Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 31(5): 1013-1033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393487

RESUMO

BACKGROUND: Accurate and fast dose calculation is crucial in modern radiation therapy. Four dose calculation algorithms (AAA, AXB, CCC, and MC) are available in Varian Eclipse and RaySearch Laboratories RayStation Treatment Planning Systems (TPSs). OBJECTIVES: This study aims to evaluate and compare dosimetric accuracy of the four dose calculation algorithms applying to homogeneous and heterogeneous media, VMAT plans (based on AAPM TG-119 test cases), and the surface and buildup regions. METHODS: The four algorithms are assessed in homogeneous (IAEA-TECDOCE 1540) and heterogeneous (IAEA-TECDOC 1583) media. Dosimetric evaluation accuracy for VMAT plans is then analyzed, along with the evaluation of the accuracy of algorithms applying to the surface and buildup regions. RESULTS: Tests conducted in homogeneous media revealed that all algorithms exhibit dose deviations within 5% for various conditions, with pass rates exceeding 95% based on recommended tolerances. Additionally, the tests conducted in heterogeneous media demonstrate high pass rates for all algorithms, with a 100% pass rate observed for 6 MV and mostly 100% pass rate for 15 MV, except for CCC, which achieves a pass rate of 94%. The results of gamma index pass rate (GIPR) for dose calculation algorithms in IMRT fields show that GIPR (3% /3 mm) for all four algorithms in all evaluated tests based on TG119, are greater than 97%. The results of the algorithm testing for the accuracy of superficial dose reveal variations in dose differences, ranging from -11.9% to 7.03% for 15 MV and -9.5% to 3.3% for 6 MV, respectively. It is noteworthy that the AXB and MC algorithms demonstrate relatively lower discrepancies compared to the other algorithms. CONCLUSIONS: This study shows that generally, two dose calculation algorithms (AXB and MC) that calculate dose in medium have better accuracy than other two dose calculation algorithms (CCC and AAA) that calculate dose to water.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Software , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Método de Monte Carlo
2.
Phys Med ; 96: 70-80, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35240479

RESUMO

High dose rate (HDR) brachytherapy is a widely accepted cancer treatment method which provides high cure rates. In a HDR brachytherapy treatment, high radiation doses are delivered to the tumor area by placing the radioactive sources in the close proximity to the region of interest. The brachytherapy dose delivery follows the inverse square law with rapid dose fall of leading to minimal damage to the surrounding normal tissue. The safe direct delivery of the radiation dose to the tumour leads to good treatment outcomes comparable to other modalities of treatment. Hence, it is crucial to maintain a sharp drop in the radiation dose distribution within very short distances. Treatment planning system (TPS) which is controlled by a computer algorithm plays a significant role in calculating the optimum doses to the tumour area during a typical HDR brachytherapy treatment. However, the optimum dose calculated by the TPS must be verified by using an independent testing method in order to eliminate under/over irradiation of the tumor region and as quality assurance. In general, two types of independent dose verification methods(experimental and computational) are used to crosscheck the doses calculated by TPS. This systematic review aims to summarize the studies done in the past ten years on HDR brachytherapy treatment planning verification and to analyze the reliability and limitations.


Assuntos
Braquiterapia , Neoplasias , Braquiterapia/métodos , Humanos , Método de Monte Carlo , Neoplasias/radioterapia , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes
3.
J Radiat Res ; 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668563

RESUMO

Stereotactic Ablative Radiotherapy (SABR) remains one of the preferred treatment techniques for early-stage cancer. It can be extended to more treatment locales involving the sternum, scapula and spine. This work investigates SABR checks using Alanine and nanoDot dosimeter for three treatment sites, including sternum, spine and scapula. Alanine and nanoDot dosimeters' performances were verified using a 6 MV photon beam before SABR pretreatment verifications. Each dosimeter was placed inside customized designed inserts into a Rod Phantom (in-house phantom) made of Perspex that mimics the human body for a SABR check. Electron Paramagnetic Resonance (EPR) spectrometer, Bruker EleXsys E500 (9.5 GHz) and Microstar (Landauer Inc.) Reader was employed to acquire the irradiated alanine and nanoDot dosimeters' signal, respectively. Both dosimeters treatment sites are expressed as mean ± standard deviation (SD) of the measured and Eclipse calculated dose Alanine (19.59 ± 0.24, 17.98 ± 0.15, 17.95 ± 0.18) and nanoDot (19.70 ± 0.43, 17.05 ± 0.08, 17.95 ± 0.98) for spine, scapula and sternum, respectively. The percentage difference between alanine and nanoDot dosimeters was within 2% for sternum and scapula but 2.4% for spine cases. These results demonstrate Alanine and nanoDot dosimeters' potential usefulness for SABR pretreatment quality assurance (QA).

4.
Phys Med ; 84: 205-213, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33771442

RESUMO

PURPOSE/OBJECTIVE: The objective of this study was to verify the accuracy of treatment plans of stereotactic body radiation therapy (SBRT) and to verify the feasibility of the use of Monte Carlo (MC) as quality control (QC) on a daily basis. MATERIAL/METHODS: Using EGSnrc, a MC model of Agility™ linear accelerator was created. Various measurements (Percentage depth dose (PDD), Profiles and Output factors) were done for different fields sizes from 1x1 up to 40x40 (cm2). An iterative model optimization was performed to achieve adequate parameters of MC simulation. 40 SBRT patient's dosimetry plans were calculated by Monaco™ 3.1.1. CT images, RT-STRUCT and RT-PLAN files from Monaco™ being used as input for Moderato MC code. Finally, dose volume histogram (DVH) and paired t-tests for each contour were used for dosimetry comparison of the Monaco™ and MC. RESULTS: Validation of MC model was successful, as <2% difference comparing to measurements for all field's sizes. The main energy of electron source incident on the target was 5.8 MeV, and the full width at half maximum (FWHM) of Gaussian electron source were 0.09 and 0.2 (cm) in X and Y directions, respectively. For 40 treatment plan comparisons, the minimum absolute difference of mean dose of planning treatment planning (PTV) was 0.1% while the maximum was 6.3%. The minimum absolute difference of Max dose of PTV was 0.2% while the maximum was 8.1%. CONCLUSION: SBRT treatment plans of Monaco agreed with MC results. It possible to use MC for treatment plans verifications as independent QC tool.


Assuntos
Radiocirurgia , Humanos , Método de Monte Carlo , Controle de Qualidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA