilayers, and therefore, the function of biological membranes.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Membrana Celular/química , Peptídeos/química , Análise Espectral
3.
Biochim Biophys Acta Biomembr ; 1865(5): 184154, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023970

RESUMO

The lytic cycle of bacteriophage φ21 for the infected E. coli is initiated by pinholin S21, which determines the timing of host cell lysis through the function of pinholin (S2168) and antipinholin (S2171). The activity of pinholin or antipinholin directly depends on the function of two transmembrane domains (TMDs) within the membrane. For active pinholin, TMD1 externalizes and lies on the surface while TMD2 remains incorporated inside the membrane forming the lining of the small pinhole. In this study, spin labeled pinholin TMDs were incorporated separately into mechanically aligned POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) lipid bilayers and investigated with electron paramagnetic resonance (EPR) spectroscopy to determine the topology of both TMD1 and TMD2 with respect to the lipid bilayer; the TOAC (2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid) spin label was used here because it attaches to the backbone of a peptide and is very rigid. TMD2 was found to be nearly colinear with the bilayer normal (n) with a helical tilt angle of 16 ± 4° while TMD1 lies on or near the surface with a helical tilt angle of 84 ± 4°. The order parameters (~0.6 for both TMDs) obtained from our alignment study were reasonable, which indicates the samples incorporated inside the membrane were well aligned with respect to the magnetic field (B0). The data obtained from this study supports previous findings on pinholin: TMD1 partially externalizes from the lipid bilayer and interacts with the membrane surface, whereas TMD2 remains buried in the lipid bilayer in the active conformation of pinholin S2168. In this study, the helical tilt angle of TMD1 was measured for the first time. For TMD2 our experimental data corroborates the findings of the previously reported helical tilt angle by the Ulrich group.


Assuntos
Escherichia coli , Bicamadas Lipídicas , Espectroscopia de Ressonância de Spin Eletrônica , Bicamadas Lipídicas/química , Escherichia coli/metabolismo , Sequência de Aminoácidos , Marcadores de Spin
4.
Int J Biol Macromol ; 230: 123125, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603725

RESUMO

The purpose of this study was to construct a transmembrane peptide-chondroitin sulphate­gold nanoparticle (TAT-CS@Au) delivery system and investigate its activity as an anti-Alzheimer's disease (AD) drug. We successfully prepared TAT-CS@Au nanoparticles, investigated their anti-AD effects, and explored the possible mechanisms in in vitro models. TAT-CS@Au exhibited excellent cellular uptake and transport capacity, effectively inhibited the accumulation of Aß1-40, and significantly reduced Aß1-40-induced apoptosis in SH-SY5Y cells. Furthermore, TAT-CS@Au significantly reduced oxidative stress damage and cholinergic injury induced by Aß1-40 by regulating intracellular concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and acetylcholine (ACh). Western blotting results demonstrated that TAT-CS@Au inhibited aberrant tau phosphorylation (Ser199, Thr205, Ser404, and Ser396) through GSK3ß inactivation. TAT-CS@Au decreased the levels of inflammatory factors, specifically TNF-α, IL-6, and IL-1ß, by inhibiting NF-κB nuclear translocation by activating MAPK signalling pathways. Overall, these results indicate that TAT-CS@Au exhibits excellent transmembrane ability, inhibits Aß1-40 accumulation, antagonises oxidative stress, reduces aberrant tau phosphorylation, and suppresses the expression of inflammatory factors. TAT-CS@Au may be a multi-target anti-AD drug with good cell permeability, providing new insights into the design and research of anti-AD therapeutics.


Assuntos
Doença de Alzheimer , Nanopartículas Metálicas , Neuroblastoma , Humanos , Ouro/farmacologia , Sulfatos de Condroitina/farmacologia , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Estresse Oxidativo
5.
Chem Pharm Bull (Tokyo) ; 70(8): 519-523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908916

RESUMO

Lipid transbilayer movement (flip-flop) is regulated by membrane proteins that are involved in homeostasis and signaling in eukaryotic cells. In the plasma membrane, an asymmetric lipid composition is maintained by energy-dependent unidirectional transport. Energy-independent flip-flop promotion by phospholipid scramblases disrupts the asymmetry in several physiological processes, such as apoptosis and blood coagulation. In the endoplasmic reticulum, rapid flip-flop is essential for bilayer integrity because phospholipids are synthesized only in the cytoplasmic leaflet. Phospholipid scramblases are also involved in lipoprotein biogenesis, autophagosome formation, and viral infection. Although several scramblases have been identified and investigated, the precise flip-flop promotion mechanisms are not fully understood. Model transmembrane peptides are valuable tools for investigating the general effects of lipid-peptide interactions. We focus on the development of model transmembrane peptides with flip-flop promotion abilities and their mechanisms.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Peptídeos/química , Peptídeos/farmacologia , Fosfolipídeos/química
6.
Methods Mol Biol ; 2406: 113-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089553

RESUMO

Spiders have evolved proteins that can be kept in a highly concentrated soluble form in the silk gland yet rapidly assemble into stable silk fibers under certain environmental conditions. The transition between soluble and fibrillar states is partly regulated by the pH-sensitive N-terminal (NT) domain which has emerged as nature's own solubility-enhancing domain. NT has an inherent capacity to keep the silk proteins' partly hydrophobic and very aggregation-prone regions from premature fibrillation in spite of storage at enormous concentrations. The genetically engineered double-mutant NT* shows increased solubility and stability and has arisen as a powerful tool for the production of aggregation-prone as well as other recombinant proteins. Here we describe a robust and highly efficient protocol for improved soluble expression of peptides and proteins by fusion to the NT* tag.


Assuntos
Fibroínas , Engenharia de Proteínas , Sequência de Aminoácidos , Animais , Fibroínas/química , Fibroínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/química , Aranhas/química
7.
Carbohydr Polym ; 277: 118892, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893294

RESUMO

Herein, a pH-responsive cyclodextrin derivative (R6H4-CMßCD) with cell-penetrating ability was successfully synthesized, and curcumin-loaded nanoparticles (R6H4-CMßCD@CUR NPs, RCCNPs) were developed to improve its efficacy in hepatoma. RCCNPs could improve the cell uptake compared with CMßCD@CUR NPs (CCNPs) and were internalized into cells mainly through endocytosis mediated by reticulin and macropinocytosis. Furthermore, the accumulation of RCCNPs in hepatoma cells at pH 6.4 was higher than that at pH 7.4, indicating a pH-responsive uptake. Additionally, RCCNPs could escape from the lysosomes via the "proton sponge effect", and a high apoptosis rate was detected. Importantly, in vivo experiments revealed that orally administered RCCNPs could exert excellent anti-cancer effects in tumor-bearing mice. Hematoxylin-eosin staining did not show significant histological changes in the major organs. Thus, our findings indicate the potential of R6H4-CMßCD as a nanopharmaceutical material, and RCCNPs as an effective delivery system for oral curcumin in cancer management.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Ciclodextrinas/química , Nanopartículas/química , Peptídeos/química , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Curcumina/administração & dosagem , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos ICR
8.
Eur Biophys J ; 50(2): 143-157, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33640998

RESUMO

Electron paramagnetic resonance (EPR)-based pulsed dipolar spectroscopy measures the dipolar interaction between paramagnetic centers that are separated by distances in the range of about 1.5-10 nm. Its application to transmembrane (TM) peptides in combination with modern spin labelling techniques provides a valuable tool to study peptide-to-lipid interactions at a molecular level, which permits access to key parameters characterizing the structural adaptation of model peptides incorporated in natural membranes. In this mini-review, we summarize our approach for distance and orientation measurements in lipid environment using novel semi-rigid TOPP [4-(3,3,5,5-tetramethyl-2,6-dioxo-4-oxylpiperazin-1-yl)-L-phenylglycine] labels specifically designed for incorporation in TM peptides. TOPP labels can report single peak distance distributions with sub-angstrom resolution, thus offering new capabilities for a variety of TM peptide investigations, such as monitoring of various helix conformations or measuring of tilt angles in membranes.


Assuntos
Membrana Celular/química , Espectroscopia de Ressonância de Spin Eletrônica , Peptídeos/química , Marcadores de Spin
9.
Methods Mol Biol ; 2208: 135-148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32856260

RESUMO

Synthetic analogs of the second transmembrane domain (TM) containing a portion of the extracellular loop 1 of G-protein-coupled receptors (GPCR) can serve as biased antagonists of the corresponding receptor. Analogs with negative charges added to the extracellular end self-assemble into round structures. Addition of polyethylene glycol chains of defined length to the C-terminus of the peptides prevents super aggregation and results in highly uniform particles that can fuse with cell membranes spontaneously. Added PEG chains slow down cell fusion, while attachment of receptor ligands to the surface of particles results in receptor-mediated membrane fusion and cell-selective delivery. Critical assembly concentration of TM peptide particles is in the nanomolar range and thus requires nontraditional methods of determination. In this chapter, we outline sequence selection and design of self-assembling GPCR antagonists, methods of the preparation of the nanoparticles, and biophysical methods of particle characterization. The protocols allow for straightforward rational design, generation, and characterization of self-assembling GPCR antagonists for a variety of applications.


Assuntos
Peptídeos/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Sequência de Aminoácidos , Membrana Celular/química , Nanopartículas/química , Polietilenoglicóis/química , Domínios Proteicos
10.
Int J Nanomedicine ; 15: 6659-6671, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982225

RESUMO

PURPOSE: Histone citrullination by peptidylarginine deiminases 4 (PAD4) regulates the gene expression of tumor suppressor. In our previously study, YW3-56 (356) was developed as a potent PAD4 inhibitor for cancer therapy with novel function in the autophagy pathway. To enhance the antitumor activity, the PAD4 inhibitor 356 was modified by the well-established cationic penetrating peptide RKKRRQRRR (peptide TAT) and gold nanoparticles to obtain 356-TAT-AuNPs which could enhance the permeability of chemical drug in solid tumor. METHODS: 356-TAT-AuNPs were prepared, and their morphology were characterized. The antitumor activity of 356-TAT-AuNPs was evaluated in vitro and in vivo. RESULTS: 356-TAT-AuNPs exhibited higher anticancer activity against HCT-116, MCF-7 and A549 cells than 356 and 356-AuNPs. Compared with 356 and 356-AuNPs, 356-TAT-AuNPs entered the cytoplasm and nuclear, exhibited stronger anticancer activity by increasing apoptosis, inducing autophagy and inhibiting of histone H3 citrullination, and in HCT-116 xenograft mouse model, 356-TAT-AuNPs could improve the antitumor activity. CONCLUSION: The modified AuNPs with peptide TAT as drug delivery system are potent in delaying tumor growth and could be a powerful vehicle for profitable anticancer drug development. We believe that peptide TAT modification strategy may provide a simple and valuable method for improving antitumor activity of PAD4 inhibitors for clinical use.


Assuntos
2-Naftilamina/análogos & derivados , Antineoplásicos/farmacologia , Arginina/análogos & derivados , Nanopartículas Metálicas/química , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , 2-Naftilamina/administração & dosagem , 2-Naftilamina/química , 2-Naftilamina/farmacologia , Células A549 , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Arginina/administração & dosagem , Arginina/química , Arginina/farmacologia , Autofagia/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ouro/química , Células HCT116 , Histonas/metabolismo , Humanos , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-32195241

RESUMO

Solid phase peptide synthesis (SPPS) provides the possibility to chemically synthesize peptides and proteins. Applying the method on hydrophilic structures is usually without major drawbacks but faces extreme complications when it comes to "difficult sequences." These includes the vitally important, ubiquitously present and structurally demanding membrane proteins and their functional parts, such as ion channels, G-protein receptors, and other pore-forming structures. Standard synthetic and ligation protocols are not enough for a successful synthesis of these challenging sequences. In this review we highlight, summarize and evaluate the possibilities for synthetic production of "difficult sequences" by SPPS, native chemical ligation (NCL) and follow-up protocols.

12.
J Biol Chem ; 294(45): 16587-16603, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31467080

RESUMO

Membrane proteins can associate into larger complexes. Examples include receptor tyrosine complexes, ion channels, transporters, and G protein-coupled receptors (GPCRs). For the latter, there is abundant evidence indicating that GPCRs assemble into complexes, through both homo- and heterodimerization. However, the tools for studying and disrupting these complexes, GPCR or otherwise, are limited. Here, we have developed stabilized interference peptides for this purpose. We have previously reported that tetrahydrocannabinol-mediated cognitive impairment arises from homo- or heterooligomerization between the GPCRs cannabinoid receptor type 1 (CB1R) and 5-hydroxytryptamine 2A (5-HT2AR) receptors. Here, to disrupt this interaction through targeting CB1-5-HT2A receptor heteromers in HEK293 cells and using an array of biochemical techniques, including calcium and cAMP measurements, bimolecular fluorescence complementation assays, and CD-based helicity assessments, we developed a NanoLuc binary technology (NanoBiT)-based reporter assay to screen a small library of aryl-carbon-stapled transmembrane-mimicking peptides produced by solid-phase peptide synthesis. We found that these stapling peptides have increased α-helicity and improved proteolytic resistance without any loss of disrupting activity in vitro, suggesting that this approach may also have utility in vivo In summary, our results provide proof of concept for using NanoBiT to study membrane protein complexes and for stabilizing disrupting peptides to target such membrane complexes through hydrocarbon-mediated stapling. We propose that these peptides could be developed to target previously undruggable GPCR heteromers.


Assuntos
Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , AMP Cíclico/metabolismo , Dimerização , Células HEK293 , Humanos , Nanotecnologia , Peptídeos/síntese química , Peptídeos/química , Domínios e Motivos de Interação entre Proteínas , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT2A de Serotonina/metabolismo , Receptores Acoplados a Proteínas G/química
13.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454948

RESUMO

The transmembrane (TM) proteins are gateways for molecular transport across the cell membrane that are often selected as potential targets for drug design. The bilitranslocase (BTL) protein facilitates the uptake of various anions, such as bilirubin, from the blood into the liver cells. As previously established, there are four hydrophobic transmembrane segments (TM1-TM4), which constitute the structure of the transmembrane channel of the BTL protein. In our previous studies, the 3D high-resolution structure of the TM2 and TM3 transmembrane fragments of the BTL in sodium dodecyl sulfate (SDS) micellar media were solved using Nuclear Magnetic Resonance (NMR) spectroscopy and molecular dynamics simulations (MD). The high-resolution 3D structure of the fourth transmembrane region (TM4) of the BTL was evaluated using NMR spectroscopy in two different micellar media, anionic SDS and zwitterionic DPC (dodecylphosphocholine). The presented experimental data revealed the existence of an α -helical conformation in the central part of the TM4 in both micellar media. In the case of SDS surfactant, the α -helical conformation is observed for the Pro258-Asn269 region. The use of the zwitterionic DPC micelle leads to the formation of an amphipathic α -helix, which is characterized by the extension of the central α -helix in the TM4 fragment to Phe257-Thr271. The complex character of the dynamic processes in the TM4 peptide within both surfactants was analyzed based on the relaxation data acquired on 15 N and 31 P isotopes. Contrary to previously published and present observations in the SDS micelle, the zwitterionic DPC environment leads to intensive low-frequency molecular dynamic processes in the TM4 fragment.


Assuntos
Ceruloplasmina/química , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Ceruloplasmina/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Micelas , Peptídeos/química , Peptídeos/metabolismo , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 26(21): 5644-5653, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389410

RESUMO

The multi-step ligand action to a target protein is an important aspect when understanding mechanisms of ligand binding and discovering new drugs. However, structurally capturing such complex mechanisms is challenging. This is particularly true for interactions between large membrane proteins and small molecules. One such large membrane of interest is Nav1.4, a eukaryotic voltage-gated sodium channel. Domain 4 segment 6 (D4S6) of Nav1.4 is a transmembrane α-helical segment playing a key role in channel gating regulation, and is targeted by a neurotoxin, veratridine (VTD). VTD has been suggested to exhibit a two-step action to activate Nav1.4. Here, we determine the NMR structure of a selectively 13C-labeled peptide corresponding to D4S6 and its VTD binding site in lipid bilayers determined by using magic-angle spinning solid-state NMR. By 13C NMR, we obtain NMR structural constraints as 13C chemical shifts and the 1H-2H dipolar couplings between the peptide and deuterated lipids. The peptide backbone structure and its location with respect to the membrane are determined under the obtained NMR structural constraints aided by replica exchange molecular dynamics simulations with an implicit membrane/solvent system. Further, by measuring the 1H-2H dipolar couplings to monitor the peptide-lipid interaction, we identify a VTD binding site on D4S6. When superimposed to a crystal structure of a bacterial sodium channel NavRh, the determined binding site is the only surface exposed to the protein exterior and localizes beside the second-step binding site reported in the past. Based on these results, we propose that VTD initially binds to these newly-determined residues on D4S6 from the membrane hydrophobic domain, which induces the first-step channel opening followed by the second-step blocking of channel inactivation of Nav1.4. Our findings provide new detailed insights of the VTD action mechanism, which could be useful in designing new drugs targeting D4S6.


Assuntos
Proteínas Musculares/metabolismo , Canais de Sódio/metabolismo , Veratridina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Simulação de Acoplamento Molecular , Proteínas Musculares/química , Ressonância Magnética Nuclear Biomolecular/métodos , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Ratos , Canais de Sódio/química , Veratridina/química
15.
Protein Pept Lett ; 24(10): 962-968, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28741466

RESUMO

BACKGROUND: The Escherichia coli chaperonin GroEL represents the paradigmatic molecular machine of protein folding. Most of our knowledge on GroEL function is derived from studies with denatured water-soluble proteins or short peptide mimetics. In our earlier studies, we observed that newly translated membrane protein CXCR4 gained significant folding enhancement upon interacting with GroEL in the presence of ATP and GroES. This highlights the mechanistic flexibility and substrate diversity of the chaperonin. OBJECTIVES: This work extends our previous observation to the study of binding of GroEL with CXCR4 transmembrane peptides. METHODS: The model peptide corresponding to the first transmembrane α-helix in the native tertiary structure of CXCR4 was commercially synthesized. A fluorescent tag was attached to the Nterminus of the peptide for ease of fluorescence characterization. Binding of CXCR4 peptide to GroEL was investigated by fluorescence anisotropy as well as isothermal titration calorimetry (ITC). Through model fitting to the anisotropy and ITC data, important thermodynamic parameters were obtained for the binding. In identifying the binding site of GroEL apical domains for the CXCR4 peptide, competitive binding of the peptide and a model "strongly binding peptide" (SBP) was performed by ITC. Furthermore, the kinetics of the CXCR4 peptide binding to GroEL was also studied by anisotropy. RESULTS: Through anisotropic measurement of binding of CXCR4 peptide to GroEL, a dissociation constant and binding stoichiometry of 0.10µM and 7.00 was obtained. Thermodynamic parameters of the binding were also determined by ITC. By fitting the ITC data to one set of sites model, the values of the thermodynamic parameters were acquired directly as follows: ΔH=-627.10kcal/mol; ΔS=-186.23cal/mol; KD=0.23µM; N=5.96. The binding site of the CXCR4 peptide in GroEL was also probed through competitive binding with the model peptide SBP, pointing to the groove between paired α helices H and I in the apical domain. In addition, the binding kinetics suggests a slow dissociation of the peptide-GroEL complex. CONCLUSION: The CXCR4 model peptide has been shown to bind to GroEL with high affinity. The binding stoichiometry was estimated to be 6 or 7 depending on the analysis method. Furthermore, the two thermodynamic parameters ΔH and ΔS that define the binding affinity have also been measured by ITC. The binding site of the CXCR4 peptide in the GroEL apical domain was investigated through competitive binding studies with the model peptide SBP. Meanwhile, the kinetic studies indicate a slow dissociation of the peptide-GroEL complex. These results obtained by the reduced approach of employing CXCR4 transmembrane peptides would be beneficial to understanding the GroEL-CXCR4 interaction in the assisted folding.


Assuntos
Chaperoninas/química , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Peptídeos/química , Receptores CXCR4/química , Sítios de Ligação , Calorimetria/métodos , Polarização de Fluorescência/métodos , Corantes Fluorescentes/química , Cinética , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Termodinâmica
16.
Biopolymers ; 108(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27287926

RESUMO

Holins are pore-forming membrane proteins synthesized by lytic phages. The second transmembrane domain (TM2) of Mycobacteriophage D29 holin presents an Ala- and Gly-rich sequence, with a currently unknown structure and function. In this study, we present the spectroscopic characterization of synthetic TM2 in various solvents, detergents, and lipids. We find that TM2 adopts α-helical conformation under conditions that promote intra-strand hydrogen bonding, such as organic solvents and detergent micelles. When we transfer the peptide to a well-hydrated environment, a polyproline II-like structure is obtained. Surprisingly, we find that the polyproline II-like conformation is retained in lipid vesicles. Based on our results, we present a putative role for TM2 in the process of pore formation by holin. © 2016 The Authors. Peptide Science Published by Wiley Periodicals, Inc. Biopolymers (Pept Sci) 108: 1-10, 2017.


Assuntos
Micobacteriófagos/metabolismo , Solventes/química , Proteínas Virais/química , Sequência de Aminoácidos , Dicroísmo Circular , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Micelas , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Virais/metabolismo , Água/química
17.
Biochim Biophys Acta ; 1858(8): 1812-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27131444

RESUMO

We examined how hydrophobic peptide-accelerated transleaflet lipid movement (flip-flop) was affected by peptide sequence and vesicle composition and properties. A peptide with a completely hydrophobic sequence had little if any effect upon flip-flop. While peptides with a somewhat less hydrophobic sequence accelerated flip-flop, the half-time remained slow (hours) with substantial (0.5mol%) peptide in the membranes. It appears that peptide-accelerated lipid flip-flop involves a rare event that may reflect a rare state of the peptide or lipid bilayer. There was no simple relationship between peptide overall hydrophobicity and flip-flop. In addition, flip-flop was not closely linked to whether the peptides were in a transmembrane or non-transmembrane (interfacial) inserted state. Flip-flop was also not associated with peptide-induced pore formation. We found that peptide-accelerated flip-flop is initially faster in small (highly curved) unilamellar vesicles relative to that in large unilamellar vesicles. Peptide-accelerated flip-flop was also affected by lipid composition, being slowed in vesicles with thick bilayers or those containing 30% cholesterol. Interestingly, these factors also slow spontaneous lipid flip-flop in the absence of peptide. Combined with previous studies, the results are most consistent with acceleration of lipid flip-flop by peptide-induced thinning of bilayer width.


Assuntos
Sequência de Aminoácidos , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Peptídeos/farmacologia , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacologia , Transporte Biológico , Difusão , Fluidez de Membrana , Modelos Químicos , Pressão Osmótica , Fosfatidilcolinas/farmacologia , Fosfolipídeos/química , Estrutura Secundária de Proteína , Lipossomas Unilamelares/química
18.
Biopolymers ; 106(4): 613-21, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26573237

RESUMO

Membrane proteins possess one or more hydrophobic regions that span the membrane and interact with the lipids that constitute the membrane. The interactions between the transmembrane (TM) region and lipids affect the structure and function of these membrane proteins. Molecular characterization of synthetic TM peptides in lipid bilayers helps to understand how the TM region participates in the formation of the structure and in the function of membrane proteins. The use of synthetic peptides enables site-specific labeling and modification and allows for designing of an artificial TM sequence. Research involving such samples has resulted in significant increase in the knowledge of the mechanisms that govern membrane biology. In this review, the chemical synthesis of TM peptides has been discussed. The preparation of synthetic TM peptides is still not trivial; however, the accumulated knowledge summarized here should provide a basis for preparing samples for spectroscopic analyses. The application of synthetic TM peptides for gaining insights into the mechanism of signal transduction by receptor tyrosine kinase (RTK) has also been discussed. RTK is a single TM protein and is one of the difficult targets in structural biology as crystallization of the full-length receptor has not been successful. This review describes the structural characterization of the synthetic TM-juxtamembrane sequence and proposes a possible scheme for the structural changes in this region for the activation of ErbBs, the epidermal growth factor receptor family. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 613-621, 2016.


Assuntos
Proteínas de Membrana/química , Peptídeos/química , Peptídeos/síntese química , Animais , Humanos , Domínios Proteicos
19.
J Pept Sci ; 21(2): 61-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25504594

RESUMO

Reversed-phase high-pressure liquid chromatography analysis and purification of three hydrophobic, aggregation-prone peptides, composed mainly of the transmembrane (TM) sequence, were performed using elution systems containing 2,2,2-trifluoroethanol (TFE). The addition of 10-16% TFE to a common mobile phase, such as a water/acetonitrile/propanol (PrOH) or a water/PrOH/formic acid system, markedly improved the chromatographic separation of these peptides. The superior performance of TFE-containing systems in separating peptides over water/PrOH/formic acid systems [Bollhagen R. et al., J. Chromatogr. A, 1995; 711: 181-186.] clearly demonstrated that adding TFE to the mobile phase is one of best methods for TM-peptide purification. Characterization of the potential side reactions using MALDI and ESI-LIT/Orbitrap mass spectrometry indicated that prolonged incubation of peptides in a mixture of TFE-formic acid possibly induces O-formylation of the Ser residue and N-formylation of the N-terminus of peptides. The conditions for selective removal of the formyl groups from TM peptides were also screened. We believe that these results will expand our ability to analyze and prepare hydrophobic, aggregation-prone TM peptides and proteins.


Assuntos
Formiatos/química , Glicoforinas/análise , Integrina alfa1/análise , Proteínas de Membrana/análise , Trifluoretanol/química , Cromatografia Líquida de Alta Pressão , Humanos
20.
Bioorg Med Chem ; 22(14): 3773-80, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24856303

RESUMO

Ladder-shaped polycyclic ethers (LSPs) are predicted to interact with membrane proteins; however, the underlying mechanism has not been satisfactorily elucidated. It has been hypothesized that LSPs possess non-specific affinity to α-helical segments of transmembrane proteins. To verify this hypothesis, we constructed a model LSP interaction system in a lipid bilayer. We prepared 5 types of α-helical peptides and reconstituted them in liposomes. The reconstitution and orientation of these peptides in the liposomes were examined using polarized attenuated total reflection infrared (ATR-IR) spectroscopy and gel filtration. The results revealed that 4 peptides were retained in liposomes, and 3 of them formed stable transmembrane structures. The interaction between the LSP and the peptides was investigated using Förster resonance energy transfer (FRET). In the lipid bilayer, the LSP strongly recognized the peptides that possessed aligned hydrogen donating groups with leucine caps. We propose that this leucine-capped 16-amino acid sequence is a potential LPS binding motif.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Peptídeos/química , Compostos Policíclicos/química , Modelos Moleculares , Conformação Molecular , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA