Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Cancer Res Clin Oncol ; 149(15): 13523-13543, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37498396

RESUMO

PURPOSE: A high postoperative recurrence rate seriously impedes colon cancer (CC) patients from achieving long-term survival. Here, we aimed to develop a Treg-related classifier that can help predict recurrence-free survival (RFS) and therapy benefits of stage I-III colon cancer. METHODS: A Treg-related prognostic classifier was built through a variety of bioinformatic methods, whose performance was assessed by KM survival curves, time-dependent receiver operating characteristic (tROC), and Harrell's concordance index (C-index). A prognostic nomogram was generated using this classifier and other traditional clinical parameters. Moreover, the predictive values of this classifier for immunotherapy and chemotherapy therapeutic efficacy were tested using multiple immunotherapy sets and R package "pRRophetic". RESULTS: A nine Treg-related classifier categorized CC patients into high- and low-risk groups with distinct RFS in the multiple datasets (all p < 0.05). The AUC values of 5-year RFS were 0.712, 0.588, 0.669, and 0.662 in the training, 1st, 2nd, and entire validation sets, respectively. Furthermore, this classifier was identified as an independent predictor of RFS. Finally, a nomogram combining this classifier and three clinical variables was generated, the analysis of tROC, C-index, calibration curves, and the comparative analysis with other signatures confirmed its predictive performance. Moreover, KM analysis exhibited an obvious discrepancy in the subgroups, especially in different TNM stages and with adjuvant chemotherapy. We detected the difference between the two risk subsets of immune cell sub-population and the response to immunotherapy and chemotherapy. CONCLUSIONS: We built a robust Treg-related classifier and generated a prognostic nomogram that predicts recurrence-free survival in stage I-III colon cancer that can identify high-risk patients for more personalized and effective therapy.

2.
Front Transplant ; 2: 1217065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38993904

RESUMO

CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.

3.
JACC Basic Transl Sci ; 7(9): 915-930, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36317132

RESUMO

Myocardial infarction (MI) triggers an inflammatory response that transitions from pro-inflammatory to reparative over time. Restoring sympathetic nerves in the heart after MI prevents arrhythmias. This study investigated if reinnervation altered the immune response after MI. This study used quantitative multiplex immunohistochemistry to identify the immune cells present in the heart 2 weeks after ischemia-reperfusion. Two therapeutics stimulated reinnervation, preventing arrhythmias and shifting the immune response from inflammatory to reparative, with fewer pro-inflammatory macrophages and more regulatory T cells and reparative macrophages. Treatments did not alter macrophage phenotype in vitro, which suggested reinnervation contributed to the altered immune response.

4.
Exp Hematol Oncol ; 11(1): 48, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050760

RESUMO

BACKGROUND: Primary immune thrombocytopenia (ITP) is an autoimmune disease. Some ITP patients are associated with pathogen infection undetected with conventional technologies. Investigating the changes of T cells and potential metabolic mechanism are important for better understanding of ITP. METHODS: The study enrolled 75 newly diagnosed ITP patients. The pathogens of patients were detected by metagenomic next-generation sequencing (mNGS). Plasma lipids were measured by liquid chromatography-mass spectrometry (LC-MS). CD4 T cell and CD8 T cell were analyzed using flow cytometry. Mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential were measured by flow cytometry. Seahorse XF real-time ATP rate assay was used to investigate the change of cellular metabolism. RESULTS: Positive plasma pathogens were detected in seven ITP patients. Of them, 5 (71.4%) positive pathogen-ITP patients were no response (NR) after first-line treatment with corticosteroids. Regulatory T cells (Tregs) increased significantly in positive pathogen-ITP patients compared to negative pathogen-ITP patients and healthy controls (HC). Mitochondrial membrane potential of Th17 and Tregs were decreased in positive pathogen-ITP and negative pathogen-ITP patients, compared to HC (all p < 0.05). The overall metabolism flux of positive pathogen-ITP patients was decreased, as compared to HC (p = 0.004), of them a higher proportion of glycolysis-derived ATP and a smaller proportion of oxidative phosphorylation (OXPHOS)-derived ATP were found in Tregs. The ATP rate index of Tregs was decreased significantly in positive pathogen-ITP patients compared to negative pathogen-ITP patients and HC (p < 0.05). CONCLUSIONS: Impaired mitochondria function of Tregs in positive pathogen-ITP patients caused a decrease of OXPHOS-derived ATP and overall metabolism flux that might be the cause of steroid resistance in ITP patients.

5.
Front Immunol ; 13: 874157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720402

RESUMO

Solid organ transplantation is the treatment of choice for various end-stage diseases, but requires the continuous need for immunosuppression to prevent allograft rejection. This comes with serious side effects including increased infection rates and development of malignancies. Thus, there is a clinical need to promote transplantation tolerance to prevent organ rejection with minimal or no immunosuppressive treatment. Polyclonal regulatory T-cells (Tregs) are a potential tool to induce transplantation tolerance, but lack specificity and therefore require administration of high doses. Redirecting Tregs towards mismatched donor HLA molecules by modifying these cells with chimeric antigen receptors (CAR) would render Tregs far more effective at preventing allograft rejection. Several studies on HLA-A2 specific CAR Tregs have demonstrated that these cells are highly antigen-specific and show a superior homing capacity to HLA-A2+ allografts compared to polyclonal Tregs. HLA-A2 CAR Tregs have been shown to prolong survival of HLA-A2+ allografts in several pre-clinical humanized mouse models. Although promising, concerns about safety and stability need to be addressed. In this review the current research, obstacles of CAR Treg therapy, and its potential future in solid organ transplantation will be discussed.


Assuntos
Transplante de Órgãos , Receptores de Antígenos Quiméricos , Linfócitos T Reguladores , Animais , Antígeno HLA-A2/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante
6.
Front Immunol ; 13: 914033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693830

RESUMO

The immune system plays a vital role in maintaining tissue integrity and organismal homeostasis. The sudden stress caused by myocardial infarction (MI) poses a significant challenge for the immune system: it must quickly substitute dead myocardial with fibrotic tissue while controlling overt inflammatory responses. In this review, we will discuss the central role of myocardial regulatory T-cells (Tregs) in orchestrating tissue repair processes and controlling local inflammation in the context of MI. We herein compile recent advances enabled by the use of transgenic mouse models with defined cardiac antigen specificity, explore whole-heart imaging techniques, outline clinical studies and summarize deep-phenotyping conducted by independent labs using single-cell transcriptomics and T-cell repertoire analysis. Furthermore, we point to multiple mechanisms and cell types targeted by Tregs in the infarcted heart, ranging from pro-fibrotic responses in mesenchymal cells to local immune modulation in myeloid and lymphoid lineages. We also discuss how both cardiac-specific and polyclonal Tregs participate in MI repair. In addition, we consider intriguing novel evidence on how the myocardial milieu takes control of potentially auto-aggressive local immune reactions by shaping myosin-specific T-cell development towards a regulatory phenotype. Finally, we examine the potential use of Treg manipulating drugs in the clinic after MI.


Assuntos
Infarto do Miocárdio , Animais , Fibrose , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Linfócitos T Reguladores
7.
Front Cell Infect Microbiol ; 12: 893044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663467

RESUMO

Severe COVID-19 in children is rare, but the reasons underlying are unclear. Profound alterations in T cell responses have been well characterized in the course of adult severe COVID-19, but little is known about the T cell function in children with COVID-19. Here, we made three major observations in a cohort of symptomatic children with acute COVID-19: 1) a reduced frequency of circulating FoxP3+ regulatory T cells, 2) the prevalence of a TH17 polarizing microenvironment characterized by high plasma levels of IL-6, IL-23, and IL17A, and an increased frequency of CD4+ T cells expressing ROR-γt, the master regulator of TH17 development, and 3) high plasma levels of ATP together with an increased expression of the P2X7 receptor. Moreover, that plasma levels of ATP displayed an inverse correlation with the frequency of regulatory T cells but a positive correlation with the frequency of CD4+ T cells positive for the expression of ROR-γt. Collectively, our data indicate an imbalance in CD4+ T cell profiles during pediatric COVID-19 that might favor the course of inflammatory processes. This finding also suggests a possible role for the extracellular ATP in the acquisition of an inflammatory signature by the T cell compartment offering a novel understanding of the involved mechanisms.


Assuntos
COVID-19 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Trifosfato de Adenosina/metabolismo , Adulto , Linfócitos T CD4-Positivos/metabolismo , Criança , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores , Células Th17
8.
Front Immunol ; 13: 760763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558070

RESUMO

Background: In early stage clinical trials, changes to levels of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment (TME) are critical biomarkers of the mechanism of action of novel immunotherapies. However, baseline heterogeneity of tumor samples, both between and within patients, and the resultant impact on the validity of clinical trial data is not well defined. Here we identify and quantify the impact of baseline variables on the heterogeneity of FoxP3+ and proliferating CD8+ T-cells levels (MKi67+CD8A+) in the TME both between and within patients for the purpose of informing clinical trial design and analysis. Methods: We compared levels of FoxP3+ and MKi67+CD8+ cell densities (counts/mm2) from >1000 baseline tumor samples from clinical trials and commercially available sources. Using multivariate hierarchical regression techniques, we investigated whether inter-person heterogeneity of activated or regulatory T-cells could be attributed to baseline characteristics including demographics, indication, lesion type, tissue of excision, biopsy method, prior cancer treatment, and tissue type i.e., "fresh" or "archival" status. We also sought to characterize within-patient heterogeneity by lesion type and tissue type. Results: Prior cancer treatment with hormone therapy or chemotherapy that induces immunogenic cell death may alter the TME. Archival tissue is an unreliable substitute for fresh tissue for determining baseline TIL levels. Baseline and on treatment biopsies should be matched by lesion type to avoid bias.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias , Ensaios Clínicos como Assunto , Fatores de Transcrição Forkhead/metabolismo , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/patologia , Microambiente Tumoral
9.
Acta Pharm Sin B ; 12(3): 1163-1185, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530162

RESUMO

Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.

11.
Transpl Immunol ; 70: 101512, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34871717

RESUMO

The liver is considered a tolerogenic organ that can induce peripheral tolerance. The exact mechanisms of tolerance in the liver remain undefined. Regulatory T cells (Tregs) have been demonstrated to be involved in inducing and maintaining peripheral tolerance. They play an important role in the prevention of immune responses and autoimmunity. The main focus of this review is the role of Tregs and their subpopulation in liver transplantation. More specifically, this manuscript will highlight the recent findings about using Treg cells as a biomarker in liver transplantation. There are some reports and animal models about the role of Tregs in the process of rejection of liver transplantation. Previous reports and studies have suggested that by increasing the number of Tregs better liver transplant outcomes will be accomplished by enhancing tolerance. It has been shown that the levels of CD4 + CD25 + FOXP3+ Treg cells correlate with the inhibition of acute allograft rejection in liver transplantation; however, further studies must be done to address the potential role of Treg cells in chronic rejection. Indeed, in the future, Treg cells may have potential use as a beneficial biomarker to screen long-term graft function.


Assuntos
Transplante de Fígado , Linfócitos T Reguladores , Animais , Rejeição de Enxerto , Tolerância Imunológica , Transplante Homólogo
12.
Comput Struct Biotechnol J ; 19: 4941-4953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527198

RESUMO

MicroRNA (miRNA) deregulation plays a critical role in the heterogeneous development of prostate cancer (PCa) by tuning mRNA levels. Herein, we aimed to characterize the molecular features of PCa by clustering the miRNA-regulated transcriptome with non-negative matrix factorization. Using 478 PCa samples from The Cancer Genome Atlas, four molecular subtypes (S-I, S-II, S-III, and S-IV) were identified and validated in two merged microarray and RNAseq datasets with 656 and 252 samples, respectively. Interestingly, the four subtypes showed distinct clinical and biological features after comprehensive analyses of clinical features, multiomic profiles, immune infiltration, and drug sensitivity. S-I is basal/stem/mesenchymal-like and immune-excluded with marked transforming growth factor ß, epithelial-mesenchymal transition and hypoxia signals, increased sensitivity to olaparib, and intermediate prognosis. S-II is luminal/metabolism-active and responsive to androgen deprivation therapy with frequent TMPRSS2-ERG fusion and a good prognosis. S-III is characterized by moderate proliferative and metabolic activity, sensitivity to taxane-based chemotherapy, and intermediate prognosis. S-IV is highly proliferative with moderate EMT and stemness, frequent deletions of TP53, PTEN and RB, and the poorest prognosis; it is also immune-inflamed and sensitive to anti-PD-L1 therapy. Overall, based on miRNA-regulated gene profiles, this study identified four distinct PCa subtypes that could improve risk stratification at diagnosis and provide therapeutic guidance.

13.
Front Immunol ; 12: 722860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526996

RESUMO

Autoimmune polyendocrine syndrome type I (APS-1) is a monogenic model disorder of organ-specific autoimmunity caused by mutations in the Autoimmune regulator (AIRE) gene. AIRE facilitates the expression of organ-specific transcripts in the thymus, which is essential for efficient removal of dangerous self-reacting T cells and for inducing regulatory T cells (Tregs). Although reduced numbers and function of Tregs have been reported in APS-I patients, the impact of AIRE deficiency on gene expression in these cells is unknown. Here, we report for the first time on global transcriptional patterns of isolated Tregs from APS-1 patients compared to healthy subjects. Overall, we found few differences between the groups, although deviant expression was observed for the genes TMEM39B, SKIDA1, TLN2, GPR15, FASN, BCAR1, HLA-DQA1, HLA-DQB1, HLA-DRA, GPSM3 and AKR1C3. Of significant interest, the consistent downregulation of GPR15 may indicate failure of Treg gut homing which could be of relevance for the gastrointestinal manifestations commonly seen in APS-1. Upregulated FASN expression in APS-1 Tregs points to increased metabolic activity suggesting a putative link to faulty Treg function. Functional studies are needed to determine the significance of these findings for the immunopathogenesis of APS-1 and for Treg immunobiology in general.


Assuntos
Ácido Graxo Sintase Tipo I/metabolismo , Poliendocrinopatias Autoimunes/imunologia , Poliendocrinopatias Autoimunes/metabolismo , Linfócitos T Reguladores/imunologia , Adulto , Estudos de Casos e Controles , Ácido Graxo Sintase Tipo I/genética , Feminino , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/imunologia , Masculino , Pessoa de Meia-Idade , Poliendocrinopatias Autoimunes/genética , Linfócitos T Reguladores/metabolismo
14.
Acta Pharm Sin B ; 11(4): 941-960, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33996408

RESUMO

The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.

15.
Front Immunol ; 12: 635767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815387

RESUMO

Despite many decades of investigation uncovering the autoimmune mechanisms underlying Type 1 Diabetes (T1D), translating these findings into effective therapeutics has proven extremely challenging. T1D is caused by autoreactive T cells that become inappropriately activated and kill the ß cells in the pancreas, resulting in insulin insufficiency and hyperglycemia. A large body of evidence supports the idea that the unchecked activation and expansion of autoreactive T cells in T1D is due to defects in immunosuppressive regulatory T cells (Tregs) that are critical for maintaining peripheral tolerance to islet autoantigens. Hence, repairing these Treg deficiencies is a much sought-after strategy to treat the disease. To accomplish this goal in the most precise, effective and safest way possible, restored Treg functions will need to be targeted towards suppressing the autoantigen-specific immune responses only and/or be localized in the pancreas. Here we review the most recent developments in designing Treg therapies that go beyond broad activation or expansion of non-specific polyclonal Treg populations. We focus on two cutting-edge strategies namely ex vivo generation of optimized Tregs for re-introduction in T1D patients vs direct in situ stimulation and restoration of endogenous Treg function.


Assuntos
Transferência Adotiva , Autoimunidade , Diabetes Mellitus Tipo 1/terapia , Ilhotas Pancreáticas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Reguladores/transplante , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Fenótipo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
16.
IUBMB Life ; 73(5): 726-738, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686787

RESUMO

The importance of the tumor microenvironment in cancer progression has been well studied for many years. Immune checkpoint inhibitors (ICIs) are regarded as potential strategies in enhancing the immune responses in patients with cancer, particularly colorectal cancer (CRC). Notably, CRCs are extraordinarily heterogeneous and mostly are microsatellite-stable (MSS) or cold tumors, which means that the immune response is not usually as strong as that of foreign cells. T-cell immunoglobulin and ITIM domain (TIGIT) is a new immune checkpoint receptor overexpressed inside the CRC tumor-immune microenvironments. Moreover, several studies have shown that TIGIT in combination with other ICIs and/or conventional treatments, can lead to a robust anti-tumor response in CRC. This review looks deep inside TIGIT expression patterns, their various functions, and possible immunotherapy strategies to increase survival rates and decrease immune-related adverse events.


Assuntos
Adenocarcinoma/terapia , Neoplasias Colorretais/terapia , Inibidores de Checkpoint Imunológico , Proteínas de Checkpoint Imunológico/imunologia , Imunoterapia/métodos , Receptores Imunológicos/antagonistas & inibidores , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Motivos de Aminoácidos , Animais , Antígenos CD/imunologia , Sistemas CRISPR-Cas , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Terapia Combinada , Microbioma Gastrointestinal , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Prognóstico , Domínios Proteicos , Receptores Imunológicos/biossíntese , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Microambiente Tumoral
17.
J Transl Autoimmun ; 4: 100083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33521616

RESUMO

Coronavirus disease 2019 (COVID-19) is associated with considerable morbidity and mortality. The number of confirmed cases of infection with SARS-CoV-2, the virus causing COVID-19 continues to escalate with over 70 million confirmed cases and over 1.6 million confirmed deaths. Severe-to-critical COVID-19 is associated with a dysregulated host immune response to the virus, which is thought to lead to pathogenic immune dysregulation and end-organ damage. Presently few effective treatment options are available to treat COVID-19. Leronlimab is a humanized IgG4, kappa monoclonal antibody that blocks C-C chemokine receptor type 5 (CCR5). It has been shown that in patients with severe COVID-19 treatment with leronlimab reduces elevated plasma IL-6 and chemokine ligand 5 (CCL5), and normalized CD4/CD8 ratios. We administered leronlimab to 4 critically ill COVID-19 patients in intensive care. All 4 of these patients improved clinically as measured by vasopressor support, and discontinuation of hemodialysis and mechanical ventilation. Following administration of leronlimab there was a statistically significant decrease in IL-6 observed in patient A (p=0.034) from day 0-7 and patient D (p=0.027) from day 0-14. This corresponds to restoration of the immune function as measured by CD4+/CD8+ T cell ratio. Although two of the patients went on to survive the other two subsequently died of surgical complications after an initial recovery from SARS-CoV-2 infection.

18.
Transl Lung Cancer Res ; 10(1): 167-182, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569302

RESUMO

BACKGROUND: Accumulating evidence suggests that lymphocyte infiltration in the tumor microenvironment is positively correlated with tumorigenesis and development, while the role of Tregs (regulatory T cells) has been controversial. Therefore, we attempted to discover the possible value of Tregs for lung adenocarcinoma (LUAD). METHODS: The gene-sequencing data of LUAD were applied from three Gene Expression Omnibus (GEO) datasets-GSE10072, GSE32863 and GSE43458; the corresponding fractions of tumor-infiltrating immune cells were extracted from the CIBERSORTx portal. Weighted gene coexpression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis were conducted to identify the significant module and candidate genes related to Tregs. The role of candidate genes in LUAD was further verified using data from The Cancer Genome Atlas (TCGA) database. Finally, we constructed a nomogram model to predict the prognosis of LUAD by plotting Kaplan-Meier (K-M), receiver operating characteristic (ROC) and calibration curves, which elucidated the performance of the nomogram. RESULTS: In total, 10,047 genes in 333 samples (196 tumor and 137 normal samples) from the GEO database were included. By WGCNA and PPI analysis, we identified a significant black module and 36 candidate genes related to Treg. Next, the candidate genes were verified using TCGA data by Cox regression analysis to screen 13 hub genes that stratified LUAD patients into low- or high-risk groups. Low-risk patients showed a significantly longer overall survival (OS) than high-risk patients (3-year OS: 70.2% vs. 35.2%; 5-year OS: 36.6% vs. 0; P=1.651E-09), and the areas under the ROC curves (AUCs) showed good (3-year AUC: 0.733; 5-year AUC: 0.777). Next, we constructed a survival nomogram combining the hub genes and clinical parameters; the low-risk patients still showed a favorable prognosis compared with that of the high-risk patients (P=7.073E-13), and the AUCs were better (3-year AUC: 0.763; 5-year AUC: 0.873). CONCLUSIONS: We revealed the role of immune-infiltrating Treg-related genes in LUAD and constructed a prognostic nomogram, which may help clinicians make optimal therapeutic decisions and help patients obtain better outcomes.

19.
Bioact Mater ; 6(7): 1973-1987, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33426371

RESUMO

The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.

20.
JHEP Rep ; 2(6): 100165, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33103092

RESUMO

Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA