Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.272
Filtrar
1.
Chem Biodivers ; : e202401109, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951966

RESUMO

Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38967075

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) patients often benefit from EGFR inhibitors like gefitinib. However, drug resistance remains a significant challenge in treatment. The unique properties of 1,2,3-triazole, a nitrogen-based compound, hold promise as potential solutions due to its versatile structural attributes and diverse biological effects, including anticancer properties. MATERIALS AND METHODS: Our synthesis process involved the huisgen cycloaddition chemical method, which generated diverse icotinib derivatives. We evaluated the anticancer capabilities of these derivatives against various cancer cell lines, with a specific focus on NSCLC cells that exhibit drug resistance. Additionally, we investigated the binding affinity of selected compounds, including 3l, towards wild-type EGFR using surface plasmon resonance (SPR) experiments. RESULTS: Notably, icotinib derivatives such as derivative 3l demonstrated significant efficacy against different cancer cell lines, including those resistant to conventional therapies. Compound 3l exhibited potent activity with IC50 values below 10 µM against drug-resistant cells. SPR experiments revealed that 3l exhibited enhanced affinity towards wild-type EGFR compared to icotinib. Our research findings suggest that 3l acts as a compelling antagonist for the protein tyrosine kinase of EGFR (EGFR-PTK). CONCLUSION: Icotinib derivative 3l, featuring a 1,2,3-triazole ring, demonstrates potent anticancer effects against drug-resistant NSCLC cells. Its enhanced binding affinity to EGFR and modulation of the EGFR-RAS-RAF-MAPK pathway position 3l as a promising candidate for the future development of anticancer drugs.

3.
Eur J Med Chem ; 275: 116637, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959728

RESUMO

Life-threatening invasive fungal infections pose a serious threat to human health. A series of novel triazole derivatives bearing a pyrazole-methoxyl moiety were designed and synthesized in an effort to obtain antifungals with potent, broad-spectrum activity that are less susceptible to resistance. Most of these compounds exhibited moderate to excellent in vitro antifungal activities against Candida albicans SC5314 and 10,231, Cryptococcus neoformans 32,609, Candida glabrata 537 and Candida parapsilosis 22,019 with minimum inhibitory concentration (MIC) values of ≤0.125 µg/mL to 0.5 µg/mL. Use of recombinant Saccharomyces cerevisiae strains showed compounds 7 and 10 overcame the overexpression and resistant-related mutations in ERG11 of S. cerevisae and several pathogenic Candida spp. Despite being substrates of the C. albicans and Candida auris Cdr1 drug efflux pumps, compounds 7 and 10 showed moderate potency against five fluconazole (FCZ)-resistant fungi with MIC values from 2.0 µg/mL to 16.0 µg/mL. Growth kinetics confirmed compounds 7 and 10 had much stronger fungistatic activity than FCZ. For C. albicans, compounds 7 and 10 inhibited the yeast-to-hyphae transition, biofilm formation and destroyed mature biofilm more effectively than FCZ. Preliminary mechanism of action studies showed compounds 7 and 10 blocked the ergosterol biosynthesis pathway at Erg11, ultimately leading to cell membrane disruption. Further investigation of these novel triazole derivatives is also warranted by their predicted ADMET properties and low cytotoxicity.


Assuntos
Antifúngicos , Candida , Testes de Sensibilidade Microbiana , Pirazóis , Triazóis , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Relação Estrutura-Atividade , Candida/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Cryptococcus neoformans/efeitos dos fármacos , Humanos , Farmacorresistência Fúngica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Candida albicans/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38996406

RESUMO

The current study involves the synthesis of Schiff bases based on 1,2,4-triazoles skeleton and assessing their α-amylase and α-glucosidase profile. Furthermore, the precise structures of the synthesized derivatives were elucidated using various spectroscopic methods such as 1H-NMR, 13C-NMR and HREI-MS. Using glimepiride as the reference standard, the in vitro α-glucosidase and α-amylase inhibitory activities of the synthesized compounds were evaluated in order to determine their potential anti-diabetic properties. All analogues showed varied range of inhibitory activity having IC50 values ranging from 17.09 ± 0.72 to 45.34 ± 0.03 µM (α-amylase) and 16.35 ± 0.42 to 42.31 ± 0.09 µM (α-glucosidase), respectively. Specifically, the compounds 1, 7 and 8 were found to be significantly active with IC50 values of 17.09 ± 0.72, 19.73 ± 0.42, and 23.01 ± 0.04 µM (against α-amylase) and 16.35 ± 0.42, 18.55 ± 0.26, and 20.07 ± 0.02 µM (against α-glucosidase) respectively. The obtained results were compared with the Glimepiride reference drug having IC50 values of 13.02 ± 0.11 µM (for α-glucosidase) and 15.04 ± 0.02 µM (for α-amylase), respectively. The structure-activity relationship (SAR) studies were conducted based on differences in substituent patterns at varying position of aryl rings A and B may cause to alter the inhibitory activities of both α-amylase and α-glucosidase enzymes. Additionally, the molecular docking study was carried out to explore the binding interactions possessed by most active analogues with the active sites of targeted α-amylase and α-glucosidase enzymes.

5.
J Agric Food Chem ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013151

RESUMO

Widespread use of the new chiral triazole fungicide mefentrifluconazole (MFZ) poses a threat to soil organisms. Although triazole fungicides have been reported to induce reproductive disorders in vertebrates, significant research gaps remain regarding their impact on the reproductive health of soil invertebrates. Here, reproduction-related toxicity end points were explored in earthworms (Eisenia fetida) after exposure for 28 d to soil containing 4 mg/kg racemic MFZ, R-(-)-MFZ, and S-(+)-MFZ. The S-(+)-MFZ treatment resulted in a more pronounced reduction in the number of cocoons and juveniles compared to R-(-)-MFZ treatment, and the expression of annetocin gene was significantly downregulated following exposure to both enantiomers. This reproductive toxicity has been attributed to the disruption of ovarian steroidogenesis at the transcriptional level. Further studies revealed that MFZ enantiomers were able to activate the estrogen receptor (ER). Indirect evidence for this estrogenic effect is provided by the introduction of 17ß-estradiol, which also induces reproductive disorders through ER activation.

6.
Bioorg Chem ; 151: 107626, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39013242

RESUMO

The use of VEGFR-2 inhibitors as a stand-alone treatment has proven to be ineffective in clinical trials due to the robustness of cellular response loops that lead to treatment resistance when only targeting VEGFR-2. The over-activation of the signal transducer/activator of transcription 3 (STAT-3) is expected to significantly impact treatment failure and resistance to VEGFR-2 inhibitors. In this study, we propose the concept of combined inhibition of VEGFR-2 and STAT-3 to combat induced STAT-3-mediated resistance to VEGFR-2 inhibition therapy. To explore this, we synthesized new isatin-grafted phenyl-1,2,3-triazole derivatives "6a-n" and "9a-f". Screening on PANC1 and PC3 cancer cell lines revealed that compounds 6b, 6 k, 9c, and 9f exhibited sub-micromolar ranges. The most promising molecules, 6b, 6 k, 9c, and 9f, demonstrated the highest inhibition when tested as dual inhibitors on VEGFR-2 (with IC50 range 53-82 nM, respectively) and STAT-3 (with IC50 range 5.63-10.25 nM). In particular, triazole 9f showed the best results towards both targets. Inspired by these findings, we investigated whether 9f has the ability to trigger apoptosis in prostate cancer PC3 cells via the assessment of the expression levels of the apoptotic markers Caspase-8, Bcl-2, Bax, and Caspase-9. Treatment of the PC3 cells with compound 9f significantly inhibited the protein expression levels of VEGFR-2 and STAT-3 kinases compared to the control.

7.
ChemMedChem ; : e202400297, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015094

RESUMO

In the present study, we identified that two representative compounds (7c and 9f) of our newly synthesized coumarin-tagged bis-triazoles induced apoptosis in human pancreatic cells (PANC-1) by caspase 3/7mediated pathway. Both 7c and 9f (IC50 = 7.15 ± 1.19 and 6.09 ± 0.79 µM, respectively) were found to be ~100 times superior against PANC-1 as compared to the standard drug Gemcitabine (IC50 = >500 µM), without showing any toxicity to the normal pancreatic epithelial cells (H6C7). Molecular docking studies further endorsed them as potential pancreatic cancer therapeutics due to their strong hydrogen bonding interactions with the epidermal growth factor receptor (EGFR) enzyme, which is overexpressed in cancerous cells including pancreatic cancer. Additionally, these compounds also showed moderate inhibitory activity against a panel of microbial strains. Overall, our findings reveal that the coumarin hybrids 7c and 9f are viable chemotypes to be adopted as templates for the development of new anticancer drugs, particularly against pancreatic cancer.

8.
Mol Divers ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060857

RESUMO

Inspired from the important applications of spirocyclic compounds in medicinal chemistry, a new series of pyrazoline Spiro-oxindole tethered 1,2,3-triazole hybrids was reported via Cu(I)-catalyzed click reaction from isatin-pyrazoline linked terminal alkynes with in situ derived benzyl azides. Antimicrobial evaluation data showed that all hybrids exhibited promising efficacy towards the tested microbial strains. Antimicrobial screening as well as docking studies suggested that hybrid 6a was found to be most potent towards Aspergillus niger (MIC = 0.0122 µmol/mL) and Escherichia coli (MIC = 0.0061 µmol/mL). Molecular docking studies of 6a within the binding pockets of antibacterial and antifungal targets revealed good interactions with the binding energies of - 144.544 kcal/mol and - 154.364 kcal/mol against 1KZN (E. coli) and 3D3Z (A. niger), respectively. Further, MD simulations were performed to study the stability of the complexes formed at 300 K. Based on the RMSD trajectories, it is evident that 3D3Z-6a complex exhibits minimal deviation, whereas the 1KZN-6a complex displayed little more deviation compared to the protein but, both are in acceptable range. Moreover, 3D3Z-6a and 1KZN-6a showed maximum number of hydrogen bonds at 50 ns and 70 ns, respectively, thereby complementing the stability of these complexes.

9.
Chem Biodivers ; : e202400914, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979691

RESUMO

In the present work, a new class of thiazole-isatin-1,2,3-triazole hybrids (5a-5p) and precursor alkyne hybrids (6a-6d) has been reported with their in-silico studies. After structural identifications using different spectroscopic technique such as FTIR, 1H and 13C NMR and HRMS, the synthesized hybrids were explored for their biological potential using molecular docking and molecular dynamics calculations. Molecular docking results revealed that compound 5j showed maximum binding energy i.e. -10.3 and -12.6 kcal/mol against antibacterial and antifungal enzymes; 1KZN (E. coli) and 5TZ1 (C. albicans), respectively.Top of FormBottom of Form Molecular dynamics simulations for the best molecule (100 ns) followed by PBSA calculations  suggested a stable complex of 5j with 5TZ1 with binding energy of -118.760 kJ/mol as compared to 1KZN (-94.593 kJ/mol). The mean RMSD values for the 1KZN with 5j complex remained approximately 0.175 nm throughout all the time span of 100 ns in the production stages and is in the acceptable range.  Whereas, 5TZ1 with 5j complex, RMSD values exhibited variability within the range of 0.15 to 0.25 nm.

10.
Molecules ; 29(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998962

RESUMO

Cancer is one of the deadliest diseases to humanity. There is significant progress in treating this disease, but developing some drugs that can fight this disease remains a challenge in the field of medical research. Thirteen new 1,2,3-triazole linked tetrahydrocurcumin derivatives were synthesized by click reaction, including a 1,3-dipolar cycloaddition reaction of tetrahydrocurcumin baring mono-alkyne with azides in good yields, and their in vitro anticancer activity against four cancer cell lines, including human cervical carcinoma (HeLa), human lung adenocarcinoma (A549), human hepatoma carcinoma (HepG2), and human colon carcinoma (HCT-116) were investigated using MTT(3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetraz-olium bromide) assay. The newly synthesized compounds had their structures identified using NMR HRMS and IR techniques. Some of prepared compounds, including compounds 4g and 4k, showed potent cytotoxic activity against four cancer cell lines compared to the positive control of cisplatin and tetrahydrocurcumin. Compound 4g exhibited anticancer activity with a IC50 value of 1.09 ± 0.17 µM against human colon carcinoma HCT-116 and 45.16 ± 0.92 µM against A549 cell lines compared to the positive controls of tetrahydrocurcumin and cisplatin. Moreover, further biological examination in HCT-116 cells showed that compound 4g can arrest the cell cycle at the G1 phase. A docking study revealed that the potential mechanism by which 4g exerts its anti-colon cancer effect may be through inhabiting the binding of APC-Asef. Compound 4g can be used as a promising lead for further exploration of potential anticancer agents.


Assuntos
Antineoplásicos , Curcumina , Simulação de Acoplamento Molecular , Triazóis , Humanos , Curcumina/farmacologia , Curcumina/análogos & derivados , Curcumina/química , Curcumina/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Células A549 , Células HCT116 , Células Hep G2
11.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999038

RESUMO

This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.


Assuntos
Benzoxazinas , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , Benzoxazinas/química , Benzoxazinas/farmacologia , Benzoxazinas/síntese química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , alfa-Amilases Pancreáticas/antagonistas & inibidores , alfa-Amilases Pancreáticas/metabolismo , Reação de Cicloadição , Estrutura Molecular , Simulação por Computador , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Humanos , Relação Estrutura-Atividade , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Amilases/química , Intestinos/enzimologia
12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000111

RESUMO

A new family of antifibrinolytic drugs has been recently discovered, combining a triazole moiety, an oxadiazolone, and a terminal amine. Two of the molecules of this family have shown activity that is greater than or similar to that of tranexamic acid (TXA), the current antifibrinolytic gold standard, which has been associated with several side effects and whose use is limited in patients with renal impairment. The aim of this work was to thoroughly examine the mechanism of action of the two ideal candidates of the 1,2,3-triazole family and compare them with TXA, to identify an antifibrinolytic alternative active at lower dosages. Specifically, the antifibrinolytic activity of the two compounds (1 and 5) and TXA was assessed in fibrinolytic isolated systems and in whole blood. Results revealed that despite having an activity pathway comparable to that of TXA, both compounds showed greater activity in blood. These differences could be attributed to a more stable ligand-target binding to the pocket of plasminogen for compounds 1 and 5, as suggested by molecular dynamic simulations. This work presents further evidence of the antifibrinolytic activity of the two best candidates of the 1,2,3-triazole family and paves the way for incorporating these molecules as new antifibrinolytic therapies.


Assuntos
Antifibrinolíticos , Ácido Tranexâmico , Triazóis , Triazóis/química , Triazóis/farmacologia , Antifibrinolíticos/farmacologia , Antifibrinolíticos/química , Humanos , Ácido Tranexâmico/farmacologia , Ácido Tranexâmico/química , Simulação de Dinâmica Molecular , Plasminogênio/metabolismo , Plasminogênio/química , Fibrinólise/efeitos dos fármacos
13.
Bioorg Chem ; 150: 107584, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964146

RESUMO

Developing multitargeted ligands as promising therapeutics for Alzheimer's disease (AD) has been considered important. Herein, a novel class of cinnamamide/ester-triazole hybrids with multifaceted effects on AD was developed based on the multitarget-directed ligands strategy. Thirty-seven cinnamamide/ester-triazole hybrids were synthesized, with most exhibiting significant inhibitory activity against Aß-induced toxicity at a single concentration in vitro. The most optimal hybrid compound 4j inhibited copper-induced Aß toxicity in AD cells. its action was superior to that of donepezil and memantine. It also moderately inhibited intracellular AChE activity and presented favorable bioavailability and blood-brain barrier penetration with low toxicity in vivo. Of note, it ameliorated cognitive impairment, neuronal degeneration, and Aß deposition in Aß1-42-injured mice. Mechanistically, the compound regulated APP processing by promoting the ADAM10-associated nonamyloidogenic signaling and inhibiting the BACE1-mediated amyloidogenic pathway. Moreover, it suppressed intracellular AChE activity and tau phosphorylation. Therefore, compound 4j may be a promising multitargeted active molecule against AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cinamatos , Triazóis , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/síntese química , Humanos , Camundongos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Relação Estrutura-Atividade , Estrutura Molecular , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química , Relação Dose-Resposta a Droga , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Descoberta de Drogas , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Masculino
14.
Chem Rec ; 24(7): e202300347, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984727

RESUMO

The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.


Assuntos
Antineoplásicos , Azóis , Compostos Ferrosos , Compostos Heterocíclicos , Metalocenos , Azóis/química , Azóis/farmacologia , Azóis/síntese química , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Compostos Ferrosos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Metalocenos/química , Metalocenos/farmacologia , Metalocenos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química
15.
ChemMedChem ; : e202400447, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083643

RESUMO

Due to the rising prevalence of Alzheimer's disease (AD), there is a pressing need for more effective drugs to treat or manage AD's symptoms. Studies have shown that cholinesterase inhibition can improve cognitive and behavioral symptoms associated with AD, by addressing the cholinergic deficit. Based on the recent development of cholinesterase inhibitors with indoloquinoline and triazole moiety, we rationalized that compounds with an isocryptolepine-triazole scaffold may also have the same biological targets. In this study, eighteen previously synthesized isocryptolepine-triazole compounds were assessed for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholine esterase (BChE). The majority of these compounds demonstrated potent selective AChE inhibition. Furthermore, our molecular docking and molecular dynamic simulation studies reveal that the isocryptolepine and triazole moieties are important for the binding of the compounds with the periphery of the AChE's binding pocket. While reductions in molecular weights and lipophilicities may be necessary to improve their pharmacokinetic properties, this work provides valuable insights for designing future AChE inhibitors, based on the novel isocryptolepine-triazole scaffold.

16.
Curr Top Med Chem ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39069706

RESUMO

Recently, a large number of novel heterocyclic compounds and their derivatives have been synthesized, and studies on their biological functions have been conducted. Even though the triazole moiety of this scaffold appears to be fairly small, many researchers are interested in it be-cause of its biological profile and variety of potential uses. Triazole derivatives have been synthe-sized and published by various researchers as their important characteristic against various dis-eases. Several researchers are interested in this scaffold because of its biological profile and wide variety of potential uses, even if its triazole moiety seems to be somewhat less. The derivative of this heterocyclic ring produced various biological activities such as anti-inflammatory, anticon-vulsant, hypoglycemic, antitubercular, anxiolytic, antimicrobial, antitumor, and anticancer. The current review article focuses on pharmacological profile associated with triazoles and mainly fo-cuses on structural modification done for various targets, along with a brief description of targets.

17.
Bioorg Med Chem Lett ; 110: 129878, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977107

RESUMO

A novel class of pleuromutilin derivatives possessing 1,2,3-triazole as the linker connected to phenyl analogues were designed. The antibacterial properties of the prepared compounds were assessed in vitro against five strains (E. coli, S. aureus, S. epidermidis, and E. faecalis). Most of the tested compounds displayed potent antibacterial activities against gram-positive bacteria and 14-O-[2-(4-((2,4-dinitrophenoxy)-methyl-1H-1,2,3-triazol-1-yl) acetamide)-2-methylpropan-2-yl) thioacetyl]mutilin (7c) exerted antibacterial activities against S. aureus, MRSA and S. epidermidis with MIC values 0.0625 µg/mL, representing 64-fold, 4-fold and 8-fold higher than tiamulin respectively. Compound 6e, 7c and 8c were chosen to carry out killing kinetics, which exhibited concentration-dependent effect. Subsequently, molecular modeling was conducted to further explore the binding of compound 6e, 7a, 7c, 8c and tiamulin with 50S ribosomal subunit from deinococcus radiodurans. The investigation revealed that the main interactions between compound 7c and the ribosomal residues were three hydrogen bonds, π-π, and p-π conjugate effects. Additionally, the free binding energy and docking score of 7c with the ribosome demonstrated the lowest values of -11.90 kcal/mol and -7.97 kcal/mol, respectively, consistent with its superior antibacterial activities.


Assuntos
Antibacterianos , Diterpenos , Testes de Sensibilidade Microbiana , Pleuromutilinas , Compostos Policíclicos , Triazóis , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Relação Estrutura-Atividade , Bactérias Gram-Positivas/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Escherichia coli/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas
18.
J Fluoresc ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002051

RESUMO

Due to the its high abundance, iron ion contamination and toxicity is one of the most challenging issue for living beings. Although, iron is extremenly important for several body functions, excess amount of iron in the body can also be fatal. In last century, rapid industrialization, iron extraction and mismanagement of industrial waste disposal leads to iron contamination in water bodies. Therefore, versatile iron sensors needs to be develop which can be employed for detection in biological as well as real water samples. 8-hydroxyquinoline is well-known for its strong affinity towards transition metals including Fe3+. In this regard, we have synthesised benzothiazole-quinoline derived 1,2,3- triazole (4HBTHQTz), in which 4-(benzo[d]thiazol-2-yl)phenolic (4-HBT) group acts as a fluorophore. 4HBTHQTz showed high fluorescence and induced a selective decrease in fluorescence with Fe3+ at 380 nm (λex. = 320 nm). The detection limit of 4HBTHQTz with Fe3+ is calculated as 0.64 µM, which is lower than the WHO recommended limit in drinking water. 4HBTHQTz works over the 5-8 pH range and has shown promising results for quantitative detection of Fe3+ in water samples collected from tap, river and seawater. 4HBTHQTz can also detect the Fe3+ in biological samples which is confirmed by fluorescence cell imaging using L929 mouse fibroblast cells. Overall, 4HBTHQTz showed advantages such as high selectivity, quick detection, and good limit of detection (LOD) for Fe3+.

19.
Sci Rep ; 14(1): 17338, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069559

RESUMO

Α-glucosidase inhibition can be useful in the management of carbohydrate-related diseases, especially type 2 diabetes mellitus. Therefore, in this study, a new series of 6-chloro-2-methoxyacridine bearing different aryl triazole derivatives were designed, synthesized, and evaluated as potent α-glucosidase inhibitors. The most potent derivative in this group was 7h bearing para-fluorine with IC50 values of 98.0 ± 0.3 µM compared with standard drug acarbose (IC50 value = 750.0 ± 10.5 µM). A kinetic study of compound 7h revealed that it is a competitive inhibitor against α-glucosidase. Molecular dynamic simulations of the most potent derivative were also executed and indicated suitable interactions with residues of the enzyme which rationalized the in vitro results.


Assuntos
Acridinas , Inibidores de Glicosídeo Hidrolases , Simulação de Dinâmica Molecular , Triazóis , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Acridinas/química , Acridinas/farmacologia , Acridinas/síntese química , Cinética , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Humanos
20.
Bioorg Chem ; 151: 107662, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39079390

RESUMO

Antiepileptic drugs (AEDs) are used in the treatment of epilepsy, a neurodegenerative disease characterized by recurrent and untriggered seizures that aim to prevent seizures as a symptomatic treatment. However, they still have significant side effects as well as drug resistance. In recent years, especially 1,3,4-thiadiazoles and 1,2,4-triazoles have attracted attention in preclinical and clinical studies as important drug candidates owing to their anticonvulsant properties. Therefore, in this study, which was conducted to discover AED candidate molecules with reduced side effects at low doses, a series of chiral 2,5-disubstituted-1,3,4-thiadiazoles (4a-d) and 4,5-disubstituted-1,2,4-triazole-3 thiones (5a-d) were designed and synthesized starting from l-phenylalanine ethyl ester hydrochloride. The anticonvulsant activities of the new chiral compounds were assessed in several animal seizure models in mice and rats for initial (phase I) screening after their chemical structures including the configuration of the chiral center were elucidated using spectroscopic methods and elemental analysis. First, all chiral compounds were pre-screened using acute seizure tests induced electrically (maximal electroshock test, 6 Hz psychomotor seizure model) and induced chemically (subcutaneous metrazol seizure model) in mice and also their neurotoxicity (TOX) was determined in the rotorad assay. Two of the tested compounds were used for quantitative testing, and (S)-(+)5-[1-(4-fluorobenzamido)-2-phenylethyl]-4-(4-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5b) and (S)-(+)-(5-[1-(4-fluorobenzamido)-2-phenylethyl]-4-(4-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5c) emerged as the most promising anticonvulsant drug candidates and also showed low neurotoxicity. The antiepileptogenic potential of these compounds was determined using a chronic seizure induced electrically corneal kindled mouse model. Furthermore, all chiral compounds were tested for their neuroprotective effect against excitotoxic kainic acid (KA) and N-methyl-d-aspartate (NMDA) induced in vitro neuroprotection assay using an organotypic hippocampal slice culture. The KA-induced neuroprotection assay results revealed that compounds 5b and 5c, which are the leading compounds for anticonvulsant activity, also had the strongest neuroprotective effects with IC50 values of 103.30 ± 1.14 and 113.40 ± 1.20 µM respectively. Molecular docking studies conducted to investigate the molecular binding mechanism of the tested compounds on the GABAA receptor showed that compound 5b exhibits a strong affinity to the benzodiazepine (BZD) binding site on GABA. It also revealed that the NaV1.3 binding interactions were consistent with the experimental data and the reported binding mode of the ICA121431 inhibitor. This suggests that compound 5b has a high affinity for these specific binding sites, indicating its potential as a ligand for modulating GABAA and NaV1.3 receptor activity. Furthermore, the ADME properties displayed that all the physicochemical and pharmacological parameters of the compounds stayed within the specified limits and revealed a high bioavailability profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA