Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.473
Filtrar
1.
Heliyon ; 10(14): e34266, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108848

RESUMO

Widespread ecosystem degradation from noxious substances like industrial waste, toxic dyes, pesticides, and herbicides poses serious environmental risks. For remediation of these hazardous problems, present study introduces an innovative Cu-doped Ce2Zr2O7 nano-photocatalyst, fabricated via a simple, eco-friendly hydrothermal method, designed to degrade toxic textile dye methylene blue. Harnessing Cu doping for pyrochlore Ce2Zr2O7, structure engineering carried out through a hydrothermal synthesis method to achieve superior photocatalytic performance, addressing limitations of rapid charge carrier recombination in existing photocatalysts. Photoluminescence analysis showed that doped pyrochlore slows charge carrier recombination, boosting dye degradation efficiency. UV-Visible analysis demonstrated an impressive 96 % degradation of methylene blue by Cu-doped Ce2Zr2O7 within 50 min, far exceeding the performance of pristine materials. Trapping experiments clarified the charge transfer mechanism, deepening our understanding of the photocatalytic process. These findings highlight the potential for developing innovative, highly efficient photocatalysts for environmental remediation, offering sustainable solutions to combat pollution. This study not only addresses the limitations of existing photocatalysts but also opens new avenues for enhancing photocatalytic performance through strategic material design.

2.
Sci Rep ; 14(1): 17946, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095410

RESUMO

For fractured gas reservoirs with strong water drive, gas phase trapping affects the gas recovery significantly. The recovery may be less than 50% for some reservoirs while it is only 12% for Beaver River gas field. The gas phase trapping mechanism has been revealed by the results of depletion experimental test. The residual pressure of the trapped gas is as high as 11.75 MPa with a 12.8 cm imbibition layer resulting in gas recovery deceased 49.5% compared with that without imbibition layer. A mathematical model is built to calculate the imbibition thickness based on capillary pressure and relative permeability of the matrix. The gas phase trapping are analyzed by two representative wells in Weiyuan gas field, the intermittent production reinforces the imbibition thickness and result in gas trapped in the matrix block with high residual pressure for the low performace gas wells, the extremely low gas recovery can be explained more rationally. That lays a foundation of improving the gas recovery for fractured reservoirs.

3.
J Biol Chem ; : 107626, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098528

RESUMO

With the increasing use of vaping devices that deliver high levels of nicotine (NIC) to the lungs, sporadic lung injury has been observed. Commercial vaping solutions can contain high NIC concentrations of 150 mM or more. With high NIC levels, its metabolic products may induce toxicity. NIC is primarily metabolized to form NIC iminium (NICI) that is further metabolized by aldehyde oxidase (AOX) to cotinine. We determine that NICI in the presence of AOX is a potent trigger of superoxide generation. NICI stimulated superoxide generation from AOX with Km=2.7 µM and Vmax=794 nmol/min/mg measured by cytochrome-c reduction. EPR spin-trapping confirmed that NICI in the presence of AOX is a potent source of superoxide. AOX is expressed in the lungs and chronic e-cigarette exposure in mice greatly increased AOX expression. NICI or NIC stimulated superoxide production in lungs of control mice with even greater increase after chronic e-cigarette exposure. This superoxide production was quenched by AOX inhibition. Furthermore, e-cigarette-mediated NIC delivery triggered oxidative lung damage that was blocked by AOX inhibition. Thus, NIC metabolism triggers AOX-mediated superoxide generation that can cause lung injury. Therefore, high uncontrolled levels of NIC inhalation, as occur with e-cigarette use, can induce oxidative lung damage.

4.
Nanomaterials (Basel) ; 14(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39120357

RESUMO

This study demonstrates a significant enhancement in the performance of thin-film transistors (TFTs) in terms of stability and mobility by combining indium-tungsten oxide (IWO) and zinc oxide (ZnO). IWO/ZnO heterojunction structures were fabricated with different channel thickness ratios and annealing environments. The IWO (5 nm)/ZnO (45 nm) TFT, annealed in O2 ambient, exhibited a high mobility of 26.28 cm2/V·s and a maximum drain current of 1.54 µA at a drain voltage of 10 V, outperforming the single-channel ZnO TFT, with values of 3.8 cm2/V·s and 28.08 nA. This mobility enhancement is attributed to the formation of potential wells at the IWO/ZnO junction, resulting in charge accumulation and improved percolation conduction. The engineered heterojunction channel demonstrated superior stability under positive and negative gate bias stresses compared to the single ZnO channel. The analysis of O 1s spectra showed OI, OII, and OIII peaks, confirming the theoretical mechanism. A bias temperature stress test revealed superior charge-trapping time characteristics at temperatures of 25, 55, and 85 °C compared with the single ZnO channel. The proposed IWO/ZnO heterojunction channel overcomes the limitations of the single ZnO channel and presents an attractive approach for developing TFT-based devices having excellent stability and enhanced mobility.

5.
Proc Natl Acad Sci U S A ; 121(34): e2315007121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133861

RESUMO

Kinetic stability is thought to be an attribute of proteins that require a long lifetime, such as the transporter of thyroxine and holo retinol-binding protein or transthyretin (TTR) functioning in the bloodstream, cerebrospinal fluid, and vitreous humor. TTR evolved from ancestral enzymes known as TTR-related proteins (TRPs). Here, we develop a rate-expansion approach that allows unfolding rates to be measured directly at low denaturant concentration, revealing that kinetic stability exists in the Escherichia coli TRP (EcTRP), even though the enzyme structure is more energetically frustrated and has a more mutation-sensitive folding mechanism than human TTR. Thus, the ancient tetrameric enzyme may already have been poised to mutate into a kinetically stable human transporter. An extensive mutational study that exchanges residues at key sites within the TTR and EcTRP dimer-dimer interface shows that tyrosine 111, replaced by a threonine in TTR, is the gatekeeper of frustration in EcTRP because it is critical for function. Frustration, virtually absent in TTR, occurs at multiple sites in EcTRP and even cooperatively for certain pairs of mutations. We present evidence that evolution at the C terminus of TTR was a compensatory event to maintain the preexisting kinetic stability while reducing frustration and sensitivity to mutation. We propose an "overcompensation" pathway from EcTRPs to functional hybrids to modern TTRs that is consistent with the biophysics discussed here. An alternative plausible pathway is also presented.


Assuntos
Pré-Albumina , Pré-Albumina/metabolismo , Pré-Albumina/química , Pré-Albumina/genética , Humanos , Cinética , Desdobramento de Proteína , Escherichia coli/metabolismo , Escherichia coli/genética , Dobramento de Proteína , Modelos Moleculares , Estabilidade Proteica , Mutação , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Desnaturação Proteica
6.
Biosensors (Basel) ; 14(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39194619

RESUMO

Micro and nano-scale manipulation of living matter is crucial in biomedical applications for diagnostics and pharmaceuticals, facilitating disease study, drug assessment, and biomarker identification. Despite advancements, trapping biological nanoparticles remains challenging. Nanotweezer-based strategies, including dielectric and plasmonic configurations, show promise due to their efficiency and stability, minimizing damage without direct contact. Our study uniquely proposes an inverted hybrid dielectric-plasmonic nanobowtie designed to overcome the primary limitations of existing dielectric-plasmonic systems, such as high costs and manufacturing complexity. This novel configuration offers significant advantages for the stable and long-term trapping of biological objects, including strong energy confinement with reduced thermal effects. The metal's efficient light reflection capability results in a significant increase in energy field confinement (EC) within the trapping site, achieving an enhancement of over 90% compared to the value obtained with the dielectric nanobowtie. Numerical simulations confirm the successful trapping of 100 nm viruses, demonstrating a trapping stability greater than 10 and a stiffness of 2.203 fN/nm. This configuration ensures optical forces of approximately 2.96 fN with an input power density of 10 mW/µm2 while preserving the temperature, chemical-biological properties, and shape of the biological sample.


Assuntos
Nanotecnologia , Pinças Ópticas , Técnicas Biossensoriais , Nanopartículas/química
7.
Insects ; 15(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39194782

RESUMO

The brown marmorated stink bug (BMSB), Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is causing extensive economic losses in tree fruit crops. Including attract-and-kill (AK) strategies targeting BMSBs in an integrated pest management framework could reduce the amounts of insecticides sprayed and benefit growers, consumers and the environment. This study evaluated the effectiveness of an area-wide AK strategy across an intensive fruticulture region of Northern Italy, comparing four paired pear sites with and without two AK stations ha-1. These stations consisted of long-lasting insecticide-treated nets containing alpha-cypermethrin, baited with the BMSB aggregation pheromone and synergist. BMSB abundance was estimated using black-standing monitoring traps, and fruit damage upon harvest was recorded across all sites. The AK stations did not decrease the BMSB abundance nor the fruit damage, while after harvest significantly lower BMSB captures were detected in the AK sites compared to the control sites. Whilst the lures' efficacy was corroborated by this research, the killing method requires improvement and refinement.

8.
J Chem Ecol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167251

RESUMO

The landscape plant, Cinnamomum camphora, is a broad-spectrum insect-repelling tree species, mainly due to a diversity of terpenoids, such as camphor. Despite its formidable chemical defenses, C. camphora is easily attacked and invaded by a monophagous weevil pest, Pagiophloeus tsushimanus. Deciphering the key olfactory signal components regulating host preference could facilitate monitoring and control strategies for this pest. Herein, two host volatiles, camphor and ocimene, induced GC-EAD/EAG reactions in both male and female adult antennae. Correspondingly, Y-tube olfactometer assays showed that the two compounds were attractive to both male and female adults. In field assays, a self-made trap device baited with 5 mg dose d(+)-camphor captured significantly more P. tsushimanus adults than isopropanol solvent controls without sexual bias. The trunk gluing trap device baited with bait can capture adults, but the number was significantly less than that of the self-made trap device and adults often fell after struggling. The cross baffle trap device never trapped adults. Neither ocimene nor isopropanol solvent control captured adults. When used in combination, ocimene did not enhance the attraction of d(+)-camphor to both female and male adults. These results indicate that d(+)-camphor is a key active compound of P. tsushimanus adults for host location. The combination of the host-volatile lure based on d(+)-camphor and the self-made trapping device is promising to monitor and provide an eco-friendly control strategy for this novel pest P. tsushimanus in C. camphora plantations.

9.
J Appl Microbiol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169468

RESUMO

AIMS: The objective of this study was to elucidate the role and mechanism of changes in the rhizosphere microbiome following A. oligospora treatment in the biological control of root-knot nematodes and identify the key fungal and bacterial species that collaborate with A. oligospora to biocontrol root-knot nematodes. METHODS AND RESULTS: We conducted a pot experiment to investigate the impact of A. oligospora treatment on the biocontrol efficiency of A. oligospora against Meloidogyne incognita infecting tomato. We analyzed the rhizosphere bacteria and fungi communities of tomato by high-throughput sequencing of the 16S rRNA gene fragment and the internal transcribed spacer (ITS). The results indicated that the application of A. oligospora resulted in a 53.6% reduction in the disease index of M. incognita infecting tomato plants. The bacterial diversity of rhizosphere soil declined in the A. oligospora-treated group, while fungal diversity increased. The A. oligospora treatment enriched the tomato rhizosphere with Acidobacteriota, Firmicutes, Bradyrhizobium, Sphingomonadales, Glomeromycota and Purpureocillium. These organisms are involved in the utilization of rhizosphere organic matter, nitrogen, and glycerolipids, or play the role of ectomycorrhiza or directly kill nematodes. The networks of bacterial and fungal co-occurrence exhibited a greater degree of stability and complexity in the A. oligospora treatment group. CONCLUSIONS: This study demonstrated the key fungal and bacterial species that collaborate with the A. oligospora in controlling the root-knot nematode and elaborated the potential mechanisms involved. The findings offer valuable insights and inspiration for the advancement of bionematicide based on nematode-trapping fungus.

10.
BMC Microbiol ; 24(1): 305, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148068

RESUMO

BACKGROUND: Phylogeographic studies have gained prominence in linking past geological events to the distribution patterns of biodiversity, primarily in mountainous regions. However, such studies often focus on plant taxa, neglecting the intricate biogeographical patterns of microbes, particularly soil microbial communities. This article explores the spatial distribution of the nematode-trapping fungus Arthrobotrys oligospora, a widespread microorganism, in a tectonically active region at the southeastern edge of the Qinghai-Tibetan Plateau. By analysing the genetic variation of this fungus alongside the historical structure of major river watersheds, we sought to uncover potential connections between the two. Our study involved sampling 149 strains from 116 sites across six major watersheds in the region. RESULTS: The resulting haplotype network revealed five distinct clusters, each corresponding closely to a specific watershed. These clusters exhibited high haplotype diversity and low nucleotide diversity, supporting the notion of watershed-based segregation. Further analysis of haplotypes shared across watersheds provided evidence for three proposed past river connections. In particular, we found numerous shared haplotypes between the Yangtze and Mekong basins, as well as between the Yangtze and the Red basins. Evidence for a Irrawaddy-Salween-Red and a Yangtze-Pearl-Red river connections were also portrayed in our mapping exercise. CONCLUSIONS: These findings emphasize the crucial role of historical geomorphological events in shaping the biogeography of microbial biodiversity, alongside contemporary biotic and abiotic factors. Watershed perimeters emerged as effective predictors of such patterns, suggesting their suitability as analytical units for regional-scale studies. Our study also demonstrates the potential of microorganisms and phylogeographic approaches to complement traditional geological analyses, providing a more comprehensive understanding of past landscape structure and its evolution.


Assuntos
Variação Genética , Haplótipos , Filogenia , Filogeografia , Rios , Microbiologia do Solo , China , Rios/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Biodiversidade , DNA Fúngico/genética
11.
Parasit Vectors ; 17(1): 338, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135087

RESUMO

BACKGROUND: Culicoides midges have been well-studied in Spain, particularly over the last 20 years, mainly because of their role as vectors of arboviral diseases that affect livestock. Most studies on Culicoides are conducted using suction light traps in farmed environments, but studies employing alternative trapping techniques or focusing on natural habitats are scarce. METHODS: In the present study, we analyze Culicoides captured in 2023 at 476 sites in western Andalusia (southern Spain) using carbon dioxide-baited Biogents (BG)-sentinel traps across different ecosystems. RESULTS: We collected 3,084 Culicoides midges (3060 females and 24 males) belonging to 23 species, including the new species Culicoides grandifovea sp. nov. and the first record of Culicoides pseudolangeroni for Europe. Both species were described with morphological and molecular methods and detailed data on spatial distribution was also recorded. The new species showed close phylogenetic relations with sequences from an unidentified Culicoides from Morocco (92.6% similarity) and with Culicoides kurensis. Culicoides imicola was the most abundant species (17.4%), followed by Culicoides grandifovea sp. nov. (14.6%) and Culicoides kurensis (11.9%). Interestingly, Culicoides montanus was the only species of the obsoletus and pulicaris species complexes captured, representing the first record of this species in southern Spain. A total of 53 valid Culicoides species have been reported in the area, with 48 already reported in literature records and 5 more added in the present study. Information on the flight period for the most common Culicoides species is also provided. CONCLUSIONS: To the best of our knowledge, our study represents the most comprehensive effort ever done on nonfarmland habitats using carbon-dioxide baited suction traps for collecting Culicoides. Our data suggests that using carbon dioxide traps offers a completely different perspective on Culicoides communities compared with routinely used light traps, including the discovery of previously unrecorded species.


Assuntos
Ceratopogonidae , Filogenia , Ceratopogonidae/classificação , Ceratopogonidae/genética , Animais , Espanha , Feminino , Masculino , Insetos Vetores/classificação , Ecossistema , Distribuição Animal
12.
Nano Lett ; 24(33): 10040-10046, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133069

RESUMO

Quantum interference is a natural consequence of wave-particle duality in quantum mechanics, and is widely observed at the atomic scale. One interesting manifestation of quantum interference is coherent population trapping (CPT), first proposed in three-level driven atomic systems and observed in quantum optical experiments. Here, we demonstrate CPT in a gate-defined semiconductor double quantum dot (DQD), with some unique twists as compared to the atomic systems. Specifically, we observe CPT in both driven and nondriven situations. We further show that CPT in a driven DQD could be used to generate adiabatic state transfer. Moreover, our experiment reveals a nontrivial modulation to the CPT caused by the longitudinal driving field, yielding an odd-even effect and a tunable CPT. Our results broaden the field of CPT, and open up the possibility of quantum simulation and quantum computation based on adiabatic passage in quantum dot systems.

13.
Redox Biol ; 75: 103306, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39133964

RESUMO

In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.


Assuntos
Condrócitos , Peroxidação de Lipídeos , Mitocôndrias , Oxirredução , Estresse Oxidativo , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cartilagem Articular/metabolismo , Camundongos , Células Cultivadas
14.
Nano Lett ; 24(33): 10305-10312, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133749

RESUMO

Nanoparticle manipulation requires careful analysis of the forces at play. Unfortunately, traditional force measurement techniques based on the particle velocity do not provide sufficient resolution, while balancing approaches involving counteracting forces are often cumbersome. Here, we demonstrate that a nanoparticle dielectrophoretic response can be quantitatively studied by a straightforward visual delineation of the dielectrophoretic trapping volume. We reveal this volume by detecting the width of the region depleted of gold nanoparticles by the dielectrophoretic force. Comparison of the measured widths for various nanoparticle sizes with numerical simulations obtained by solving the particle-conservation equation shows excellent agreement, thus providing access to the particle physical properties, such as polarizability and size. These findings can be further extended to investigate various types of nano-objects, including bio- and molecular aggregates, and offer a robust characterization tool that can enhance the control of matter at the nanoscale.

15.
Animals (Basel) ; 14(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39199959

RESUMO

Limited background data are available on the Mishmi takin (Budorcas taxicolor taxicolor) and Bhutan takin (Budorcas taxicolor whitei) subspecies in the Eastern Himalayas of China because of the lack of systematic field investigations and research. Therefore, mature-animal ecological methods were used to evaluate these takin subspecies' phenotypic characteristics, distribution range, activity rhythm, and population size. From 2013 to 2022, 214 camera traps were installed for wild ungulate monitoring and investigation in all human-accessible areas of the Eastern Himalayas, resulting in 4837 distinguishable takin photographs. The external morphological characteristics were described and compared using visual data. Artificial image correction and related technologies were used to establish physical image models based on the differences between subspecies. MaxEnt niche and random encounter models obtained distribution ranges and population densities. Mishmi takins have a distribution area of 17,314 km2, population density of 0.1729 ± 0.0134 takins/km2, and population size of 2995 ± 232. Bhutan takins have a distribution area of 25,006 km2, population density of 0.1359 ± 0.0264 takins/km2, and population size of 3398 ± 660. Long-term monitoring data confirmed that the vertical migration within the mountain ecosystems is influenced by climate. Mishmi takins are active at 500-4500 m, whereas Bhutan takins are active at 1500-4500 m. The two subspecies were active at >3500 m from May to October yearly (rainy season). In addition, surveying combined with model simulation shows that the Yarlung Zangbo River is not an obstacle to migration. This study provides basic data that contribute to animal diversity knowledge in biodiversity hotspots of the Eastern Himalayas and detailed information and references for species identification, distribution range, and population characteristics.

16.
Adv Sci (Weinh) ; 11(32): e2401973, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39189467

RESUMO

Precise control of quantum structures in hybrid nanocrystals requires advancements in scientific methodologies. Here, on the design of tunable CsPbBr3/Cs4PbBr6 quantum dots are reported by developing a unique discrete phase transformation approach in Cs4PbBr6 nanocrystals. Unlike conventional hybrid systems that emit solely in the green region, this current strategy produces adjustable luminescence in the blue (450 nm), cyan (480 nm), and green (510 nm) regions with high photoluminescence quantum yields up to 45%, 60%, and 85%, respectively. Concentration-dependent studies reveal that phase transformation mechanisms and the factors that drive CsBr removal occur at lower dilutions while the dissolution-recrystallization process dominates at higher dilutions. When the polymer-CsPbBr3/Cs4PbBr6 integrated into a field-effected transistor the resulting phototransistors featured enhanced photosensitivity exceeding 105, being the highest reported for an n-type phototransistor, while maintaining good transistor performances as compared to devices consisting of polymer-CsPbBr3 NCs.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39186605

RESUMO

Solar-driven interfacial evaporation technology is a novel and efficient desalination process that helps alleviate the global shortage of freshwater resources. We developed a Janus evaporator assembled from cotton hydrogel, hydrophilic polyester fabric (PF), and Hydrophobic Wood (PW). By doping graphene oxide and TiO2 as light-absorbing materials within the hydrogel, we achieved a high absorptivity of over 90% across the entire solar spectrum. The hydrophilically modified PF, combined with the PW substrate, provided robust water transport and reduced thermal losses. Subsequent optical path simulations using TracePro74 software verified that the sawtooth light-trapping design of the wood substrate increased multiple light reflections and absorption (compared to a flat structure), enhancing light absorption capabilities. The sawtooth interface also enlarged the evaporation area, further boosting evaporation performance. The cleverly designed evaporator exhibited an evaporation rate of 1.722 kg m-2 h-1 and an efficiency of 83.1% under 1 sun irradiation. Additionally, after applying polydimethylsiloxane to the single surface of the photothermal hydrogel for low surface energy treatment, the resulting Janus structure demonstrated asymmetric wettability that prevented salt ions from accumulating on the irradiated interface. After 8 h of continuous evaporation in saline water (10 wt %), only slight salt crystallization occurred at the edges. The evaporator maintained long-term stability during a 15 day cyclic test, and the produced freshwater fully met the relevant drinking water standards. The components of the evaporator are characterized by simple fabrication, low cost, and eco-friendliness, offering significant application potential in the global context of energy conservation and emission reduction initiatives.

18.
Animals (Basel) ; 14(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39123714

RESUMO

The Medog in southeastern Tibet is home to a diverse range of wild animals. However, research on these mammals' species directories, distribution, and conservation status remains insufficient, despite their crucial role in maintaining ecological balance. The study carried out a camera-trapping survey to assess mammal biodiversity and the significance of mammal protection in their natural habitats in Gedang, Medog. Future directions and application prospects of the study for wildlife conservation in the southeastern Tibetan mountains were also discussed. The survey, spanning from April 2023 to May 2024, with 19,754 camera trap days, revealed 25 mammalian species across five orders and 14 families. Among these, four classified as Endangered, five as Vulnerable, two as Near Threatened on the IUCN Red List, nine were categorized as Critically Endangered or Endangered on the Red List of China's Vertebrates, and seven were China's national first-class key protected wildlife. The order Carnivora exhibited the highest diversity, comprising 12 species. Furthermore, the study filled the knowledge gap regarding the underrepresentation of Gongshan muntjac Muntiacus gongshanensis in IUCN and provided new insights into the recorded coexistence of the Himalayan red panda Ailurus fulgens and Chinese red panda Ailurus styani along the Yarlung Zangbo River for the first time, and also documented new upper elevation limits for four large to medium-sized species. Regarding the relative abundance indices (RAI) captured by camera traps, the most prevalent species identified was the White-cheeked macaque Macaca leucogenys, followed by the Gongshan muntjac and Himalayan serow Capricornis thar. The monitoring also captured a number of domestic dogs and livestock, as well as human disturbances. These findings underscore the importance of conserving these mammals and emphasize the need for conservation efforts to protect their habitats and reduce human activities that threaten their survival, thereby maintaining the ecological balance of the region. Additionally, the research highlighted Gedang's significance to global conservation efforts for mammalian diversity, providing essential data for effective wildlife conservation strategies.

19.
Mar Pollut Bull ; 205: 116665, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981194

RESUMO

This study addresses the pressing issue of plastic pollution in coastal and marine ecosystems, challenging the misconception that the entrapment of plastics can be considered as an ecosystem service. We differentiate between essential natural processes that sustain ecological balance and biodiversity and the detrimental accumulation of synthetic polymers. The pathways through which plastics enter these environments-from terrestrial to maritime sources-are examined, alongside their pervasive impacts on crucial ecosystem services such as habitat quality, the vitality of marine species, and nutrient cycling. Our findings highlight the paradox of resilience and vulnerability in these ecosystems: while capable of accumulating substantial amounts of plastic debris, they suffer long-lasting ecological, socio-economic, and health repercussions. We argue for a paradigm shift in management strategies aimed at reducing plastic production at the source, improving waste management practices, conducting targeted cleanup operations, and rehabilitating impacted ecosystems. Emphasizing a comprehensive understanding of plastic pollution is vital for framing effective solutions and necessitates a reevaluation of societal, industrial, and regulatory frameworks. This shift is imperative not only to address current pollution levels but also to safeguard and sustain the functionality of coastal ecosystems, ensuring their ability to continue providing essential services and supporting biodiversity.


Assuntos
Plásticos , Gerenciamento de Resíduos , Ecossistema , Oceanos e Mares , Poluição Química da Água/prevenção & controle , Poluição Química da Água/estatística & dados numéricos , Poluentes Químicos da Água/análise , Gerenciamento de Resíduos/métodos , Monitoramento Ambiental , Política Ambiental
20.
Environ Sci Pollut Res Int ; 31(36): 49267-49284, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39066942

RESUMO

This research aimed to introduce a novel method for the valorization of mineral waste, focusing on the development of hydroxyapatite (HAP) as an effective and economical adsorbent for immobilizing fluoride ions (F-) in soil. Hydroxyapatites were produced through the reaction between potassium dihydrogen phosphate (KH2PO4) and calcium-abundant limestone soil (CLS). X-ray diffraction analyses revealed that the primary phases in HAPCLS were brushite (CaHPO5·2H2O) and hydroxyapatite (Ca10(PO4)6(OH)2). The FTIR spectra exhibited characteristics akin to natural HAP, including the presence of orthophosphate groups (PO43-), hydroxyl groups (OH-), and both A/B types of carbonates in the apatite structure. The morphology of the synthesized HAP, as observed through SEM-EDS, was consistent with that of phosphocalcic hydroxyapatite crystals. The EDS results indicated a Ca/P atomic ratio of 1.7 for HAPCLS, aligning closely with the typical hydroxyapatite stoichiometry (Ca/P = 1.67). The application of HAP to reduce fluoride (F-) levels in soil proved to be successful; introducing 1% of various HAP formulations reduced the fluoride concentration from 51.4 mg/kg in untreated soil to levels below the IWSI limit (10 mg/kg), achieving a reduction to 8.1 mg/kg for HAPCLS. The sequential extraction of fluoride demonstrated that after soil treatment, fluoride was predominantly removed from the residual fraction (Fraction 4) and was effectively sequestered by the hydroxyapatites (Ca10(PO4)6(OH)2) through anionic exchange with hydroxide ions (OH-), resulting in the formation of stable and insoluble fluorapatite (Ca10(PO4)6F2).


Assuntos
Durapatita , Flúor , Solo , Durapatita/química , Flúor/química , Solo/química , Poluentes do Solo/química , Minerais/química , Difração de Raios X , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA