Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Acta Biomater ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39395706

RESUMO

BACKGROUND: Ultrasound-triggered sonodynamic therapy (SDT), with high safety and acceptance, has become a promising tumor treatment. However, the dense stroma, hypoxic microenvironment of tumor, and the unpredictable treatment timing limit the effectiveness of sonosensitizers and the antitumor therapeutic effect. Thus, it is crucial to develop an imaging-guided sensitization strategy for hypoxic tumor sonosensitization to improve the efficacy of SDT. METHODS: In this study, we developed a biohybrid system CB@HPP, which genetically engineered bacteria to express catalase (CB) and modified nanosonosensitizers (HPP) to the surface of these bacteria. Tumor hypoxia relief, tumor targeting, biocompatibility, and antitumor efficacy were evaluated through in vitro and in vivo experiments. In addition, the photoacoustic (PA), ultrasound (US), and fluorescence (FL) imaging effects of CB@HPP were evaluated in vivo and in vitro. RESULTS: After intravenous injection, CB@HPP was able to target tumor tissue. CB@HPP possessed efficient catalase activity and successfully degraded hydrogen peroxide to produce oxygen. Increased oxygen levels relief intratumoral hypoxia, thereby enhancing CB@HPP-mediated sonodynamic therapy. In addition, CB@HPP showed FL/PA/US multimodal imaging capabilities, which reflects the aggregation effect of CB@HPP in the tumor and suggest the timing of treatment. CONCLUSION: The biohybrid system CB@HPP significantly alleviates tumor hypoxia, and multimodal imaging-mediated oxygen-producing SDT effectively suppresses tumors. This integrated imaging and therapeutic biohybrid system provides a more efficient and attractive cancer treatment strategy for SDT. STATEMENT OF SIGNIFICANCE: This study developed a sensitizing SDT strategy for imaging-guided drug-targeted delivery and in situ oxygen production. We designed a biohybrid system CB@HPP, which was hybridized by the engineered bacteria with catalytic oxygen production and nanosonosensitizer with multimodal imaging capability. CB@HPP significantly alleviates tumor hypoxia, and multimodal imaging-mediated oxygen-producing SDT effectively suppresses tumors. This integrated imaging and therapeutic biohybrid system provides a more efficient and attractive cancer treatment strategy for SDT.

2.
Clin Transl Radiat Oncol ; 49: 100853, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39290454

RESUMO

Background: Hypoxia-inducible factor-1α (HIF-1α) is a crucial transcription factor activated under hypoxic conditions, known to regulate genes associated with tumor survival, progression, and response to therapy. This study aimed to evaluate the prognostic significance of HIF-1α expression in patients with anal squamous cell carcinoma (ASCC) undergoing chemoradiation therapy. Methods: We conducted a retrospective analysis of 28 ASCC patients treated with intensity-modulated radiotherapy (IMRT) at our center from 2009 to 2022. HIF-1α expression was assessed via immunohistochemistry on formalin-fixed paraffin-embedded tissue specimens. Quantitative analysis of HIF-1α expression was performed, and its relationship with clinical outcomes, including disease-free survival (DFS), locoregional relapse-free survival (LRRFS), and overall survival (OS), was examined using Cox regression models. Furthermore, ASCC tissue specimens from 17 patients were analyzed for potential PIK3CA mutations using Sanger sequencing. Results: High HIF-1α expression was significantly associated with poorer DFS (p = 0.005), LRRFS (p = 0.012), and OS (p = 0.009). HIF1α expression was marginally significantly higher in males compared to females (p = 0.056) while there was no significant difference found based on tumor stage or p16 status. However, a positive correlation was identified between BMI and HIF-1α levels (Pearson correlation r = 0.5, p = 0.0084), suggesting a link between metabolic status and tumor hypoxia. Only one patient exhibited a PIK3CA mutation, preventing a reliable assessment of its correlation with HIF-1α expression. Conclusion: Our findings underscore the importance of HIF-1α as a potential biomarker for predicting survival outcomes in ASCC patients treated with chemoradiation. The association between higher BMI and increased HIF-1α expression may provide insights into the interplay between metabolic health and tumor biology in ASCC. Further studies with larger cohorts are needed to validate these findings and explore targeted therapies focusing on HIF-1α modulation.

3.
Cancers (Basel) ; 16(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39272887

RESUMO

In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.

4.
Apoptosis ; 29(9-10): 1429-1453, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39023830

RESUMO

The enzyme AKR1C3 plays a crucial role in hormone and drug metabolism and is associated with abnormal expression in liver cancer, leading to tumor progression and poor prognosis. Nanoparticles modified with HSA can modulate the tumor microenvironment by enhancing photodynamic therapy to induce apoptosis in tumor cells and alleviate hypoxia. Therefore, exploring the potential regulatory mechanisms of resveratrol on AKR1C3 through the construction of HSA-RSV NPs carriers holds significant theoretical and clinical implications for the treatment of liver cancer. The aim of this study is to investigate the targeted regulation of AKR1C3 expression through the loading of resveratrol (RSV) on nanomaterials HSA-RSV NPs (Nanoparticles) in order to alleviate tumor hypoxia and inhibit the progression of hepatocellular carcinoma (HCC), and to explore its molecular mechanism. PubChem database and PharmMapper server were used to screen the target genes of RSV. HCC-related differentially expressed genes (DEGs) were analyzed through the GEO dataset, and relevant genes were retrieved from the GeneCards database, resulting in the intersection of the three to obtain candidate DEGs. GO and KEGG enrichment analyses were performed on the candidate DEGs to analyze the potential cellular functions and molecular signaling pathways affected by the main target genes. The cytohubba plugin was used to screen the top 10 target genes ranked by Degree and further intersected the results of LASSO and Random Forest (RF) to obtain hub genes. The expression analysis of hub genes and the prediction of malignant tumor prognosis were conducted. Furthermore, a pharmacophore model was constructed using PharmMapper. Molecular docking simulations were performed using AutoDockTools 1.5.6 software, and ROC curve analysis was performed to determine the core target. In vitro cell experiments were carried out by selecting appropriate HCC cell lines, treating HCC cells with different concentrations of RSV, or silencing or overexpressing AKR1C3 using lentivirus. CCK-8, clone formation, flow cytometry, scratch experiment, and Transwell were used to measure cancer cell viability, proliferation, migration, invasion, and apoptosis, respectively. Cellular oxygen consumption rate was analyzed using the Seahorse XF24 analyzer. HSA-RSV NPs were prepared, and their characterization and cytotoxicity were evaluated. The biological functional changes of HCC cells after treatment were detected. An HCC subcutaneous xenograft model was established in mice using HepG2 cell lines. HSA-RSV NPs were injected via the tail vein, with a control group set, to observe changes in tumor growth, tumor targeting of NPs, and biological safety. TUNEL, Ki67, and APC-hypoxia probe staining were performed on excised tumor tissue to detect tumor cell proliferation, apoptosis, and hypoxia. Lentivirus was used to silence or overexpress AKR1C3 simultaneously with the injection of HSA-RSV NPs via the tail vein to assess the impact of AKR1C3 on the regulation of HSA-RSV NPs in HCC progression. Bioinformatics analysis revealed that AKR1C3 is an important target gene involved in the regulation of HCC by RSV, which is associated with the prognosis of HCC patients and upregulated in expression. In vitro cell experiments showed that RSV significantly inhibits the respiratory metabolism of HCC cells, suppressing their proliferation, migration, and invasion and promoting apoptosis. Silencing AKR1C3 further enhances the toxicity of RSV towards HCC cells. The characterization and cytotoxicity experiments of nanomaterials demonstrated the successful construction of HSA-RSV NPs, which exhibited stronger inhibitory effects on HCC cells. In vivo, animal experiments further confirmed that targeted downregulation of AKR1C3 by HSA-RSV NPs suppresses the progression of HCC and tumor hypoxia while exhibiting tumor targeting and biological safety. Targeted downregulation of AKR1C3 by HSA-RSV NPs can alleviate HCC tumor hypoxia and inhibit the progression of HCC.


Assuntos
Apoptose , Carcinoma Hepatocelular , Neoplasias Hepáticas , Resveratrol , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Resveratrol/farmacologia , Resveratrol/química , Resveratrol/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Nanopartículas/química , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação para Baixo/efeitos dos fármacos , Progressão da Doença , Células Hep G2 , Simulação de Acoplamento Molecular , Nanoestruturas/química , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química
5.
J Cancer ; 15(13): 4345-4359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947402

RESUMO

Background: Tumor hypoxia has been frequently detected in nasopharyngeal carcinoma (NPC) and is intently associated with therapeutic resistance. The aim of the study is to establish a clonogenically stable hypoxia-inducible dual reporter model and apply it to investigate the effect of tumor hypoxia on DNA double strand break (DSB) and synergistic effect of irradiation in combination with chemotherapy or targeted therapy. Methods: The plasmid vector consisting of hypoxia response elements to regulate HSV1-TK and GFP genes, was constructed and stably transfected into human NPC cells. The expected clone was identified and validated by in vivo and in vitro assay. DSB repair was measured by γH2AX foci formation. Tumor growth delay assay and spatial biodistribution of various biomarkers was designed to investigate the anti-tumor effect. Results: The system has the propensity of high expression of reporter genes under hypoxia and low to no expression under normoxia. Intratumoral biodistributions of GFP and classic hypoxic biomarkers were identical in poor-perfused region. Upon equilibration with 10% O2, the xenografts showed higher expression of hypoxic biomarkers. Cisplatin radiosensitized SUNE-1/HRE cells under hypoxia by suppressing DSB repair while the addition of PI3K/mTOR inhibitor further enhanced the anti-tumoral therapeutic efficacy. Combination of IR, DDP and NVP-BEZ235 exhibited most effective anti-tumor response in vivo. These observations underline the importance of dual reporter model for imaging tumor hypoxia in therapeutic study. Conclusions: Our preclinical model enables the investigation of heterogeneous tumor hypoxic regions in xenograft tissues and explores the treatment efficacy of combinations of various therapeutic approaches to overcome hypoxia.

6.
Materials (Basel) ; 17(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39063788

RESUMO

Chemodynamic therapy (CDT) alone cannot achieve sufficient therapeutic effects due to the excessive glutathione (GSH) and hypoxia in the tumor microenvironment (TME). Developing a novel strategy to improve efficiency is urgently needed. Herein, we prepared a copper silicate nanoplatform (CSNP) derived from colloidal silica. The Cu(II) in CSNP can be reduced to Cu(I), which cascades to induce a subsequent CDT process. Additionally, benefiting from GSH depletion and oxygen (O2) generation under 660 nm laser irradiation, CSNP exhibits both Fenton-like and hypoxia-alleviating activities, contributing to the effective generation of superoxide anion radical (•O2-) and hydroxyl radical (•OH) in the TME. Furthermore, given the suitable band-gap characteristic and excellent photochemical properties, CSNP can also serve as an efficient type-I photosensitizer for photodynamic therapy (PDT). The synergistic CDT/PDT activity of CSNP presents an efficient antitumor effect and biosecurity in both in vitro and in vivo experiments. The development of an all-in-one nanoplatform that integrates Fenton-like and photosensing properties could improve ROS production within tumors. This study highlights the potential of silicate nanomaterials in cancer treatment.

7.
Angew Chem Int Ed Engl ; 63(37): e202404561, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38887983

RESUMO

Photodynamic therapy (PDT) utilizes reactive oxygen species (ROS) for eradication of cancer cells. Its effectiveness is governed by the oxygen content, which is scarce in the hypoxic tumor microenvironment. We report herein two zinc(II) phthalocyanines substituted with two or four nitric oxide (NO)-releasing moieties, namely ZnPc-2NO and ZnPc-4NO, which can suppress the mitochondrial respiration, thereby sparing more intracellular oxygen for PDT. Using HT29 human colorectal adenocarcinoma cells and A549 human lung carcinoma cells, we have demonstrated that both conjugates release NO upon interaction with the intracellular glutathione, which can reduce the cellular oxygen consumption rate and adenosine triphosphate generation and alter the mitochondrial membrane potential. They can also relieve the hypoxic status of cancer cells and decrease the expression of hypoxia-inducible factor protein HIF-1α. Upon light irradiation, both conjugates can generate ROS and induce cytotoxicity even under a hypoxic condition, overcoming the oxygen-dependent nature of PDT. Interestingly, the photodynamic action of ZnPc-2NO elicits the release of damage-associated molecular patterns, inducing the maturation of dendritic cells and triggering an antitumor immune response. The immunogenic cell death caused by this oxygen-economized PDT has been demonstrated through a series of in vitro and in vivo experiments.


Assuntos
Óxido Nítrico , Oxigênio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Óxido Nítrico/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Morte Celular Imunogênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Indóis/química , Indóis/farmacologia , Animais , Isoindóis/química , Compostos de Zinco/química
8.
ACS Nano ; 18(28): 18176-18190, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38941553

RESUMO

Photoacoustic computed tomography (PACT), an emerging imaging modality in preclinical cancer research, can provide multiparametric 3D information about structures, physiological functions, and pharmacokinetics. Here, we demonstrate the use of high-definition 3D multiparametric PACT imaging of both primary and metastatic tumors in living mice to noninvasively monitor angiogenesis, carcinogenesis, hypoxia, and pharmacokinetics. The high-definition PACT system with a 1024-element hemispherical ultrasound transducer array provides an isotropic spatial resolution of 380 µm, an effective volumetric field-of-view of 12.8 mm × 12.8 mm × 12.8 mm without scanning, and an acquisition time of <30 s for a whole mouse body. Initially, we monitor the structural progression of the tumor microenvironment (e.g., angiogenesis and vessel tortuosity) after tumor cell inoculation. Then, we analyze the change in oxygen saturation of the tumor during carcinogenesis, verifying induced hypoxia in the tumor's core region. Finally, the whole-body pharmacokinetics are photoacoustically imaged after intravenous injection of micelle-loaded IR780 dye, and the in vivo PACT results are validated in vivo and ex vivo by fluorescence imaging. By employing the premium PACT system and applying multiparametric analyses to subcutaneous primary tumors and metastatic liver tumors, we demonstrate that this PACT system can provide multiparametric analyses for comprehensive cancer research.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Feminino , Animais , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Tomografia/instrumentação , Tomografia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Meios de Contraste , Neoplasias Hepáticas/secundário , Pele/patologia
9.
J Nanobiotechnology ; 22(1): 358, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907270

RESUMO

BACKGROUND: Hypoxia-activated prodrug (HAP) is a promising candidate for highly tumor-specific chemotherapy. However, the oxygenation heterogeneity and dense extracellular matrix (ECM) of tumor, as well as the potential resistance to chemotherapy, have severely impeded the resulting overall efficacy of HAP. RESULTS: A HAP potentiating strategy is proposed based on ultrasound responsive nanodroplets (PTP@PLGA), which is composed of protoporphyrin (PpIX), perfluoropropane (PFP) and a typical HAP, tirapazamine (TPZ). The intense vaporization of PFP upon ultrasound irradiation can magnify the sonomechanical effect, which loosens the ECM to promote the penetration of TPZ into the deep hypoxic region. Meanwhile, the PpIX enabled sonodynamic effect can further reduce the oxygen level, thus activating the TPZ in the relatively normoxic region as well. Surprisingly, abovementioned ultrasound effect also results in the downregulation of the stemness of cancer cells, which is highly associated with drug-refractoriness. CONCLUSIONS: This work manifests an ideal example of ultrasound-based nanotechnology for potentiating HAP and also reveals the potential acoustic effect of intervening cancer stem-like cells.


Assuntos
Fluorocarbonos , Nanopartículas , Pró-Fármacos , Protoporfirinas , Tirapazamina , Humanos , Tirapazamina/farmacologia , Tirapazamina/química , Protoporfirinas/farmacologia , Protoporfirinas/química , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Linhagem Celular Tumoral , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Ondas Ultrassônicas , Animais , Matriz Extracelular/metabolismo , Camundongos , Neoplasias/tratamento farmacológico
10.
Small ; 20(36): e2310957, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38698608

RESUMO

The efficacy of traditional radiotherapy (RT) has been severely limited by its significant side effects, as well as tumor hypoxia. Here, the nanoscale cerium (Ce)-based metaloxo clusters (Ce(IV)6)-porphyrin (meso-tetra (4-carboxyphenyl) porphyrin, TCPP) framework loaded with L-arginine (LA) (denoted as LA@Ce(IV)6-TCPP) is developed to serve as a multifarious radio enhancer to heighten X-ray absorption and energy transfer accompanied by O2/NO generation for hypoxia-improved RT-radiodynamic therapy (RDT) and gas therapy. Within tumor cells, LA@Ce(IV)6-TCPP will first react with endogenous H2O2 and inducible NO synthase (iNOS) to produce O2 and NO to respectively increase the oxygen supply and reduce oxygen consumption, thus alleviating tumor hypoxia. Then upon X-ray irradiation, LA@Ce(IV)6-TCPP can significantly enhance hydroxyl radical (•OH) generation from Ce(IV)6 metaloxo clusters for RT and synchronously facilitate singlet oxygen (1O2) generation from adjacently-coordinated TCPP for RDT. Moreover, both the •OH and 1O2 can further react with NO to generate more toxic peroxynitrite anions (ONOO-) to inhibit tumor growth for gas therapy. Benefitting from the alleviation of tumor hypoxia and intensified RT-RDT synergized with gas therapy, LA@Ce(IV)6-TCPP elicited superior anticancer outcomes. This work provides an effective RT strategy by using low doses of X-rays to intensify tumor suppression yet reduce systemic toxicity.


Assuntos
Cério , Óxido Nítrico , Oxigênio , Cério/química , Oxigênio/química , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Animais , Porfirinas/química , Porfirinas/farmacologia , Linhagem Celular Tumoral , Humanos , Metaloporfirinas/química , Metaloporfirinas/farmacologia , Camundongos , Metais Terras Raras/química , Radioterapia/métodos , Gases/química , Arginina/química , Arginina/farmacologia
11.
BMC Vet Res ; 20(1): 196, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741109

RESUMO

BACKGROUND: Hypoxia is a detrimental factor in solid tumors, leading to aggressiveness and therapy resistance. OMX, a tunable oxygen carrier from the heme nitric oxide/oxygen-binding (H-NOX) protein family, has the potential to reduce tumor hypoxia. [18F]Fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) is the most widely used and investigated method for non-invasive imaging of tumor hypoxia. In this study, we used [18F]FMISO PET/CT (computed tomography) to assess the effect of OMX on tumor hypoxia in spontaneous canine tumors. RESULTS: Thirteen canine patients with various tumors (n = 14) were randomly divided into blocks of two, with the treatment groups alternating between receiving intratumoral (IT) OMX injection (OMX IT group) and intravenous (IV) OMX injection (OMX IV group). Tumors were regarded as hypoxic if maximum tumor-to-muscle ratio (TMRmax) was greater than 1.4. In addition, hypoxic volume (HV) was defined as the region with tumor-to-muscle ratio greater than 1.4 on [18F]FMISO PET images. Hypoxia was detected in 6/7 tumors in the OMX IT group and 5/7 tumors in the OMX IV injection group. Although there was no significant difference in baseline hypoxia between the OMX IT and IV groups, the two groups showed different responses to OMX. In the OMX IV group, hypoxic tumors (n = 5) exhibited significant reductions in tumor hypoxia, as indicated by decreased TMRmax and HV in [18F]FMISO PET imaging after treatment. In contrast, hypoxic tumors in the OMX IT group (n = 6) displayed a significant increase in [18F]FMISO uptake and variable changes in TMRmax and HV. CONCLUSIONS: [18F]FMISO PET/CT imaging presents a promising non-invasive procedure for monitoring tumor hypoxia and assessing the efficacy of hypoxia-modulating therapies in canine patients. OMX has shown promising outcomes in reducing tumor hypoxia, especially when administered intravenously, as evident from reductions in both TMRmax and HV in [18F]FMISO PET imaging.


Assuntos
Doenças do Cão , Misonidazol , Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hipóxia Tumoral , Animais , Cães , Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/veterinária , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/tratamento farmacológico , Feminino , Hipóxia Tumoral/efeitos dos fármacos , Masculino , Neoplasias/veterinária , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Tiossemicarbazonas/uso terapêutico , Tiossemicarbazonas/farmacologia , Complexos de Coordenação
12.
Acta Biomater ; 181: 402-414, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38734282

RESUMO

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.


Assuntos
Imunoterapia , Microambiente Tumoral , Animais , Imunoterapia/métodos , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Hipóxia Tumoral/efeitos dos fármacos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Oxaliplatina/farmacologia , Oxaliplatina/química , Óxidos/química , Óxidos/farmacologia , Manganês/química , Manganês/farmacologia , Humanos , Feminino , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Camundongos Endogâmicos C57BL
13.
Artigo em Inglês | MEDLINE | ID: mdl-38736647

RESUMO

We report the development of a high-sensitivity and high-resolution PET subsystem for a next-generation preclinical PET/EPR hybrid scanner for investigating and improving hypoxia imaging with PET. The PET subsystem consists of 14 detector modules (DM) installed within a cylindrical supporting frame whose outer and inner diameters are 115mm and 60mm, respectively. Each DM contains eight detector units (DU) in a row and each DU is made of a 12×12 array of 1×1×10mm3 LYSO crystals (with a 1.05mm pitch) coupled to a 4×4 silicon photomultiplier (SiPM) array that has a 3.2mm pitch (Hamamatsu multi-pixel photon counter (MPPC) array 14161-3050HS-04). The PET subsystem has a 104mm axial field-of-view (AFOV) that is sufficient for full-body mouse imaging, therefore enabling temporal and spatial correlation studies of tumor hypoxia between PET and EPR. It employs 1mm-width crystals to support sub-millimeter image resolution that is desired for mouse imaging. Al-though a DM contains 1,152 LYSO crystals, by use of a newly devised signal readout method only six outputs are produced. Recently a partial prototype of this subsystem consisting of four DMs is built. In this paper, we present performance measurement results obtained for the developed DMs and initial imaging results obtained by the prototype. The developed DMs show uniformly superior performance in identifying the hit crystal and detector unit, in energy resolution, and in coincidence time resolution. The images obtained for a 22Na point source and a 18F-filled U-shaped tube source show an image resolution of about 1.1mm and 1.2mm FWHM in the transverse and axial directions respectively, and demonstrate successful imaging over the entire 104mm AFOV of the prototype. This estimated image resolution however includes the contribution by the source size.

14.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674080

RESUMO

Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , NF-kappa B , Humanos , NF-kappa B/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Raios X , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Transferência Linear de Energia , Hipóxia Celular/efeitos da radiação , Carbono , Sobrevivência Celular/efeitos da radiação , Tolerância a Radiação , Interleucina-8/metabolismo , Interleucina-8/genética
15.
Magn Reson Imaging ; 112: 38-46, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38604349

RESUMO

BACKGROUND: Measuring tissue oxygen concentration is crucial in understanding the pathophysiological process of hypoxia in head and neck cancer (HNC) and its significant role in cancer biology. This study aimed to determine the feasibility of T1 mapping using a variable flip angle (VFA) technique with stack of stars (SOS) trajectory sampling in HNC patients undergoing chemoradiotherapy (CRT). METHODS: To evaluate the ability of SOS acquisition to detect T1, a phantom study was conducted and compared to conventional Cartesian acquisition (CART). Additionally, four newly diagnosed patients were recruited and underwent two scans each at baseline and inter-treatment. The repeatability of SOS and CART acquisitions was assessed by comparing the T1 measurements of CSF from the baseline and intra-treatment MRI studies. The changes in ∆T1 of the tumors during air and oxygen inhalation between baseline and inter-treatment scans were also evaluated. RESULTS: Our study found that the 3D VFA SOS sequence was effective in reducing motion artifacts compared to the conventional VFA sequence with CART sampling and the same scan time, as demonstrated by the results from the phantom and patient studies. In terms of repeatability, no significant correlation was observed between the variability in ΔT1 measurements of CSF obtained from SOS T1 maps. The SOS ΔT1 measurements showed higher consistency, as evidenced by the ICC values ranging from 0.52 to 0.92. The ∆T1 measurements on the primary tumors increased after the first CRT (p<0.05) for all patients who showed a positive treatment response, except for one patient (0.05

Assuntos
Quimiorradioterapia , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/terapia , Masculino , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Feminino , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Idoso , Adulto , Oxigênio , Artefatos
16.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611785

RESUMO

Tumor hypoxia plays an important role in the clinical management and treatment planning of various cancers. The use of 2-nitroimidazole-based radiopharmaceuticals has been the most successful for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging probes, offering noninvasive means to assess tumor hypoxia. In this study we performed detailed computational investigations of the most used compounds for PET imaging, focusing on those derived from 2-nitroimidazole: fluoromisonidazole (FMISO), fluoroazomycin arabinoside (FAZA), fluoroetanidazole (FETA), fluoroerythronitroimidazole (FETNIM) and 2-(2-nitroimidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5). Conformational analysis, structural parameters, vibrational IR and Raman properties (within both harmonic and anharmonic approximations), as well as the NMR shielding tensors and spin-spin coupling constants were obtained by density functional theory (DFT) calculations and then correlated with experimental findings, where available. Furthermore, time-dependent DFT computations reveal insight into the excited states of the compounds. Our results predict a significant change in the conformational landscape of most of the investigated compounds when transitioning from the gas phase to aqueous solution. According to computational data, the 2-nitroimidazole moiety determines to a large extent the spectroscopic properties of its derivatives. Due to the limited structural information available in the current literature for the investigated compounds, the findings presented herein deepen the current understanding of the electronic structures of these five radiopharmaceuticals.


Assuntos
Nitroimidazóis , Compostos Radiofarmacêuticos , Química Computacional , Eletrônica
17.
Chemistry ; 30(36): e202400319, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606488

RESUMO

Photodynamic therapy (PDT) and chemodynamic therapy (CDT) are promising tumor treatments mediated by reactive oxygen species (ROS), which have the advantages of being minimally invasive. However, the hypoxia of tumor microenvironment and poor target ability often reduce the therapeutic effect. Here we propose a tumor targeted nanoplatform PCN-224@Co3O4-HA for enhanced PDT and synergistic CDT, constructed by hyaluronate-modified Co3O4 nanoparticles decorated metal-organic framework PCN-224. Co3O4 can catalyze the decomposition of highly expressed H2O2 in tumor cells to produce oxygen and alleviate the problem of hypoxia. It can also produce hydroxyl radicals according to the Fenton-like reaction for chemical dynamic therapy, significantly improving the therapeutic effect. The cell survival experiment showed that after in vitro treatment, 4T1 and MCF-7 cancer cells died in a large area under the anaerobic state, while the survival ability of normal cell L02 was nearly unchanged. This result effectively indicated that PCN-224@Co3O4-HA could effectively relieve tumor hypoxia and improve the effect of PDT and synergistic CDT. Cell uptake experiments showed that PCN-224@Co3O4-HA had good targeting properties and could effectively aggregate in tumor cells. In vivo experiments on mice, PCN-224@Co3O4-HA presented reliable biosafety performance, and can cooperate with PDT and CDT therapy to prevent the growth of tumor.


Assuntos
Sobrevivência Celular , Cobalto , Estruturas Metalorgânicas , Nanopartículas , Óxidos , Fotoquimioterapia , Cobalto/química , Estruturas Metalorgânicas/química , Humanos , Óxidos/química , Animais , Camundongos , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Células MCF-7 , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Feminino , Ácido Hialurônico/química , Peróxido de Hidrogênio/química , Hipóxia Tumoral/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia
18.
Hum Cell ; 37(3): 768-781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478356

RESUMO

Tumor hypoxia is a common microenvironmental factor in breast cancers, resulting in stabilization of Hypoxia-Inducible Factor 1 (HIF-1), the master regulator of hypoxic response in cells. Metabolic adaptation by HIF-1 results in inhibition of citric acid cycle, causing accumulation of lactate in large concentrations in hypoxic cancers. Lactate can therefore serve as a secondary microenvironmental factor influencing cellular response to hypoxia. Presence of lactate can alter the hypoxic response of breast cancers in many ways, sometimes in opposite manners. Lactate stabilizes HIF-1 in oxidative condition, as well as destabilizes HIF-1 in hypoxia, increases cellular acidification, and mitigates HIF-1-driven inhibition of cellular respiration. We therefore tested the effect of lactate in MDA-MB-231 under hypoxia, finding that lactate can activate pathways associated with DNA replication, and cell cycling, as well as tissue morphogenesis associated with invasive processes. Using a bioengineered nano-patterned stromal invasion assay, we also confirmed that high lactate and induced HIF-1α gene overexpression can synergistically promote MDA-MB-231 dissemination and stromal trespass. Furthermore, using The Cancer Genome Atlas, we also surprisingly found that lactate in hypoxia promotes gene expression signatures prognosticating low survival in breast cancer patients. Our work documents that lactate accumulation contributes to increased heterogeneity in breast cancer gene expression promoting cancer growth and reducing patient survival.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Ácido Láctico , Linhagem Celular Tumoral , Hipóxia/genética , Hipóxia Celular/fisiologia , Pontos de Checagem do Ciclo Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regulação Neoplásica da Expressão Gênica
19.
Adv Mater ; 36(23): e2312493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38444177

RESUMO

Toll-like receptor 7/8 agonists, such as imidazoquinolines (IMDQs), are promising for the de novo priming of antitumor immunity. However, their systemic administration is severely limited due to the off-target toxicity. Here, this work describes a sequential drug delivery strategy. The formulation is composed of two sequential modules: a tumor microenvironment remodeling nanocarrier (poly(l-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4, termed CA4-NPs) and an immunotherapy nanocarrier (apcitide peptide-decorated poly(l-glutamic acid)-graft-IMDQ-N3 conjugate, termed apcitide-PLG-IMDQ-N3). CA4-NPs, as a vascular disrupting agent, are utilized to remodel the tumor microenvironment for enhancing tumor coagulation and hypoxia. Subsequently, the apcitide-PLG-IMDQ-N3 could identify and target tumor coagulation through the binding of surface apcitide peptide to the GPIIb-IIIa on activated platelets. Afterward, IMDQ is activated selectively through the conversion of "-N3" to "-NH2" in the presence of hypoxia. The biodistribution results confirm their high tumor uptake of activated IMDQ (22.66%ID/g). By augmenting the priming and immunologic memory of tumor-specific CD8+ T cells, 4T1 and CT26 tumors with a size of ≈500 mm3 are eradicated without recurrence in mouse models.


Assuntos
Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Nanopartículas/química , Portadores de Fármacos/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Polietilenoglicóis/química , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Imunoterapia
20.
Anal Sci ; 40(6): 1061-1070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38478357

RESUMO

Hypoxia is involved in various diseases, such as cancers. Pimonidazole has often been used as the gold-standard marker to visualize hypoxic regions. Pimonidazole labels hypoxic regions by forming a covalent bond with a neighboring protein under hypoxic conditions in the body, which is detected by immunohistochemistry performed on tissue sections. To date, some pimonidazole-fluorophore conjugates have been reported as fluorescent probes for hypoxia imaging that do not require immunostaining. They are superior to pimonidazole because immunostaining can produce high background signals. However, large fluorophores in the conjugates may alter the original biodistribution and reactivity. Here, we report a new hypoxia marker, Pimo-yne, as a pimonidazole-alkyne conjugate. Pimo-yne has a similar hypoxia detection capability as pimonidazole because the alkyne tag is small and can be detected by Cu-catalyzed click reaction with azide-tagged fluorescent dyes. We successfully visualized hypoxic regions in tumor tissue sections using Pimo-yne with reduced background signals. The detected regions overlapped well with those detected by pimonidazole immunohistochemistry. To further reduce the background, we employed a turn-on azide-tagged fluorescent dye.


Assuntos
Alcinos , Química Click , Cobre , Nitroimidazóis , Nitroimidazóis/química , Alcinos/química , Catálise , Cobre/química , Humanos , Corantes Fluorescentes/química , Animais , Hipóxia/metabolismo , Camundongos , Imagem Óptica , Hipóxia Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA