Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Life Sci ; 344: 122566, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499285

RESUMO

AIM: This study aims to investigate the hepatoprotective effect of the antipsychotic drug trifluoperazine (TFP) against cyclophosphamide (CPA)-induced hepatic injury by exploring its effect on autophagy and the Nrf2/HO-1 signaling pathway. MAIN METHODS: The hepatotoxicity of CPA was assessed by biochemical analysis of the serum hepatotoxicity markers (ALT, AST, and direct bilirubin), histopathological examination, and ultrastructure analysis by transmission electron microscopy (TEM). The ELISA technique was used to assess the hepatic content of oxidative stress (MDA and SOD) and inflammatory markers (IL-1ß and TNF-α). Immunohistochemical assessment was used to investigate the hepatic expression of NF-κB, Nrf2, caspase-3, as well as autophagy flux markers (p62 and LC3B). The mRNA expression of HO-1 was assessed using RT-qPCR. Western blot assay was used to determine the expression of p-AKT and p-mTOR. KEY FINDINGS: TFP improved CPA-induced hepatotoxicity by reducing the elevated hepatotoxicity markers, and alleviating the histopathological changes with improving ultrastructure alterations. It also reduced oxidative stress by reducing MDA content and upregulating SOD activity. In addition, it exhibited anti-inflammatory and anti-apoptotic effects by decreasing NF-κB expression, IL-1ß, TNF-α levels, and caspase-3 expression. Furthermore, TFP-induced hepatoprotection was mediated by favoring Nrf2 expression and increasing the mRNA level of HO-1. As well, it improved autophagy by increasing LC3B expression concurrently with reducing p62 expression. Moreover, TFP modulated the AKT/mTOR pathway by reducing the expression of p-AKT and p-mTOR. SIGNIFICANCE: TFP significantly protected against CPA-induced hepatotoxicity by upregulating Nrf2/HO-1 signaling along with enhancement of protective autophagy via inhibition of the AKT/mTOR signaling pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Trifluoperazina , Camundongos , Animais , Trifluoperazina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Estresse Oxidativo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia , Ciclofosfamida/farmacologia , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo
2.
Chem Biol Interact ; 392: 110904, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360085

RESUMO

Osteosarcoma is a prevalent kind of primary bone malignancy. Trifluoperazine, as an antipsychotic drug, has anti-tumor activity against a variety of cancers. Nevertheless, the impact of trifluoperazine on osteosarcoma is unclear. Our investigation aimed to explore the mechanism of trifluoperazine's effect on osteosarcoma. We found that trifluoperazine inhibited 143B and U2-OS osteosarcoma cell proliferation in a method based on the dose. Furthermore, it was shown that trifluoperazine induced the accumulation of reactive oxygen species (ROS) to cause mitochondrial damage and induced mitophagy in osteosarcoma cells. Finally, combined with RNA-seq results, we first demonstrated the AMPK/mTOR/ULK1 signaling pathway as a potential mechanism of trifluoperazine-mediated mitophagy in osteosarcoma cells and can be suppressed by AMPK inhibitor Compound C.


Assuntos
Mitofagia , Osteossarcoma , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Trifluoperazina/farmacologia , Autofagia , Apoptose , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Osteossarcoma/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Antiviral Res ; 222: 105817, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246207

RESUMO

JC polyomavirus (JCPyV) is a nonenveloped, double-stranded DNA virus that infects the majority of the population. Immunocompetent individuals harbor infection in their kidneys, while severe immunosuppression can result in JCPyV spread to the brain, causing the neurodegenerative disease progressive multifocal leukoencephalopathy (PML). Due to a lack of approved therapies to treat JCPyV and PML, the disease results in rapid deterioration, and is often fatal. In order to identify potential antiviral treatments for JCPyV, a high-throughput, large-scale drug screen was performed using the National Institutes of Health Clinical Collection (NCC). Drugs from the NCC were tested for inhibitory effects on JCPyV infection, and drugs from various classes that reduced JCPyV infection were identified, including receptor agonists and antagonists, calcium signaling modulators, and enzyme inhibitors. Given the role of calcium signaling in viral infection including Merkel cell polyomavirus and simian virus 40 polyomavirus (SV40), calcium signaling inhibitors were further explored for the capacity to impact JCPyV infection. Calcium and calmodulin inhibitors trifluoperazine (TFP), W-7, tetrandrine, and nifedipine reduced JCPyV infection, and TFP specifically reduced viral internalization. Additionally, TFP and W-7 reduced infection by BK polyomavirus, SV40, and SARS-CoV-2. These results highlight specific inhibitors, some FDA-approved, for the possible treatment and prevention of JCPyV and several other viruses, and further illuminate the calcium and calmodulin pathway as a potential target for antiviral drug development.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Doenças Neurodegenerativas , Infecções por Polyomavirus , Sulfonamidas , Humanos , Cálcio , Calmodulina , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Leucoencefalopatia Multifocal Progressiva/genética , Vírus JC/genética , Vírus 40 dos Símios , Antivirais/farmacologia
4.
EMBO Mol Med ; 16(1): 185-217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177535

RESUMO

Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Camundongos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Metotrimeprazina/farmacologia , Metotrimeprazina/uso terapêutico , Doenças Neuroinflamatórias , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/patologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Autofagia , Anti-Inflamatórios/uso terapêutico
5.
Int J Med Sci ; 20(6): 797-809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213674

RESUMO

Currently, no specific and standard treatment for traumatic brain injury (TBI) has been developed. Therefore, studies on new therapeutic drugs for TBI treatment are urgently needed. Trifluoperazine (TFP) is a therapeutic agent for the treatment of psychiatric disorders that reduces edema of the central nervous system. However, the specific working mechanism of TFP is not fully understood in TBI. In this study, the immunofluorescence co-localization analysis revealed that the area and intensity covered by Aquaporin4 (AQP4) on the surface of brain cells (astrocyte endfeet) increased significantly after TBI. In contrast, TFP treatment reversed these phenomena. This finding showed that TFP inhibited AQP4 accumulation on the surface of brain cells (astrocyte endfeet). The tunel fluorescence intensity and fluorescence area were lower in the TBI+TFP group compared to the TBI group. Additionally, the brain edema, brain defect area, and modified neurological severity score (mNSS) were lower in the TBI+TFP. The RNA-seq was performed on the cortical tissues of rats in the Sham, TBI, and TBI+TFP groups. A total of 3774 genes differently expressed between the TBI and the Sham group were identified. Of these, 2940 genes were up-regulated and 834 genes were down-regulated. A total of 1845 differently expressed genes between the TBI+TFP and TBI group were also identified, in which 621 genes were up-regulated and 1224 genes were down-regulated. Analysis of the common differential genes in the three groups showed that TFP could reverse the expression of apoptosis and inflammation genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in the signaling pathways regulating inflammation. In conclusion, TFP alleviates brain edema after TBI by preventing the accumulation of AQP4 on the surface of brain cells. Generally, TFP alleviates apoptosis and inflammatory response induced by TBI, and promotes the recovery of nerve function in rats after TBI. Thus, TFP is a potential therapeutic agent for TBI treatment.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Animais , Ratos , Apoptose/genética , Aquaporina 4/antagonistas & inibidores , Aquaporina 4/genética , Aquaporina 4/metabolismo , Encéfalo , Edema Encefálico/etiologia , Edema Encefálico/genética , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Trifluoperazina/metabolismo
6.
Toxicol In Vitro ; 88: 105561, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36702439

RESUMO

Aberrant expression of various genes is associated with the progression of oral squamous cell carcinoma. Stonin 2, an endocytic protein, has a prominent role in clathrin-associated endocytosis. Its position in oral cancer is still unknown. Here, we report that STON2 expression increases with an increase in the grade of the oral cancer tissue. Further, STON2 overexpressed cells possess a higher rate of proliferation and migraton in oral cancer cells. STON2 helps maintain lysosomal functions by preserving the lysosomal membrane integrity. It activates the Akt-mTOR axis and retains the mTOR on the membrane of the lysosomes. Further, we have identified an inhibitor of STON2, i.e., Trifluoperazine dihydrochloride (TFP), which targets the lysosomal axis by disrupting the Akt-mTOR pathway and causes lysosomal membrane permeabilization. Intererstingly, TFP shows a decrease in cell vaibility on the oral cancer cells and it was observed that cell viability is restored in TFP-treated STON2 overexpressed cells. Moreover, the lysosomal activity and the Akt-mTOR expression are restored in STON2 overexpressed cells co-treated with TFP, establishing TFP targets STON2 to showcase its anti-cancer effects in oral cancer. In conclusion, STON2 might serve as a potential biomarker in oral cancer, and its inhibition could functions as a novel anti-cancer mechanims against oral cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Sobrevivência Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Lisossomos , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
7.
Head Neck ; 45(2): 316-328, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349408

RESUMO

BACKGROUND: Trifluoperazine (TFP) is a typical antipsychotic primarily used to treat schizophrenia. In this study, we aimed to evaluate whether TFP can be used as a therapeutic agent against nasopharyngeal carcinoma (NPC) and identify its underlying molecular mechanisms. METHODS: We used NPC-TW01, TW03, TW04, and BM to assess the anticancer effects of TFP by using cytotoxicity, wound healing, colony formation, and cell invasion assays. An in vivo animal study was conducted. RNA sequencing combined with Ingenuity Pathways Analysis was performed to identify the mechanism by which TFP influences NPC cells. RESULTS: Our data revealed that TFP decreased NPC cell viability in a dose-dependent manner. The invasion and migration of NPC tumor cells were inhibited by TFP. An in vivo study also demonstrated the anticancer effects of TFP. RNA sequencing revealed several anticancer molecular mechanisms following TFP administration. CONCLUSIONS: The antipsychotic drug TFP could be a potential therapeutic regimen for NPC treatment.


Assuntos
Antipsicóticos , Neoplasias Nasofaríngeas , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Carcinoma Nasofaríngeo/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Proliferação de Células , Movimento Celular
8.
Anticancer Res ; 42(12): 5773-5781, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36456159

RESUMO

BACKGROUND/AIM: Glioblastoma multiforme (GBM) is one of the most common brain tumors with a poor prognosis. Previously, we reported that trifluoperazine (TFP), a well-known antipsychotic, has anti-glioma activity through the modulation of intracellular calcium levels. The present study aimed to investigate the anti-cancer mechanism of action of TFP on glioma cells. MATERIALS AND METHODS: The effect of TFP on U87MG cells was examined using a viability assay, flow cytometry, enzyme-linked immunosorbent assay, quantitative real-time PCR, western blot analysis, colony formation, and immunocytochemistry. RESULTS: TFP treatment decreased cell viability. To test the possible involvement of COX-2 in the anticancer activity of TFP on U87MG cells, a COX-2 inhibitor was applied. COX-2 inhibitor pretreatment restored TFP-induced reduction in viability to the control level. Additionally, TFP-induced changes in the apoptotic cell population, production of prostaglandins (PGE2, PGD2, 15d-PGJ2), and nuclear translocation of peroxisome proliferator-activated receptor γ (PPARγ) were ameliorated by COX-2 inhibitor pretreatment. CONCLUSION: TFP suppressed the proliferation of U87MG glioma cell in a COX-2/PPARγ-dependent manner.


Assuntos
Glioma , Trifluoperazina , Humanos , Trifluoperazina/farmacologia , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , PPAR gama/genética , Glioma/tratamento farmacológico , Morte Celular
9.
Front Microbiol ; 13: 979904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386620

RESUMO

Virus-related diseases are seriously threatening human health, but there are currently only 10 viruses with clinically approved antiviral drugs available. As non-cellular organisms, viruses parasitize in living cells and rely on the protein synthesis mechanism of the host cells. In this study, we found that the antipsychotic drug trifluoperazine (TFP), a dual dopamine receptor D2 (DRD2)/calmodulin (CALM) antagonist, increases the phosphorylation of eukaryotic initiation factor 2α (eIF2α), a key factor in the regulation of protein synthesis and significantly inhibits vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1) replication. CALM but not DRD2 is involved in the antiviral activity of TFP. By knockdown of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) we found that the antiviral function of TFP is dependent on PERK, a stress response kinase that mediates eIF2α phosphorylation. Furthermore, the results of animal experiments showed that TFP protects mice from lethal VSV attacks, improving the survival rate and reducing lung injury. Taken together, these data suggests that TFP inhibits virus replication through PERK-eIF2α axis, and this broad-spectrum of mechanisms are worth further evaluation in clinical trials in the future.

10.
Biomed Chromatogr ; 36(12): e5499, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064842

RESUMO

A sensitive, selective and rapid bioanalytical method using liquid chromatography-tandem mass spectrometry has been developed for the quantification of trifluoperazine in human plasma. Trifluoperazine-D8 was used as the internal standard and the extraction from human plasma was performed by liquid-liquid extraction technique using tertiary butyl methyl ether as the solvent. Chromatographic separation was carried out on Zodiac C18 column (50 × 4.6 mm, 3 µm) employing a mixture of acetonitrile, methanol and 5 mm ammonium bicarbonate buffer in water (85:10:5, v/v/v) at a flow rate of 0.55 ml/min. The linearity was established within the concentration range of 5-1,250 pg/ml with r2 > 0.99. The results of all of the validation parameters as per the US Food and Drug Administration guidelines were within the acceptance limits. The pharmacokinetics of trifluoperazine after oral administration of a syrup of 1 mg dose under fasting conditions was determined by successful application of the present method.


Assuntos
Espectrometria de Massas em Tandem , Trifluoperazina , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cinética , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
11.
Front Physiol ; 13: 880004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045752

RESUMO

Various cancer types including head and neck squamous cell carcinomas (HNSCC) show a frequent amplification of chromosomal region 3q26 that encodes, among others, for the SEC62 gene. Located in the ER membrane, this translocation protein is known to play a critical role as a potential driver oncogene in cancer development. High SEC62 expression levels were observed in various cancer entities and were associated with a poor outcome and increased metastatic burden. Because of its intracellular localization the SEC62 protein is poorly accessible for therapeutic antibodies, therefore a functional SEC62 knockdown represents the most promising mechanism of a potential antineoplastic targeted therapy. By stimulating the Ca2+ efflux from the ER lumen and thereby increasing cellular stress levels, a functional inhibition of SEC62 bears the potential to limit tumor growth and metastasis formation. In this study, two potential anti-metastatic and -proliferative agents that counteract SEC62 function were investigated in functional in vitro assays by utilizing an immortalized human hypopharyngeal cancer cell line as well as a newly established orthotopic murine in vivo model. Additionally, a CRISPR/Cas9 based SEC62 knockout HNSCC cell line was generated and functionally characterized for its relevance in HNSCC cell proliferation and migration as well as sensitivity to SEC62 targeted therapy in vitro.

12.
Tohoku J Exp Med ; 257(4): 315-326, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35644544

RESUMO

Multiple myeloma (MM) is a common hematological malignancy. Bortezomib (BTZ) is a traditional medicine for MM treatment, but there are limitations for current treatment methods. Trifluoperazine (TFP) is a clinical drug for acute and chronic psychosis therapy. Lately, researchers have found that TFP can suppress tumor growth in many cancers. We attempted to study the effects of BTZ and TFP on MM in vivo and in vitro. We concentrated on the individual and combined impact of BTZ and TFP on the proliferation and apoptosis of MM cells via Cell Counting kit-8 assay, EdU assay, western blot, and flow cytometry. We found that combination therapy has a strong synergistic impact on MM cells. Combination therapy could induce cell arrest during G2/M phase and induce apoptosis in MM cells. Meanwhile, BTZ combined with TFP could play a better role in the anti-MM effect in vivo through MM.1s xenograft tumor models. Furthermore, we explored the mechanism of TFP-induced apoptosis in MM, and we noticed that TFP might induce MM apoptosis by inhibiting p-P38 MAPK/NUPR1. In summary, our findings suggest that TFP could synergistically enhance the BTZ-induced anti-cancer effect in multiple myeloma, which might be a promising therapeutic strategy for MM treatment.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mieloma Múltiplo/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Cell tissue biol ; 16(3): 233-244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668825

RESUMO

Sigma-1 receptors are ubiquitous multifunctional ligand-regulated molecular chaperones in the endoplasmic reticulum membrane with a unique history, structure, and pharmacological profile. Sigma-1 receptors bind ligands of different chemical structure and pharmacological action and modulate a wide range of cellular processes in health and disease, including Ca2+ signaling. To elucidate the involvement of sigma-1 receptors in the processes of Ca2+ signaling in macrophages we studied the effect of sigma-1 receptor ligands, phenothiazine neuroleptics chlorpromazine and trifluoperazine, on Ca2+ responses induced by inhibitors of endoplasmic Ca2+-ATPases thapsigargin and cyclopiazonic acid, as well as by disulfide-containing immunomodulators Glutoxim and Molixan in rat peritoneal macrophages. Using Fura-2AM microfluorimetry we showed for the first time that chlorpromazine and trifluoperazine inhibit both phases of Ca2+ responses induced by Glutoxim, Molixan, thapsigargin, and cyclopiazonic acid in rat peritoneal macrophages. The data obtained indicate the participation of sigma-1 receptors in a complex signaling cascade caused by Glutoxim or Molixan and leading to an increase in intracellular Ca2+ concentration in macrophages. The results also indicate the involvement of sigma-1 receptors in the regulation of store-dependent Ca2+entry in macrophages.

14.
Biomedicines ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625784

RESUMO

Despite significant advances in diagnostic and therapeutic technologies, lung cancer remains the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases. Recently, some antipsychotics have been shown to possess anticancer activity. However, the effects of antipsychotics on NSCLC need to be further explored. We examined the effects of trifluoperazine (TFP), a commonly used antipsychotic drug, and its synthetic analogs on A549 human lung cancer cells. In addition, cell proliferation analysis, colony formation assay, flow cytometry, western blot analysis, and in vivo xenograft experiments were performed. Key genes and mechanisms possibly affected by TFP are significantly related to better survival outcomes in lung cancer patients. Treatment with TFP and a selected TFP analog 3dc significantly inhibited the proliferation, anchorage-dependent/independent colony formation, and migration of A549 cells. Treatment with 3dc affected the expression of genes related to the apoptosis and survival of A549 cells. Treatment with 3dc promoted apoptosis and DNA fragmentation. In all experiments, including in vivo studies of metastatic lung cancer development, 3dc had more substantial anticancer effects than TFP. According to our analysis of publicly available clinical data and in vitro and in vivo experiments, we suggest that some kinds of antipsychotics prevent the progression of NSCLC. Furthermore, this study indicates a synthetic TFP analog that could be a potential therapeutic for lung cancer.

15.
Biosaf Health ; 4(3): 186-192, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35574239

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, generating new variants that pose a threat to global health; therefore, it is imperative to obtain safe and broad-spectrum antivirals against SARS-CoV-2 and its variants. To this end, we screened compounds for their ability to inhibit viral entry, which is a critical step in virus infection. Twenty compounds that have been previously reported to inhibit SARS-CoV-2 replication were tested by using pseudoviruses containing the spike protein from the original strain (SARS-CoV-2-WH01). The cytotoxicity of these compounds was determined. Furthermore, we identified six compounds with strong antagonistic activity against the WH01 pseudovirus, and low cytotoxicity was identified. These compounds were then evaluated for their efficacy against pseudoviruses expressing the spike protein from B.1.617.2 (Delta) and B.1.1.529 (Omicron), the two most prevalent circulating strains. These assays demonstrated that two phenothiazine compounds, trifluoperazine 2HCl and thioridazine HCl, inhibit the infection of Delta and Omicron pseudoviruses. Finally, we discovered that these two compounds were highly effective against authentic SARS-CoV-2 viruses, including the WH01, Delta, and Omicron strains. Our study identified potential broad-spectrum SARS-CoV-2 inhibitors and provided insights into the development of novel therapeutics.

16.
Biochem Biophys Res Commun ; 610: 182-187, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468422

RESUMO

Rv1211 is a conserved hypothetical protein in Mycobacterium tuberculosis and is required for the growth and pathogenesis of the bacteria. The protein has been suggested as a calmodulin-like calcium-binding protein with an EF-hand motif and as a target of trifluoperazine, a calmodulin antagonist in eukaryotes that inhibits mycobacterial growth. Here, we expressed the recombinant protein of Rv1211 and performed structural and biochemical studies of Rv1211 and its interaction with Ca2+ or trifluoperazine. Surprisingly, Rv1211 exhibited an elution property typical of a natively unfolded protein. Subsequent circular dichroism experiments with temperature elevation and trifluoroethanol treatment showed that Rv1211 has unfolded structure. Additional NMR experiment confirmed the unfolded state of the protein and further showed that it does not bind to Ca2+. Still, Rv1211 did bind to trifluoperazine, as evidenced by the two-dimensional NMR spectra of 15N-labeled Rv1211. However, there were no peak shifts upon binding, showing that Rv1211 retained its unfolded state even after the trifluoperazine binding. The residues involved in the binding were clustered in the C-terminal region, as identified by the sequence assignment. Isothermal titration calorimetry showed that the Kd of trifluoperazine-Rv1211 binding is 41 µM and that the stoichiometry is 1 : 2 (Rv1211: trifluoperazine). Our results argue against the suggestion of Rv1211 as a Ca2+-binding calmodulin-like protein, and show that Rv1211 is a natively unfolded protein that binds to trifluoperazine. In addition, our results suggest the evidence of the "Fuzziness" in the Rv1211-trifluoperazine interaction that differs from the conventional binding-induced folding of natively unfolded proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Mycobacterium tuberculosis , Cálcio/metabolismo , Calmodulina/metabolismo , Motivos EF Hand , Proteínas Intrinsicamente Desordenadas/metabolismo , Mycobacterium tuberculosis/metabolismo , Trifluoperazina/química , Trifluoperazina/farmacologia
18.
Eur J Pharmacol ; 909: 174432, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416238

RESUMO

Multiple sclerosis (MS) is one of the most common neurodegenerative diseases. In this disease, the immune system attacks oligodendrocyte cells and the myelin sheath of myelinated neurons in the central nervous system, causing their destruction. These conditions lead to impaired conduction of nerve impulses and are manifested by symptoms such as weakness, fatigue, visual and motor disorders. This study aimed to evaluate the ability of trifluoperazine (TF) to improve cuprizone-induced behavioral and histopathological changes in the prefrontal cortex of C57BL/6 male mice. Demyelination was induced by adding 0.2% cuprizone (CPZ) to the standard animal diet for 6 weeks. Three doses of TF (0.5, 1 and 2 mg/kg/day; i.p.) were given once daily for the last 2 weeks of treatment. Treatment with CPZ induced a weight loss during 6 weeks of treatment compared to the control group, which was reversed by the administration of TF. Behavioral tests (pole test and rotarod performance test) showed a decrease in motor coordination and balance in the group treated with CPZ (P < 0.01). Treatment with TF during the last two weeks was able to improve these motor deficiencies. Histopathological examination also evidenced an increase in demyelination in the CPZ group, which was improved by TF administration. In addition, CPZ intake significantly decreased the cerebral cortex levels of p-Nrf2 (P < 0.001) and increased the levels of p-IKB (P < 0.001) and, these changes were normalized in the TF groups. TF administration also reversed the increased levels of nitrite and the reduced activity of the antioxidant enzyme superoxide dismutase associated with CPZ exposure. TF can to reduce the harmful effects of CPZ by reducing the demyelination and modulating the Nrf2 and NF-kB signaling pathways.


Assuntos
Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Trifluoperazina/farmacologia , Animais , Cuprizona/administração & dosagem , Cuprizona/toxicidade , Modelos Animais de Doenças , Humanos , Proteínas I-kappa B/metabolismo , Masculino , Camundongos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Transdução de Sinais/efeitos dos fármacos , Trifluoperazina/uso terapêutico
19.
Life Sci ; 283: 119849, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343539

RESUMO

AIMS: Cardiotoxicity of doxorubicin frequently complicates treatment outcome. Aberrantly activated calcium/calmodulin pathway can eventually trigger signaling cascades that mediate cardiotoxicity. Therefore, we tested the hypothesis that trifluoperazine, a strong calmodulin antagonist, may alleviate this morbidity. MATERIALS AND METHODS: Heart failure and cardiotoxicity were assessed via echocardiography, PCR, immunohistochemistry, histopathology, Masson's trichrome staining and transmission electron microscopy. Whereas liver and kidney structural and functional alterations were evaluated histopathologically and biochemically. KEY FINDINGS: Results revealed that combination treatment with trifluoperazine could overcome doxorubicin-induced heart failure with reduced ejection fraction. Moreover, heart weight/body weight ratio and histopathological examination showed that trifluoperazine mitigated doxorubicin-induced cardiac atrophy, inflammation and myofibril degeneration. Transmission electron microscopy further confirmed the marked restoration of the left ventricular ultrastructures by trifluoperazine pretreatment. In addition, Masson's trichrome staining revealed that trifluoperazine could significantly inhibit doxorubicin-induced left ventricular remodeling by fibrosis. Of note, doxorubicin induced the expression of myocardial nuclear NF-κB-p65 and caspase-3 which were markedly inhibited by trifluoperazine, suggesting that cardioprotection conferred by trifluoperazine involved, at least in part, suppression of NF-κB and apoptosis. Furthermore, biochemical and histopathological examinations showed that trifluoperazine improved doxorubicin-induced renal and hepatic impairments both functionally and structurally. SIGNIFICANCE: In conclusion, the present in vivo study is the first to provide evidences underscoring the protective effects of trifluoperazine that may pave the way for repurposing this calmodulin antagonist in ameliorating organ toxicity by doxorubicin.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotoxicidade , Cardiotoxinas/efeitos adversos , Doxorrubicina/efeitos adversos , Miocárdio/metabolismo , Fator de Transcrição RelA/metabolismo , Trifluoperazina/farmacologia , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Cardiotoxinas/farmacologia , Caspase 3/metabolismo , Doxorrubicina/farmacologia , Masculino , Camundongos , Miocárdio/patologia
20.
J Biol Chem ; 297(2): 101012, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324830

RESUMO

Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.


Assuntos
Anexinas/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Fenotiazinas/farmacologia , Anexinas/metabolismo , Antipsicóticos/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA