Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928319

RESUMO

Matrine (MT) possesses anti-inflammatory, anti-allergic and antioxidative properties. However, the impact and underlying mechanisms of matrine on colitis are unclear. The purpose of this research was to examine the protective impact and regulatory mechanism of matrine on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. MT alleviated DSS-induced UC by inhibiting weight loss, relieving colon shortening and reducing the disease activity index (DAI). Moreover, DSS-induced intestinal injury and the number of goblet cells were reversed by MT, as were alterations in the expression of zonula occludens-1 (ZO-1) and occludin in colon. Simultaneously, matrine not only effectively restored DSS-induced oxidative stress in colonic tissues but also reduced the production of inflammatory cytokines. Furthermore, MT could treat colitis mice by regulating the regulatory T cell (Treg)/T helper 17 (Th17) cell imbalance. We observed further evidence that MT alleviated the decrease in intestinal flora diversity, reduced the proportion of Firmicutes and Bacteroidetes, decreased the proportion of Proteobacteria and increased the relative abundance of Lactobacillus and Akkermansia in colitis mice. In conclusion, these results suggest that MT may mitigate DSS-induced colitis by enhancing the colon barrier integrity, reducing the Treg/Th17 cell imbalance, inhibiting intestinal inflammation, modulating oxidative stress and regulating the gut microbiota. These findings provide strong evidence for the development and application of MT as a dietary treatment for UC.


Assuntos
Alcaloides , Sulfato de Dextrana , Microbioma Gastrointestinal , Matrinas , Estresse Oxidativo , Quinolizinas , Linfócitos T Reguladores , Animais , Alcaloides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinolizinas/farmacologia , Quinolizinas/uso terapêutico , Camundongos , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Masculino , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/microbiologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Proteína da Zônula de Oclusão-1/metabolismo , Colo/patologia , Colo/metabolismo , Colo/efeitos dos fármacos , Colo/microbiologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th17/imunologia , Modelos Animais de Doenças , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/microbiologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Ocludina/metabolismo
2.
J Ethnopharmacol ; 334: 118463, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908493

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wutou Decoction (WTD) is a classic traditional Chinese medicine formula, which has shown clinical efficacy in treating rheumatoid arthritis (RA). The Treg stability and Th17/Treg imbalance is an important immunological mechanism in RA progression. Whether WTD regulates CD4+ T cell subsets has not been thoroughly investigated yet. AIM OF THE STUDY: This study aimed to explore the potential role and mechanisms of WTD in regulating the diminished stability of Treg cells and the imbalance of CD4+ T cell subsets via in vivo and in vitro experiments. MATERIALS AND METHODS: Firstly, the therapeutic effects of WTD on the collagen-induced arthritis (CIA) mouse and its potential regulatory function on CD4+ T cell subsets were evaluated in vivo. Animal specimens were collected after 31 days of treatment with WTD. The anti-arthritic and anti-inflammatory effects of WTD were assessed through arthritis scoring, body weight, spleen index, serum IL-6 levels, and micro-PET/CT imaging. Gene enrichment analysis was performed to evaluate the activation T cell-related signaling pathway. Flow cytometry was used to determine the proportions of CD4+ T cell subsets in vitro and in vitro. Additionally, ELISA was used to assess the secretion of IL-10 and TGF-ß by Treg cells under inflammatory conditions. The suppressive function of Treg cells on cell proliferation under inflammatory conditions was examined using CFSE labeling. Immunofluorescence staining was performed to detect the phosphorylation levels of STAT3 in CD4+ T cells from mouse spleen tissues. Western blotting was used to evaluate the phosphorylation levels of JAK2/STAT3 in Treg cells. RESULTS: WTD significantly alleviated joint inflammation in CIA mice. WTD reduced serum IL-6 levels in CIA mice, improved their body weight and spleen index. WTD treatment inhibited the activation of CD4+ T cell subgroup-related signaling in the joint tissues of CIA mice. In vitro and in vitro experiments showed that WTD increased the proportion of Treg cells and decreased the proportion of Th17 cells in CIA mice spleen. Furthermore, WTD promoted the secretion of IL-10 and TGF-ß by Treg cells and enhanced the inhibitory capacity of Treg cells on cell proliferation under inflammatory conditions. Immunofluorescence detected decreased STAT3 phosphorylation levels in CD4+ T cells from CIA mice spleen, while western blotting revealed a decrease in JAK2/STAT3 phosphorylation levels in Treg cells in vitro. CONCLUSIONS: Inhibiting JAK2/STAT3 phosphorylation is a potential mechanism through which WTD improves Treg cell stability, balances CD4+ T cell subsets, and attenuates RA joint inflammation.


Assuntos
Artrite Experimental , Medicamentos de Ervas Chinesas , Janus Quinase 2 , Camundongos Endogâmicos DBA , Fator de Transcrição STAT3 , Transdução de Sinais , Linfócitos T Reguladores , Células Th17 , Animais , Fator de Transcrição STAT3/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Janus Quinase 2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Int Arch Allergy Immunol ; : 1-10, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749400

RESUMO

INTRODUCTION: T cells play a critical role in inflammatory diseases. The aim of the present study was to investigate the effects of Majie cataplasm (MJC) on asthma and to propose a possible mechanism involved in this process. METHODS: Airway inflammation, infiltration of inflammatory cells, levels of interleukin (IL)-4, IL-10, IL-17, and interferon (IFN)-γ, levels of Th2, Treg, Th17, and Th1 cells, and the expressions of IL-4, IL-10, IL-17, IFN-γ, GATA binding protein 3 (GATA-3), Foxp3, RAR-related orphan receptor gamma (RORγt), and T-bet were detected. RESULT: MJC treatment reduced lung airway resistance and inflammatory infiltration in lung tissues. MJC treatment also reduced the numbers of eosinophils and neutrophils in the blood and bronchoalveolar lavage fluid (BALF). The levels of IL-4 and IL-17 in the blood, BALF, and lungs were suppressed by MJC, and IFN-γ and IL-10 were increased. Furthermore, MJC suppressed the percentage of Th2 and Th17 and increased the percentage of Th1 and Treg in spleen cells. In addition, MJC can inhibit asthma by increasing expressions of IFN-γ, IL-10, T-bet, and Foxp3, as well as decreasing expressions of IL-4, IL-17, GATA-3, and RORγt. CONCLUSION: MJC may improve airway hyperresponsiveness and inflammation by regulating Th1/Th2/Treg/Th17 balance in ovalbumin-induced rats. And MJC may be a new source of anti-asthma drugs.

4.
J Agric Food Chem ; 72(21): 12171-12183, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748640

RESUMO

Ulcerative colitis (UC) is a complex chronic inflammatory disease closely associated with gut homeostasis dysfunction. The previous studies have shown that stachyose, a functional food additive, has the potential to enhance gut health and alleviate UC symptoms. However, the underlying mechanism of its effects remains unknown. In this study, our findings showed that dietary supplements of stachyose had a significant dose-dependent protective effect on colitis symptoms, regulation of gut microbiota, and restoration of the Treg/Th17 cell balance in dextran sulfate sodium (DSS) induced colitis mice. To further validate these findings, we conducted fecal microbiota transplantation (FMT) to treat DSS-induced colitis in mice. The results showed that microbiota from stachyose-treated mice exhibited a superior therapeutic effect against colitis and effectively regulated the Treg/Th17 cell balance in comparison to the control group. Moreover, both stachyose supplementation and FMT resulted in an increase in butyrate production and the activation of PPARγ. However, this effect was partially attenuated by PPARγ antagonist GW9662. These results suggested that stachyose alleviates UC symptoms by modulating gut microbiota and activating PPARγ. In conclusion, our work offers new insights into the benefical effects of stachyose on UC and its potential role in modulating gut microbiota.


Assuntos
Butiratos , Colite Ulcerativa , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , PPAR gama , Transdução de Sinais , Linfócitos T Reguladores , Células Th17 , Animais , PPAR gama/metabolismo , PPAR gama/genética , Camundongos , Células Th17/imunologia , Linfócitos T Reguladores/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Transdução de Sinais/efeitos dos fármacos , Colite Ulcerativa/imunologia , Colite Ulcerativa/terapia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/tratamento farmacológico , Oligossacarídeos/administração & dosagem , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Sulfato de Dextrana/efeitos adversos
5.
J Pharm Anal ; 14(4): 100901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665223

RESUMO

The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer. Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis (YTE-17), attributing these effects to the regulation of multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited. In this study, we conducted isobaric tags for relative and absolute quantification (iTRAQ) analysis on intestinal epithelial cells (IECs) exposed YTE-17, both in vitro and invivo, revealing a significant inhibition of the Wnt family member 5a (Wnt5a)/c-Jun N-terminal kinase (JNK) signaling pathway. Subsequently, we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment (TME), specifically focusing on macrophage-mediated T helper 17 (Th17) cell induction in a colitis-associated cancer (CAC) model with Wnt5a deletion. Additionally, we performed the single-cell RNA sequencing (scRNA-seq) on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition, lineage, and functional status of immune mesenchymal cells during different stages of colorectal cancer (CRC) progression. Remarkably, our findings demonstrate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17, leading to the restoration of regulatory T (Treg)/Th17 cell balance in azoxymethane (AOM)/dextran sodium sulfate (DSS) model. Furthermore, we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages. Notably, our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical ß-catenin oncogenic pathway in vivo. Specifically, we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with ß-catenin activity within the TME, involving macrophages and T cells. In summary, our study undergoes the potential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment, thereby mitigating the risk of malignancies.

6.
In Vitro Cell Dev Biol Anim ; 60(6): 644-656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684579

RESUMO

Bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-Exos) have a variety of biological functions and are extensively involved in the regulation of inflammatory diseases, as well as tissue repair and regeneration. However, the mechanism of action of these compounds in dry eye disease (DED) in mice is still unclear. This study demonstrated that the Treg/Th17 ratio was strongly imbalanced in DED clinical samples. BMSC-Exos can modulate the Treg/Th17 balance, improve the integrity of the corneal epithelial layer, and ameliorate DED progression in mice. Mechanistically, BMSC-Exos dramatically decreased the levels of IL-17 and IL-22; increased the levels of IL-4, IL-10, and TGF-ß1; and increased tear secretion and the number of goblet cells in the conjunctiva in mice, thus alleviating the progression of DED. This effect is achieved by BMSC-Exos through the delivery of miR-21-5p to target and restrain TLR4, thereby restraining the MyD88/NF-κB pathway. Our study showed that the upregulation of miR-21-5p in BMSC-Exos may be a therapeutic target for DED. These findings support new ideas and a basis for treating DED, as well as for further study of the application value of exosomes in alleviating DED.


Assuntos
Síndromes do Olho Seco , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Fator 88 de Diferenciação Mieloide , NF-kappa B , Transdução de Sinais , Linfócitos T Reguladores , Células Th17 , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Exossomos/metabolismo , Exossomos/transplante , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Síndromes do Olho Seco/terapia , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Células Th17/metabolismo , Células Th17/imunologia , NF-kappa B/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/imunologia , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Masculino , Feminino
7.
J Transl Med ; 22(1): 327, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566233

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are crucial in maintaining immune homeostasis and preventing autoimmunity and inflammation. A proportion of Treg cells can lose Foxp3 expression and become unstable under inflammation conditions. The precise mechanisms underlying this phenomenon remain unclear. METHODS: The PI16 gene knockout mice (PI16fl/flFoxp3Cre) in Treg were constructed, and the genotypes were identified. The proportion and phenotypic differences of immune cells in 8-week-old mice were detected by cell counter and flow cytometry. Two groups of mouse Naïve CD4+T cells were induced to differentiate into iTreg cells to observe the effect of PI16 on the differentiation and proliferation of iTreg cells, CD4+CD25+Treg and CD4+CD25- effector T cells (Teff) were selected and co-cultured with antigen presenting cells (APC) to observe the effect of PI16 on the inhibitory ability of Treg cells in vitro. The effects of directed knockout of PI16 in Treg cells on inflammatory symptoms, histopathological changes and immune cell expression in mice with enteritis and autoimmune arthritis were observed by constructing the model of antigen-induced arthritis (AIA) and colitis induced by dextran sulfate sodium salt (DSS). RESULTS: We identified peptidase inhibitor 16 (PI16) as a negative regulator of Treg cells. Our findings demonstrate that conditional knock-out of PI16 in Tregs significantly enhances their differentiation and suppressive functions. The conditional knockout of the PI16 gene resulted in a significantly higher abundance of Foxp3 expression (35.12 ± 5.71% vs. 20.00 ± 1.61%, p = 0.034) in iTreg cells induced in vitro compared to wild-type mice. Mice with Treg cell-specific PI16 ablation are protected from autoimmune arthritis (AIA) and dextran sulfate sodium (DSS)-induced colitis development. The AIA model of PI16CKO is characterized by the reduction of joint structure and the attenuation of synovial inflammation and in DSS-induced colitis model, conditional knockout of the PI16 reduce intestinal structural damage. Additionally, we found that the deletion of the PI16 gene in Treg can increase the proportion of Treg (1.46 ± 0.14% vs. 0.64 ± 0.07%, p < 0.0001) and decrease the proportion of Th17 (1.00 ± 0.12% vs. 3.84 ± 0.64%, p = 0.001). This change will enhance the shift of Th17/Treg toward Treg cells in AIA arthritis model (0.71 ± 0.06% vs. 8.07 ± 1.98%, p = 0.003). In DSS-induced colitis model of PI16CKO, the proportion of Treg in spleen was significantly increased (1.40 ± 0.15% vs. 0.50 ± 0.11%, p = 0.003), Th17 (2.18 ± 0.55% vs. 6.42 ± 1.47%, p = 0.017), Th1 (3.42 ± 0.19% vs. 6.59 ± 1.28%, p = 0.028) and Th2 (1.52 ± 0.27% vs. 2.76 ± 0.38%, p = 0.018) in spleen was significantly decreased and the Th17/Treg balance swift toward Treg cells (1.44 ± 0.50% vs. 24.09 ± 7.18%, p = 0.012). CONCLUSION: PI16 plays an essential role in inhibiting Treg cell differentiation and function. Conditional knock out PI16 gene in Treg can promote the Treg/Th17 balance towards Treg dominance, thereby alleviating the condition. Targeting PI16 may facilitate Treg cell-based therapies for preventing autoimmune diseases and inflammatory diseases. The research provides us with novel insights and future research avenues for the treatment of autoimmune diseases, particularly arthritis and colitis.


Assuntos
Artrite , Doenças Autoimunes , Colite , Animais , Camundongos , Artrite/metabolismo , Artrite/patologia , Doenças Autoimunes/metabolismo , Diferenciação Celular , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17
8.
Chin Med ; 19(1): 55, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528555

RESUMO

BACKGROUND: Severe aplastic anemia (SAA) is a syndrome of bone marrow failure which is life-threatening. Recent studies have demonstrated that CD4 + T cell subsets, including T regulatory (Treg) and T helper 17 (Th17) cells, play a pivotal role in the pathogenesis of SAA. Formononetin (FMN) is a natural compound extracted from the traditional Chinese medicine Huangqi, which has the ability to regulate the imbalance of Treg/Th17 cells in some inflammatory diseases. Nevertheless, the therapeutic effect of FMN in SAA has yet to be definitively established. Therefore, the objective of this research was to investigate the effect of FMN on SAA and elucidate its underlying mechanism. METHODS: In vivo experiments, the mice were divided into the following five groups: control, model, low-dose FMN, high-dose FMN, and positive control cyclosporine A group. The immune-mediated bone marrow failure (BMF) mouse model was established by the total body X-ray radiation and lymphocyte infusion. After 10 days of continuous administration of FMN, the numbers of Treg/Th17 cells in the bone marrow and spleen were assessed by flow cytometry. The protein expressions of PI3K/Akt pathway in the bone marrow and spleen was assessed by immunohistochemistry and western blotting. In vitro, the impact of FMN on the differentiation of naive CD4 + T cells into Treg cells was investigated by flow cytometry and ELISA. RESULTS: In comparison with the control group, the model group showed a reduction in bone marrow nucleated cells, a significant decrease in peripheral blood cells, and an altered CD8 + /CD4 + T cell ratio. These findings indicate the successful establishment of a mouse model of immune-mediated BMF. After FMN treatment, there were the increased levels of red blood cells and hemoglobin. In addition, FMN mitigated the bone marrow destruction and restored the CD8 + /CD4 + T cell ratio. Furthermore, in comparison with the control group, the model group showed the decreased levels of Treg cells and the increased levels of Th17 cells. After FMN treatment, there was a significantly increased number of Treg cells and a decreased number of Th17 cells. Additionally, FMN remarkably down-regulated the expression levels of PI3K and Akt proteins in immune-mediated BMF mice. CONCLUSIONS: FMN alleviates immune-mediated BMF by modulating the balance of Treg/Th17 cells through the PI3K/Akt signaling pathway.

9.
Vaccines (Basel) ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543954

RESUMO

Currently, vaccine development against different respiratory diseases is at its peak. It is of utmost importance to find suitajble adjuvants that can increase the potency of the vaccine candidates. This study aimed to determine the systemic and splenic immune mechanisms in mice models induced by anionic and cationic lipid adjuvants in the presence of the vaccine-candidate influenza antigen hemagglutinin (HA). In the presence of the HA antigen, the cationic adjuvant (N3) increased conventional dendritic cell 1 (cDC1) abundance with enhanced MHCI and CD80-CD86 costimulatory marker expression, and significantly higher CD8T and Th17 populations with enhanced interferon-gamma (IFNγ) expression in CD8T and CD4T populations. Conversely, the anionic adjuvant (L3) increased the cDC2 population percentage with significantly higher MHCII and DEC205 expression, along with an increase in the CD4T and regulatory T cell populations. The L3-treated group also exhibited higher percentages of activated B and plasma cell populations with significantly higher antigen-specific IgG and IgA titer and virus neutralization potential. While the anionic adjuvant induced significantly higher humoral responses than the cationic adjuvant, the latter influenced a significantly higher Th1/Th17 response. For customized vaccine development, it is beneficial to have alternative adjuvants that can generate differential immune responses with the same vaccine candidate antigen. This study will aid the selection of adjuvants based on their charges to improve specific immune response arms in the future development of vaccine formulation.

10.
Int Immunopharmacol ; 130: 111608, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38428143

RESUMO

This study investigates HRas-dependent mechanisms in the disruption of regulatory T (Treg) cells and T helper 17 (Th17) cells balance in ulcerative colitis (UC). Comprehensive RNA sequencing and bioinformatics analyses revealed elevated HRas and MAPK pathway-related protein expression in UC samples. Using a murine UC model induced by dextran sulfate sodium (DSS), HRas silencing was found to promote Treg cell differentiation and suppress Th17 cell production, effectively restoring balance. Inactivation of the MAPK pathway played a pivotal role in this rebalancing effect. In vivo experiments further confirmed that HRas silencing mitigated colon tissue damage in DSS-induced mice, emphasizing its potential as a therapeutic strategy for UC.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/tratamento farmacológico , Colo , Células Th17 , Linfócitos T Reguladores , Diferenciação Celular , Sulfato de Dextrana/farmacologia , Colite/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
11.
Int Immunopharmacol ; 131: 111810, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492341

RESUMO

Immune thrombocytopenia (ITP) is an acquired immune disorder characterized by increased platelet destruction and reduced platelet (Plt) production. Hypoxia-inducible factor-1α (HIF-1α) have regulatory effects on Treg/Th17 axis balance and may represent relevant factors in the pathogenesis of ITP. Treg/Th17 ratio, serum levels and gene expression were investigated in new diagnosed ITP (NITP) and chronic ITP (CITP). The Treg/Th17 ratio obviously decreased in CITP (P = 0.001). The ratio of Treg/Th17 was correlated with the level of HIF-1α level both in mRNA (r = 0.49, P < 0.0001) and serum level (r = 0.50, P < 0.0001). However, none statistical upregulation of HIF-1α was observed in CITP. In vitro, There was significant polarization difference of Treg/Th17 axis (P = 0.042) and Foxp3-MFI/IL17-MFI (P = 0.0003) in hypoxic condition between NITP and CITP. These findings suggest that HIF-1α induced by hypoxia plays a crucial role in the chronicity of ITP by mediating the imbalance of the Treg/Th17 axis.


Assuntos
Nitroimidazóis , Púrpura Trombocitopênica Idiopática , Teofilina/análogos & derivados , Trombocitopenia , Humanos , Linfócitos T Reguladores , Células Th17 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
12.
Front Pharmacol ; 15: 1393029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529188

RESUMO

[This corrects the article DOI: 10.3389/fphar.2021.643215.].

13.
Drug Discov Ther ; 18(1): 24-33, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382992

RESUMO

Maintenance of pregnancy is highly dependent on the maternal immune system. High levels of regulatory T cells (Tregs) accumulate in the maternal placenta to suppress immunoreactivity against fetal antigens. We assessed whether Astragalus root (AsR) and AsR-containing Kampo medicines modulate immunoreactivity and thereby increase mouse litter size. AsR-exposed murine splenocytes exhibited significantly increased IL-2 secretion. In AsR-exposed mice, total Tregs were significantly increased, whereas cytotoxic T lymphocyte antigen 4 (CTLA-4)-positive Tregs were decreased in AsR-exposed mice. Tregs express IL-2 receptor subunit alpha and are activated by IL-2. CTLA-4 interacts with B7 expressed in antigen-presenting cells (APCs) with high affinity, and CTLA-4/B7 signaling plays a critical role in inhibiting APC activity, thereby suppressing CD4+ T cell proliferation and activation. The decrease in CTLA-4+ Tregs in AsR-exposed mice is thought to induce an increase in CD4+ T cells, leading to increased IL-2 secretion from CD4+ T cells followed by Treg activation. Th17 cells prevent trophoblast apoptosis, resulting in trophoblast invasion into the decidua. AsR increases Th17 cells, thereby inducing dose-dependent increases in litter size. Although Keishikaogito (KO)- and Ogikenchuto (OK)-exposed mice exhibited increased IL-2 secretion and splenic Tregs, KO also increased CTLA-4+ Tregs. Therefore, KO promoted immunosuppression by increasing CTLA-4+ Tregs, which induced a decrease in Th17 and exerted little effect on litter size. Therefore, an increase in both Tregs and Th17 cells can be considered necessary for embryo implantation and pregnancy maintenance.


Assuntos
Interleucina-2 , Linfócitos T Reguladores , Gravidez , Feminino , Camundongos , Animais , Antígeno CTLA-4 , Interleucina-2/farmacologia , Células Th17 , Implantação do Embrião , Manutenção da Gravidez
14.
Foods ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397562

RESUMO

Colitis is a chronic disease associated with alterations in the composition of gut microbiota. Schisandra chinensis bee pollen extract (SCPE) has been proved to be rich in phenolic compounds and effective in modulating gut microbiota, but its effect on colitis and the underlying mechanism remains unclear. This study investigates the relationship between colitis amelioration and the gut microbiota regulation of SCPE via fecal microbial transplantation (FMT). The results showed that administration of 20.4 g/kg BW of SCPE could primely ameliorate colitis induced by dextran sulfate sodium (DSS) in mice, showing as more integration of colon tissue structure and the colonic epithelial barrier, as well as lower oxidative stress and inflammation levels compared with colitis mice. Moreover, SCPE supplement restored the balance of T regulatory (Treg) cells and T helper 17 (Th17) cells. Gut microbiota analysis showed SCPE treatment could reshape the gut microbiota balance and improve the abundance of gut microbiota, especially the beneficial bacteria (Akkermansia and Lactobacillus) related to the production of short-chain fatty acids and the regulation of immunity. Most importantly, the protection of 20.4 g/kg BW of SCPE on colitis can be perfectly transmitted by fecal microbiota. Therefore, the gut microbiota-SCFAS-Treg/Th17 axis can be the main mechanism for SCPE to ameliorate colitis. This study suggests that SCPE can be a new promising functional food for prevention and treatment of colitis by reshaping gut microbiota and regulating gut immunity.

15.
Immun Inflamm Dis ; 12(2): e1177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353382

RESUMO

BACKGROUND: Acute graft-versus-host disease (aGVHD) arises from the imbalance of host T cells. Galectin-9 negatively regulates CD4 effector T cell (Th1 and Th17) function by binding to Tim-3. However, the relationship between Galectin-9/Tim-3 and CD4+ T subsets in patients with aGVHD after Haplo-HSCT (haploidentical peripheral blood hematopoietic stem cell transplantation) has not been fully elucidated. Here, we investigated the role of Galectin-9 and CD4+ T subsets in aGVHD after haplo-HSCT. METHODS: Forty-two patients underwent Haplo-HSCT (26 without aGVHD and 16 with aGVHD), and 20 healthy controls were included. The concentrations of Galectin-9, interferon-gamma (IFN-γ), interleukin (IL)-4, transforming growth factor (TGF)-ß, and IL-17 in the serum and culture supernatant were measured using enzyme-linked immunosorbent assay or cytometric bead array. The expression levels of Galectin-9, PI3K, p-PI3K, and p-mTOR protein were detected by western blot analysis. Flow cytometry was used to analyze the proportions of CD4+ T cell subsets. Bioinformatics analysis was performed. RESULTS: In patients with aGVHD, regulatory T (Treg) cells and Galectin-9 decreased, and the Th1, Th17, and Treg cells were significantly imbalanced. Moreover, Treg and Galectin-9 were rapidly reconstituted in the early stage of patients without aGVHD after Haplo-HSCT, but Th17 cells were reconstituted slowly. Furthermore, Tim-3 upregulation on Th17 and Th1 cells was associated with excessive activation of the PI3K/AKT pathway in patients with aGVHD. Specifically, in vitro treatment with Galectin-9 reduced IFN-γ and IL-17 production while augmenting TGF-ß secretion. Bioinformatics analysis suggested the potential involvement of the PI3K/AKT/mTOR pathway in aGVHD. Mechanistically, exogenous Galectin-9 was found to mitigate aGVHD by restoring the Treg/Teffs (effector T cells) balance and suppressing PI3K. CONCLUSION: Galectin-9 may ameliorate aGVHD after haplo-HSCT by modulating Treg/Teffs balance and regulating the PI3K/AKT/mTOR pathway. Targeting Galectin-9 may hold potential value for the treatment of aGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Linfócitos T Reguladores/metabolismo , Receptor Celular 2 do Vírus da Hepatite A , Interleucina-17 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Interferon gama , Fator de Crescimento Transformador beta , Galectinas , Serina-Treonina Quinases TOR
16.
Immun Inflamm Dis ; 12(1): e1139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270310

RESUMO

BACKGROUND: For the unclear pathogenesis of Sjogren's syndrome (SS), further exploration is necessary. Mesenchymal stem cells (MSCs) and derived exosomes (MSCs-exo) have exhibited promising results in treating SS. OBJECT: This study aimed to investigate the effect and mechanism of human umbilical cord MSCs (UC-MSCs) on SS. METHODS: Nonobese Diabetic (NOD) mouse splenic T cells were co-cultured with UC-MSCs and UC-MSCs-exo, and interferon-gamma (IFN-γ), interleukin (IL)-6, IL-10, prostaglandin E2 (PGE2), and transforming growth factor-ß1 (TGF-ß1) levels in the supernatant were assessed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Co-cultured T cells were injected into NOD mice via the tail vein. The inflammatory cell infiltration in the intestine and the submandibular gland was characterized by hematoxylin-eosin staining. Treg/Th17 homeostasis within the spleen was determined by flow cytometry. Gut microbiota was detected by 16S rRNA sequencing, and the relationship between differential microbiota and Treg/Th17 cytokines was analyzed by the Pearson correlation coefficient. RESULTS: UC-MSCs, UC-MSCs-exo, and NOD mouse splenic T cells were successfully cultured and identified. After T cells were co-cultured with UC-MSCs and UC-MSCs-exo, both IFN-γ and IL-6 were decreased while IL-10, PGE2, and TGF-ß1 were increased in transcriptional and translational levels. UC-MSCs and UC-MSCs-exo partially restored salivary secretion function, reduced Ro/SSA antibody and α-Fodrin immunoglobulin A levels, reduced inflammatory cell infiltration in the intestine and submandibular gland, raised proportion of Treg cells, decreased IFN-γ, IL-6, IL-2, IL-17, lipopolysaccharide, and tumor necrosis factor-alpha levels, and raised IL-10, Foxp3, and TGF-ß1 levels by affecting co-cultured T cells. The intervention of UC-MSCs and UC-MSCs-exo improved intestinal homeostasis in NOD mice by increasing microbiota diversity and richness. Additionally, differential microbiota was significantly associated with Treg/Th17 cytokine levels. CONCLUSION: Human UC-MSCs and UC-MSCs-exo improved disease characterization of SS in NOD mice through regulation of gut microbiota and Treg/Th17 cellular immunity.


Assuntos
Microbioma Gastrointestinal , Células-Tronco Mesenquimais , Síndrome de Sjogren , Animais , Camundongos , Humanos , Linfócitos T Reguladores , Camundongos Endogâmicos NOD , Interleucina-10 , Interleucina-6 , Dinoprostona , RNA Ribossômico 16S , Síndrome de Sjogren/terapia , Fator de Crescimento Transformador beta1 , Citocinas , Imunidade Celular , Cordão Umbilical
17.
Exp Ther Med ; 25(1): 21, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38895650

RESUMO

Dysregulated microRNA (miRNA or miR) expression is an important cause of immune homeostasis disorder in patients with systemic lupus erythematosus and lupus nephritis (LN). The present study evaluated the possibility of using miR-146a-5p as a therapeutic target for treating LN. The effects of miR-146a-5p on lupus syndrome in MRL/lpr mice were evaluated. MRL/lpr mice were injected with miR-146a-5p agomir (M146AG) or agomir negative control (NC). Renal function index, pathology and protein expression levels of inflammatory factors in MRL/lpr mice were evaluated after M146AG or agomir NC treatment. Reverse transcription-quantitative PCR, western blotting and immunofluorescence were used to assess the effect of M146AG on mRNA and protein expression levels of (tumor necrosis factor receptor-associated factor 6) TRAF6/NF-κB axis components. A luciferase dual reporter system was used to assess the mechanism of regulation of TRAF6/NF-κB axis expression. Finally, flow cytometry was used to assess the regulatory effect of M146AG on regulatory T cell (Treg)/T helper 17 (Th17) balance. The findings demonstrated that M146AG ameliorated renal lesions and the inflammatory response in MRL/lpr mice. TRAF6 was demonstrated to be targeted and significantly negatively regulated by miR-146a-5p. M146AG intervention significantly increased expression of miR-146a-5p and significantly downregulated the mRNA and protein expression levels of TRAF6 and NF-κB in CD4+ T cells of MRL/lpr mice. Furthermore, M146AG intervention alleviated Treg/Th17 imbalance in MRL/lpr mice peripheral blood. The present findings demonstrated that M146AG improved Treg/Th17 imbalance and alleviated renal lesions in MRL/lpr mice by targeting the TRAF6/NF-κB axis. This may provide a new theoretical basis for the clinical diagnosis and treatment of LN.

18.
Braz. j. med. biol. res ; 50(11): e6527, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-888953

RESUMO

Immunological mechanisms have been proposed to underlie the pathogenesis of recurrent spontaneous abortion (RSA). Vitamin D has a potent immunomodulatory effect, which may affect pregnancy outcome. The objective of this study was to investigate 25-hydroxyvitamin D [25(OH) D] concentration and vitamin D receptor (VDR) expression in the decidual tissues of RSA patients. Thirty women with RSA (RSA group) and thirty women undergoing elective abortion (control group) were recruited during 2016 from gynecology outpatient clinics. We measured 25(OH) D, interleukin (IL)-17, IL-23, transforming growth factor β (TGF-β), VDR and 1-α-hydroxylase (CYP27B1) in decidual tissues collected during the abortion procedure. In the RSA group, 25(OH) D and TGF-β were significantly decreased while IL-17 and IL-23 were significantly increased compared with the control group. VDR expression was significantly decreased in the RSA group compared with the control group. Logistic regression analysis showed a significant negative correlation between 25(OH) D in decidual tissues and RSA. These results indicated that vitamin D concentrations in the decidua are associated with inflammatory cytokine production, suggesting that vitamin D and VDR may play a role in the etiology of RSA.


Assuntos
Humanos , Feminino , Gravidez , Adulto , Adulto Jovem , Vitamina D/análogos & derivados , Aborto Habitual/metabolismo , Receptores de Calcitriol/análise , Decídua/química , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/análise , Terceiro Trimestre da Gravidez , Vitamina D/análise , Vitamina D/metabolismo , Deficiência de Vitamina D/complicações , Modelos Logísticos , Fatores de Risco , Aborto Habitual/etiologia , Fator de Crescimento Transformador beta/análise , Receptores de Calcitriol/metabolismo , Estatísticas não Paramétricas , Interleucina-17/análise , Interleucina-23/análise , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA