Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Immunol ; 15: 1424396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346924

RESUMO

Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inibidores de Checkpoint Imunológico , Microambiente Tumoral , Humanos , Glioblastoma/imunologia , Glioblastoma/terapia , Microambiente Tumoral/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Animais , Transdução de Sinais , Imunoterapia/métodos , Proteínas de Checkpoint Imunológico/metabolismo , Proteínas de Checkpoint Imunológico/genética
2.
Cancer Lett ; 596: 217020, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38849009

RESUMO

B7-H4 is an immune checkpoint crucial for inhibiting CD8+ T-cell activity. A clinical trial is underway to investigate B7-H4 as a potential immunotherapeutic agent. However, the regulatory mechanism of B7-H4 degradation via the ubiquitin-proteasome pathway (UPP) remains poorly understood. In this study, we discovered that proteasome inhibitors effectively increased B7-H4 expression, while EGFR-activating mutants promoted B7-H4 expression through the UPP. We screened B7-H4 binding proteins by co-immunoprecipitation and mass spectrometry and found that USP2a acted as a deubiquitinase of B7-H4 by removing K48- and K63-linked ubiquitin chains from B7-H4, leading to a reduction in B7-H4 degradation. EGFR mutants enhanced B7-H4 stability by upregulating USP2a expression. We further investigated the role of USP2a in tumor growth in vivo. Depletion of USP2a in L858R/LLC cells inhibited tumor cell proliferation, consequently suppressing tumor growth in immune-deficient nude mice by destabilizing downstream molecules such as Cyclin D1. In an immune-competent C57BL/6 mouse tumor model, USP2a abrogation facilitated infiltration of CD95+CD8+ effector T cells and hindered infiltration of Tim-3+CD8+ and LAG-3+CD8+ exhausted T cells by destabilizing B7-H4. Clinical lung adenocarcinoma samples showed a significant correlation between B7-H4 abundance and USP2a expression, indicating the contribution of the EGFR/USP2a/B7-H4 axis to tumor immunosuppression. In summary, this study elucidates the dual effects of USP2a in tumor growth by stabilizing Cyclin D1, promoting tumor cell proliferation, and stabilizing B7-H4, contributing to tumor immunosuppression. Therefore, USP2a represents a potential target for tumor therapy.


Assuntos
Adenocarcinoma de Pulmão , Receptores ErbB , Neoplasias Pulmonares , Camundongos Nus , Ubiquitina Tiolesterase , Inibidor 1 da Ativação de Células T com Domínio V-Set , Animais , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Camundongos , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Mutação , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética
3.
Front Immunol ; 14: 1274199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928524

RESUMO

Folate receptor delta (FRδ) has been used as a biomarker for regulatory T cells (Tregs), because its expression is limited to Tregs and ovum. Although FRδ is unable to bind folate, we have used molecular docking software to identify a folate congener that binds FRδ with high affinity and have exploited this FRδ-specific ligand to target attached drugs (imaging agents, immune activators, and immune suppressors) specifically to Tregs in murine tumor xenografts. Analysis of treated tumors demonstrates that targeting of a Toll-like receptor 7 agonist inhibits Treg expression of FOXP3, PD-1, CTLA4, and HELIOS, resulting in 40-80% reduction in tumor growth and repolarization of other tumor-infiltrating immune cells to more inflammatory phenotypes. Targeting of the immunosuppressive drug dexamethasone, in contrast, promotes enhanced tumor growth and shifts the tumor-infiltrating immune cells to more anti-inflammatory phenotypes. Since Tregs comprise <1% of cells in the tumor masses examined, and since the targeted drugs are not internalized by cancer cells, these data demonstrate that Tregs exert a disproportionately large effect on tumor growth. Because the targeted drug did not bind to Tregs or other immune cells in healthy tissues, the data demonstrate that the immunosuppressive properties of Tregs in tumors can be manipulated without causing systemic toxicities associated with global reprogramming of the immune system.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Imunossupressores/metabolismo , Ácido Fólico/metabolismo
4.
Cancers (Basel) ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38001715

RESUMO

BACKGROUND: The application of immunotherapy for pediatric CNS malignancies has been limited by the poorly understood immune landscape in this context. The aim of this study was to uncover the mechanisms of immune suppression common among pediatric brain tumors. METHODS: We apply an immunologic clustering algorithm validated by The Cancer Genome Atlas Project to an independent pediatric CNS transcriptomic dataset. Within the clusters, the mechanisms of immunosuppression are explored via tumor microenvironment deconvolution and survival analyses to identify relevant immunosuppressive genes with translational relevance. RESULTS: High-grade diseases fall predominantly within an immunosuppressive subtype (C4) that independently lowers overall survival time and where common immune checkpoints (e.g., PDL1, CTLA4) are less relevant. Instead, we identify several alternative immunomodulatory targets with relevance across histologic diseases. Specifically, we show how the mechanism of EZH2 inhibition to enhance tumor immunogenicity in vitro via the upregulation of MHC class 1 is applicable to a pediatric CNS oncologic context. Meanwhile, we identify that the C3 (inflammatory) immune subtype is more common in low-grade diseases and find that immune checkpoint inhibition may be an effective way to curb progression for this subset. CONCLUSIONS: Three predominant immunologic clusters are identified across pediatric brain tumors. Among high-risk diseases, the predominant immune cluster is associated with recurrent immunomodulatory genes that influence immune infiltrate, including a subset that impacts survival across histologies.

5.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894821

RESUMO

The tumor microenvironment is an important factor that can determine the success or failure of antitumor therapy. Cells of hematopoietic origin are one of the most important mediators of the tumor-host interaction and, depending on the cell type and functional state, exert pro- or antitumor effects in the tumor microenvironment or in adjacent tissues. Erythroid cells can be full members of the tumor microenvironment and exhibit immunoregulatory properties. Tumor growth is accompanied by the need to obtain growth factors and oxygen, which stimulates the appearance of the foci of extramedullary erythropoiesis. Tumor cells create conditions to maintain the long-term proliferation and viability of erythroid cells. In turn, tumor erythroid cells have a number of mechanisms to suppress the antitumor immune response. This review considers current data on the existence of erythroid cells in the tumor microenvironment, formation of angiogenic clusters, and creation of optimal conditions for tumor growth. Despite being the most important life-support function of the body, erythroid cells support tumor growth and do not work against it. The study of various signaling mechanisms linking tumor growth with the mobilization of erythroid cells and the phenotypic and functional differences between erythroid cells of different origin allows us to identify potential targets for immunotherapy.


Assuntos
Eritropoetina , Neoplasias , Humanos , Eritropoese , Microambiente Tumoral , Células Eritroides , Transdução de Sinais , Neoplasias/terapia
6.
Biochem Pharmacol ; 215: 115731, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541450

RESUMO

Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.


Assuntos
Linfonodos , Linfócitos T Reguladores , Humanos , Metástase Linfática/patologia , Prognóstico , Tolerância Imunológica
7.
Bioeng Transl Med ; 8(3): e10518, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206224

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)-based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA-based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA-based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long-term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses.

8.
Front Oncol ; 13: 1135122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007125

RESUMO

Liver cancer is the third greatest cause of cancer-related mortality, which of the major pathological type is hepatocellular carcinoma (HCC) accounting for more than 90%. HCC is characterized by high mortality and is predisposed to metastasis and relapse, leading to a low five-year survival rate and poor clinical prognosis. Numerous crosstalk among tumor parenchymal cells, anti-tumor cells, stroma cells, and immunosuppressive cells contributes to the immunosuppressive tumor microenvironment (TME), in which the function and frequency of anti-tumor cells are reduced with that of associated pro-tumor cells increasing, accordingly resulting in tumor malignant progression. Indeed, sorting out and understanding the signaling pathways and molecular mechanisms of cellular crosstalk in TME is crucial to discover more key targets and specific biomarkers, so that develop more efficient methods for early diagnosis and individualized treatment of liver cancer. This piece of writing offers insight into the recent advances in HCC-TME and reviews various mechanisms that promote HCC malignant progression from the perspective of mutual crosstalk among different types of cells in TME, aiming to assist in identifying the possible research directions and methods in the future for discovering new targets that could prevent HCC malignant progression.

9.
Cancer Med ; 12(3): 3201-3221, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35908281

RESUMO

BACKGROUND: Within the field of oncotherapy, research interest regarding immunotherapy has risen to the point that it is now seen as a key application. However, inherent disadvantages of immune checkpoint inhibitors (ICIs), such as their low response rates and immune-related adverse events (irAEs), currently restrict their clinical application. Were these disadvantages to be overcome, more patients could derive prolonged benefits from ICIs. At present, many basic experiments and clinical studies using hyperthermia combined with ICI treatment (HIT) have been performed and shown the potential to address the above challenges. Therefore, this review extensively summarizes the knowledge and progress of HIT for analysis and discusses the effect and feasibility. METHODS: In this review, we explored the PubMed and clinicaltrials.gov databases, with regard to the searching terms "immune checkpoint inhibitor, immunotherapy, hyperthermia, ablation, photothermal therapy". RESULTS: By reviewing the literature, we analyzed how hyperthermia influences tumor immunology and improves the efficacy of ICI. Hyperthermia can trigger a series of multifactorial molecular cascade reactions between tumors and immunization and can significantly induce cytological modifications within the tumor microenvironment (TME). The pharmacological potency of ICIs can be enhanced greatly through the immunomodulatory amelioration of immunosuppression, and the activation of immunostimulation. Emerging clinical trials outcome regarding HIT have verified and enriched the theoretical foundation of synergistic sensitization. CONCLUSION: HIT research is now starting to transition from preclinical studies to clinical investigations. Several HIT sensitization mechanisms have been reflected and demonstrated as significant survival benefits for patients through pioneering clinical trials. Further studies into the theoretical basis and practical standards of HIT, combined with larger-scale clinical studies involving more cancer types, will be necessary for the future.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Radioimunoterapia , Imunoterapia/efeitos adversos , Microambiente Tumoral
10.
Theranostics ; 12(18): 7821-7852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451865

RESUMO

Clinical cancer immunotherapies are usually impeded by tumor immunosuppression driven by tumor associated macrophages (TAMs). Thus, TAMs can be considered as a promising therapeutic target for improved immunotherapy, and TAMs-focused molecular targeting agents have made ideal progress in clinical practice. Even so, most TAMs-targeting agents still cannot cover up their own shortcomings as free drugs. The emergence of multifunctional nanomaterials can expectedly endow these therapeutic cargoes with high solubility, favorable pharmacokinetic distribution, cell-specific delivery, and controlled release. Here, the underlying mechanisms of tumor immunosuppression caused by TAMs are first emphatically elucidated, and then the basic design of TAMs-focused immune-nanomedicines are discussed, mainly including diverse categories of nanomaterials, targeted and stimulus-responsive modifications, and TAM imaging in nanomedicines. A summary of current TAMs-targeting immunotherapeutic mechanisms based on functional nanomedicines for TAMs elimination and/or repolarization is further presented. Lastly, some severe challenges related to functional nanomedicines for TAMs-focused cancer immunotherapy are proposed, and some feasible perspectives on clinical translation of TAMs-associated anticancer immunonanomedicines are provided. It is hoped that, with rapid development of nanomedicine in cancer immunotherapy, TAMs-focused therapeutic strategies may be anticipated to become an emerging immunotherapeutic modality for future clinical cancer treatment.


Assuntos
Nanoestruturas , Neoplasias , Nanomedicina , Macrófagos Associados a Tumor , Imunoterapia , Terapia de Imunossupressão , Neoplasias/terapia
11.
Front Genet ; 13: 810681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222534

RESUMO

Background: Aberrant regulation of suprabasin (SBSN) is associated with the development of cancer and immune disorders. SBSN influences tumor cell migration, proliferation, angiogenesis, and immune resistance. In this study, we investigated the potential correlation between SBSN expression and immune infiltration in thyroid cancer. Methods: The expression of SBSN in 80 papillary thyroid carcinoma (PTC) specimens was determined using quantitative reverse-transcription polymerase chain reaction, western blotting, and immunohistochemical staining. The expression of SBSN in 9 cases of poorly differentiated thyroid carcinoma (PDTC) and 18 cases of anaplastic thyroid carcinoma (ATC) was evaluated by immunohistochemical staining. Comprehensive bioinformatics analysis of SBSN expression was performed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and the relationship of SBSN expression with M2 macrophages and T regulatory cells (Tregs) in ATC and PTC was verified by immunohistochemical staining. Results: Compared with those in adjacent normal tissues, the expression levels of SBSN mRNA and protein were significantly higher in PTC tissues. SBSN expression level was correlated with that of cervical lymph node metastasis in PTC patients. Immunohistochemical staining results showed statistically significant differences among high-positive expression rates of SBSN in PTC, PDTC, and ATC. Functional enrichment analysis showed that SBSN expression was associated with pathways related to cancer, cell signaling, and immune response. Furthermore, analysis of the tumor microenvironment (using CIBERSORT-ABS and xCell algorithms) showed that SBSN expression affected immune cell infiltration and the cancer immunity cycle, and immunohistochemistry confirmed a significant increase in M2 macrophage and Treg infiltration in tumor tissues with high-positive SBSN expression. Conclusion: These findings reveal that SBSN may be involved in thyroid carcinogenesis, tumor dedifferentiation progression, and immunosuppression as an important regulator of tumor immune cell infiltration.

12.
Front Oncol ; 12: 1031174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686775

RESUMO

Introduction: Advanced age and obesity are independent risk and progression factors for triple negative breast cancer (TNBC), which presents significant public health concerns for the aging population and its increasing burden of obesity. Due to parallels between advanced age- and obesityrelated biology, particularly adipose inflammation, we hypothesized that advanced age and obesity each accelerate mammary tumor growth through convergent, and likely interactive, mechanisms. Methods: To test this hypothesis, we orthotopically transplanted murine syngeneic TNBC cells into the mammary glands of young normoweight control (7 months), young diet-induced obese (DIO), aged normoweight control (17 months), and aged DIO female C57BL/6J mice. Results: Here we report accelerated tumor growth in aged control and young DIO mice, compared with young controls. Transcriptional analyses revealed, with a few exceptions, overlapping patterns of mammary tumor inflammation and tumor immunosuppression in aged control mice and young DIO mice, relative to young controls. Moreover, aged control and young DIO tumors, compared with young controls, had reduced abundance ofcytotoxic CD8 T cells. Finally, DIO in advanced age exacerbated mammary tumor growth, inflammation and tumor immunosuppression. Discussion: These findings demonstrate commonalities in the mechanisms driving TNBC in aged and obese mice, relative to young normoweight controls. Moreover, we found that advanced age and DIO interact to accelerate mammary tumor progression. Given the US population is getting older and more obese, age- and obesity-related biological differences will need to be considered when developing mechanism-based strategies for preventing or controlling breast cancer.

13.
J Nanobiotechnology ; 19(1): 428, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34923976

RESUMO

Molybdenum oxide (MoOx) nanosheets have drawn increasing attention for minimally invasive cancer treatments but still face great challenges, including complex modifications and the lack of efficient accumulation in tumor. In this work, a novel multifunctional degradable FA-BSA-PEG/MoOx nanosheet was fabricated (LA-PEG and FA-BSA dual modified MoOx): the synergistic effect of PEG and BSA endows the nanosheet with excellent stability and compatibility; the FA, a targeting ligand, facilitates the accumulation of nanosheets in the tumor. In addition, DTX, a model drug for breast cancer treatment, was loaded (76.49%, 1.5 times the carrier weight) in the nanosheets for in vitro and in vivo antitumor evaluation. The results revealed that the FA-BSA-PEG/MoOx@DTX nanosheets combined photothermal and chemotherapy could not only inhibit the primary tumor growth but also suppress the distant tumor growth (inhibition rate: 51.7%) and lung metastasis (inhibition rate: 93.6%), which is far more effective compared to the commercial Taxotere®. Exploration of the molecular mechanism showed that in vivo immune response induced an increase in positive immune responders, suppressed negative immune suppressors, and established an inflammatory tumor immune environment, which co-contributes towards effective suppression of tumor and lung metastasis. Our experiments demonstrated that this novel multifunctional nanosheet is a promising platform for combined chemo-photothermal therapy.


Assuntos
Materiais Biocompatíveis/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Molibdênio/química , Nanoestruturas/uso terapêutico , Óxidos/química , Animais , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Ácido Fólico/química , Humanos , Hipertermia Induzida , Raios Infravermelhos , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Nanoestruturas/toxicidade , Polietilenoglicóis/química , Soroalbumina Bovina/química , Ácido Tióctico/química , Distribuição Tecidual
14.
Cancer Lett ; 522: 32-43, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520819

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzing the conversion of tryptophan (Trp) to kynurenine (Kyn) in kynurenine pathway (KP) is involved in the immunosuppression in pancreatic cancer (PC), but the value of IDO1 as an independent prognostic marker for PC is uncertain. Moreover, the correlation between tryptophan 2,3-dioxygenase (TDO), an isozyme of IDO1, and PC is largely unknown. Using TCGA database, the correlation between IDO1 and/or TDO expression and PC patients' survival was analyzed. The expressions of IDO1 and TDO in PC cells and PC mice were examined. The effects of IDO1, TDO or dual inhibition on IDO1 and TDO effector pathway (Aryl hydrocarbon receptor, AhR) and on migration and invasion of PC cells were investigated. The block effect of IDO1/TDO dual inhibitor RY103 on KP was evaluated. The preclinical efficacy of RY103 and its immunomodulatory effect on KPIC orthotopic PC mice and Pan02 tumor-bearing mice were explored. Results showed that IDO1/TDO co-expression is an independent prognostic marker for PC. RY103 can significantly block KP and target Kyn-AhR pathway to blunt the migration and invasion of PC cells, exhibit preclinical efficacy and ameliorate IDO1/TDO-mediated immunosuppression in PC mice.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/genética , Compostos Orgânicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Receptores de Hidrocarboneto Arílico/genética , Triptofano Oxigenase/genética , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Cinurenina/biossíntese , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Compostos Orgânicos/uso terapêutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Triptofano Oxigenase/antagonistas & inibidores , Neoplasias Pancreáticas
15.
Pharmgenomics Pers Med ; 14: 591-599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079334

RESUMO

PURPOSE: Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin's lymphoma and of which the prognosis of activated B-cell-like (ABC) subtype is poor. Although R-CHOP significantly improves the survival of patients with DLBCL, 20% to 40% of patients were resistant to R-CHOP therapy. Thus, screening for candidate therapeutic targets for R-CHOP resistant patients is urgent. The previous researches have shown that CD24 is related to the development, invasion, and metastasis of cancer. Our project aims to clarify the relationship between CD24 and ABC-DLBCL. PATIENTS AND METHODS: The expression of CD24 mRNA in 118 ABC-DLBCL cases treated with R-CHOP was detected by RNAscope, and the relationship between CD24 expression and R-CHOP treatment response was analyzed. The correlation between CD24 expression and treatment efficiency was further analyzed by data downloaded from the Gene Expression Omnibus (GEO) database. The association between CD24 expression and immune response was conducted using Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) methodology and Gene Ontology (GO) biological process (BP) analysis. RESULTS: The positive expression rate of CD24 mRNA in ABC-DLBCL patients was 38.1% (45/118). Complete Response (CR) rate was significantly higher in patients with CD24 high expression than those with CD24 low expression (P=0.039; 44.4% vs 26.0%). CR rate was significantly different between CD24 high and low expression groups in the analysis of GEO datasets (P=0.003; 83.2% vs 58.0%). The CD24 high expression patients had significantly lower proportions of T cells and nonspecific immune cells in the CIBERSORT analysis. In addition, T-helper 2 cell differentiation and monocyte chemotaxis were repressed in CD24 high expression group in the GO BP analysis. CONCLUSION: CD24 was correlated with better R-CHOP treatment response and tumor immunosuppression in ABC-DLBCL. CD24 may be a promising signal in treatment and prognosis evaluation in ABC-DLBCL patients.

16.
Int Immunopharmacol ; 97: 107682, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33895480

RESUMO

Macrophages are important immune cells in the tumor microenvironment and can be divided into two polarized subtypes, M1 and M2. M1 type macrophages have anti-tumor effects, while M2 type macrophages have pro-tumor effect. Most of the current researches are limited to the effect of M1 or M2 macrophages on tumors, while ignoring the overall balance of macrophages. Our research suggests that the macrophage balance fraction (MBF) can more effectively and comprehensively reflect the balance of tumor associated macrophages. Using bioinformatics analysis and in vitro experiments, we found that MBF is also an effective indicator of the degree of immunosuppression and metastatic ability of breast cancer, and different MBF environment can impact the migration and invasion ability of breast cancer cells. Finally, we also found that the mechanism of MBF changes in breast cancer may be affected by breast cancer-derived exosomes. In summary, MBF was proposed and validated as a novel indicator of macrophage balance state. Using this indicator, we found that the balance of macrophages can affect the degree of immunosuppression and metastatic ability of breast cancer.


Assuntos
Neoplasias da Mama/imunologia , Macrófagos/imunologia , Evasão Tumoral , Mama/imunologia , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Biologia Computacional , Metilação de DNA/imunologia , Exossomos/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Macrófagos/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Intervalo Livre de Progressão , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
Transl Cancer Res ; 10(8): 3829-3842, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35116681

RESUMO

OBJECTIVE: We summarize the aberrant lipid metabolism disorders associated with enzyme activity and expression changes and related immune microenvironment for gastric cancer. BACKGROUND: Gastric cancer is a malignant tumor of the primary digestive system with high incidence, poor prognosis characterized by extensive metastasis and poor effect with radiotherapy and chemotherapy. One of the most important metabolic characteristics of cancer cells is lipid metabolism reprogramming to adapt to the tumor micro-environment. METHODS: The focus of research in recent years has also been on lipid metabolism disorders, particularly aberrant metabolism of fatty acids (FAs) in gastric cancer cells, as well as an upregulation of the expression and activity of key enzymes in lipid metabolism. These changes remind us of the occurrence and development of gastric cancer. These metabolic changes are not unique to cancer cells. Changes in metabolic procedures also determine the function and viability of immune cells. In the immune microenvironment of gastric cancer, the metabolic competition and interaction between cancer cells and immune cells are not very clear, while a deeper understanding of the topic is critical to targeting the differential metabolic requirements of them that comprise an immune response to cancer offers an opportunity to selectively regulate immune cell function. CONCLUSIONS: Recent research suggests that targeting metabolism is an emerging and potentially promising treatment strategy for gastric cancer patients. We need to explore it further.

18.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867034

RESUMO

While T cell-based cancer immunotherapies have shown great promise, there remains a need to understand how individual metastatic tumor environments impart local T cell dysfunction. At advanced stages, cancers that metastasize to the pleural space can result in a malignant pleural effusion (MPE) that harbors abundant tumor and immune cells, often exceeding 108 leukocytes per liter. Unlike other metastatic sites, MPEs are readily and repeatedly accessible via indwelling catheters, providing an opportunity to study the interface between tumor dynamics and immunity. In the current study, we examined CD8+ T cells within MPEs collected from patients with heterogeneous primary tumors and at various stages in treatment to determine (1) if these cells possess anti-tumor activity following removal from the MPE, (2) factors in the MPE that may contribute to their dysfunction, and (3) the phenotypic changes in T cell populations that occur following ex vivo expansion. Co-cultures of CD8+ T cells with autologous CD45- tumor containing cells demonstrated cytotoxicity (p = 0.030) and IFNγ production (p = 0.003) that inversely correlated with percent of myeloid derived suppressor cells, lactate, and lactate dehydrogenase (LDH) within the MPE. Ex vivo expansion of CD8+ T cells resulted in progressive differentiation marked by distinct populations expressing decreased CD45RA, CCR7, CD127, and increased inhibitory receptors. These findings suggest that MPEs may be a source of tumor-reactive T cells and that the cellular and acellular components suppress optimal function.


Assuntos
Linfócitos T CD8-Positivos/citologia , Técnicas de Cocultura/métodos , Interferon gama/metabolismo , Neoplasias/patologia , Derrame Pleural Maligno/patologia , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa de Receptor de Interleucina-7/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Estadiamento de Neoplasias , Neoplasias/complicações , Neoplasias/imunologia , Derrame Pleural Maligno/etiologia , Derrame Pleural Maligno/imunologia , Receptores CCR7/metabolismo , Células Tumorais Cultivadas
19.
Cell Rep ; 29(10): 2998-3008.e8, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801068

RESUMO

Regulatory T cells (Tregs) can impair anti-tumor immune responses and are associated with poor prognosis in multiple cancer types. Tregs in human tumors span diverse transcriptional states distinct from those of peripheral Tregs, but their contribution to tumor development remains unknown. Here, we use single-cell RNA sequencing (RNA-seq) to longitudinally profile dynamic shifts in the distribution of Tregs in a genetically engineered mouse model of lung adenocarcinoma. In this model, interferon-responsive Tregs are more prevalent early in tumor development, whereas a specialized effector phenotype characterized by enhanced expression of the interleukin-33 receptor ST2 is predominant in advanced disease. Treg-specific deletion of ST2 alters the evolution of effector Treg diversity, increases infiltration of CD8+ T cells into tumors, and decreases tumor burden. Our study shows that ST2 plays a critical role in Treg-mediated immunosuppression in cancer, highlighting potential paths for therapeutic intervention.


Assuntos
Interleucina-33/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Tolerância Imunológica/imunologia , Terapia de Imunossupressão/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Microambiente Tumoral/imunologia
20.
Front Immunol ; 10: 1790, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417563

RESUMO

Malignant cells acquire physiological mechanisms of immunosuppression to escape immune surveillance. Strategies to counteract this suppression could help to improve adoptive immunotherapy regimen. The intracellular second messenger cyclic AMP (cAMP) acts as a potent immunosuppressive signaling molecule in T-cells and is up-regulated by multiple tumor-relevant suppressive factors including prostaglandin E2 (PGE2), adenosine and the functions of regulatory T-cells. Consequently, we aimed to abrogate cAMP signaling in human T-cells by ectopic overexpression of phosphodiesterase 4A (PDE4A). We could show that retroviral transduction of PDE4A into T-cells led to efficient degradation of cAMP in response to induction of adenylate cyclase. Retroviral transduction of PDE4A into CD4+ and CD8+ T-cells restored proliferation, cytokine secretion as well as cytotoxicity under immunosuppression by PGE2 and A2A-R agonists. PDE4A-transgenic T-cells were also partially protected from suppression by regulatory T-cells. Furthermore, PGE2-mediated upregulation of the inhibitory surface markers CD73 and CD94 on CD8+ T-cells was efficiently counteracted by PDE4A. Importantly, no differences in the functionality under non-suppressive conditions between PDE4A- and control-vector transduced T-cells were observed, indicating that PDE4A does not interfere with T-cell activation per se. Similarly, expression of surface markers associated with T-cell exhaustion were not influenced by PDE4A overexpression in long term cultures. Thus, we provide first in vitro evidence that PDE4A can be exploited as immune checkpoint inhibitor against multiple suppressive factors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , AMP Cíclico/imunologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Tolerância Imunológica , Linfócitos T Reguladores/imunologia , AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Dinoprostona/genética , Dinoprostona/imunologia , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA