Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(21): 31492-31510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635097

RESUMO

Resource recycling is considered necessary for sustainable development, especially in smart cities where increased urbanization and the variety of waste generated require the development of automated waste management models. The development of smart technology offers a possible alternative to traditional waste management techniques that are proving insufficient to reduce the harmful effects of trash on the environment. This paper proposes an intelligent waste classification model to enhance the classification of waste materials, focusing on the critical aspect of waste classification. The proposed model leverages the InceptionV3 deep learning architecture, augmented by multi-objective beluga whale optimization (MBWO) for hyperparameter optimization. In MBWO, sensitivity and specificity evaluation criteria are integrated linearly as the objective function to find the optimal values of the dropout period, learning rate, and batch size. A benchmark dataset, namely TrashNet is adopted to verify the proposed model's performance. By strategically integrating MBWO, the model achieves a considerable increase in accuracy and efficiency in identifying waste materials, contributing to more effective waste management strategies while encouraging sustainable waste management practices. The proposed intelligent waste classification model outperformed the state-of-the-art models with an accuracy of 97.75%, specificity of 99.55%, F1-score of 97.58%, and sensitivity of 98.88%.


Assuntos
Aprendizado Profundo , Gerenciamento de Resíduos , Animais , Gerenciamento de Resíduos/métodos , Beluga , Reciclagem
2.
Environ Monit Assess ; 196(3): 279, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367185

RESUMO

Efficient waste management is essential for human well-being and environmental health, as neglecting proper disposal practices can lead to financial losses and the depletion of natural resources. Given the rapid urbanization and population growth, developing an automated, innovative waste classification model becomes imperative. To address this need, our paper introduces a novel and robust solution - a smart waste classification model that leverages a hybrid deep learning model (Optimized DenseNet-121 + SVM) to categorize waste items using the TrashNet datasets. Our proposed approach uses the advanced deep learning model DenseNet-121, optimized for superior performance, to extract meaningful features from an expanded TrashNet dataset. These features are subsequently fed into a support vector machine (SVM) for precise classification. Employing data augmentation techniques further enhances classification accuracy while mitigating the risk of overfitting, especially when working with limited TrashNet data. The results of our experimental evaluation of this hybrid deep learning model are highly promising, with an impressive accuracy rate of 99.84%. This accuracy surpasses similar existing models, affirming the efficacy and potential of our approach to revolutionizing waste classification for a sustainable and cleaner future.


Assuntos
Aprendizado Profundo , Humanos , Monitoramento Ambiental , Saúde Ambiental , Recursos Naturais , Crescimento Demográfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA