Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Clin Transl Med ; 14(8): e1784, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135292

RESUMO

BACKGROUND: The modification of N6-methyladenosine (m6A) plays a pivotal role in tumor by altering both innate and adaptive immune systems through various pathways, including the regulation of messenger RNA. The YTH domain protein family, acting as "readers" of m6A modifications, affects RNA splicing, stability, and immunogenicity, thereby playing essential roles in immune regulation and antitumor immunity. Despite their significance, the impact of the YTH domain protein family on tumor initiation and progression, as well as their involvement in tumor immune regulation and therapy, remains underexplored and lacks comprehensive review. CONCLUSION: This review introduces the molecular characteristics of the YTH domain protein family and their physiological and pathological roles in biological behavior, emphasizing their mechanisms in regulating immune responses and antitumor immunity. Additionally, the review discusses the roles of the YTH domain protein family in immune-related diseases and tumor resistance, highlighting that abnormal expression or dysfunction of YTH proteins is closely linked to tumor resistance. KEY POINTS: This review provides an in-depth understanding of the YTH domain protein family in immune regulation and antitumor immunity, suggesting new strategies and directions for immunotherapy of related diseases. These insights not only deepen our comprehension of m6A modifications and YTH protein functions but also pave the way for future research and clinical applications.


Assuntos
Imunomodulação , Imunoterapia , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/imunologia
2.
Cancer Immunol Immunother ; 73(9): 174, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953978

RESUMO

Γδ T cell infiltration into tumours usually correlates with improved patient outcome, but both tumour-promoting and tumoricidal effects of γδ T cells have been documented. Human γδ T cells can be divided into functionally distinct subsets based on T cell receptor (TCR) Vδ usage. Still, the contribution of these different subsets to tumour immunity remains elusive. Here, we provide a detailed γδ T cell profiling in colon tumours, using mass and flow cytometry, mRNA quantification, and TCR sequencing. δ chain usage in both the macroscopically unaffected colon mucosa and tumours varied considerably between patients, with substantial fractions of Vδ1, Vδ2, and non-Vδ1 Vδ2 cells. Sequencing of the Vδ complementarity-determining region 3 showed that almost all non-Vδ1 Vδ2 cells used Vδ3 and that tumour-infiltrating γδ clonotypes were unique for every patient. Non-Vδ1Vδ2 cells from colon tumours expressed several activation markers but few NK cell receptors and exhaustion markers. In addition, mRNA analyses showed that non-Vδ1 Vδ2 cells expressed several genes for proteins with tumour-promoting functions, such as neutrophil-recruiting chemokines, Galectin 3, and transforming growth factor-beta induced. In summary, our results show a large variation in γδ T cell subsets between individual tumours, and that Vδ3 cells make up a substantial proportion of γδ T cells in colon tumours. We suggest that individual γδ T cell composition in colon tumours may contribute to the balance between favourable and adverse immune responses, and thereby also patient outcome.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/genética , Fenótipo , Feminino , Masculino , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Idoso , Pessoa de Meia-Idade , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
3.
Oncoimmunology ; 13(1): 2361971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868078

RESUMO

Colorectal cancer (CRC) raises considerable clinical challenges, including a high mortality rate once the tumor spreads to distant sites. At this advanced stage, more accurate prediction of prognosis and treatment outcome is urgently needed. The role of cancer immunity in metastatic CRC (mCRC) is poorly understood. Here, we explore cellular immune cell status in patients with multi-organ mCRC. We analyzed T cell infiltration in primary tumor sections, surveyed the lymphocytic landscape of liver metastases, and assessed circulating mononuclear immune cells. Besides asking whether immune cells are associated with survival at this stage of the disease, we investigated correlations between the different tissue types; as this could indicate a dominant immune phenotype. Taken together, our analyses corroborate previous observations that higher levels of CD8+ T lymphocytes link to better survival outcomes. Our findings therefore extend evidence from earlier stages of CRC to indicate an important role for cancer immunity in disease control even after metastatic spreading to multiple organs. This finding may help to improve predicting outcome of patients with mCRC and suggests a future role for immunotherapeutic strategies.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Masculino , Feminino , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Idoso , Pessoa de Meia-Idade , Prognóstico , Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Metástase Neoplásica , Adulto
4.
Ups J Med Sci ; 1292024.
Artigo em Inglês | MEDLINE | ID: mdl-38863724

RESUMO

Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population recognized as a key component of the tumour microenvironment (TME). Cancer-associated fibroblasts are known to play an important role in maintaining and remodelling the extracellular matrix (ECM) in the tumour stroma, supporting cancer progression and inhibiting the immune system's response against cancer cells. This review aims to summarize the immunomodulatory roles of CAFs, particularly focussing on their T-cell suppressive effects. Cancer-associated fibroblasts have several ways by which they can affect the tumour's immune microenvironment (TIME). For example, their interactions with macrophages and dendritic cells (DCs) create an immunosuppressive milieu that can indirectly affect T-cell anticancer immunity and enable immune evasion. In addition, a number of recent studies have confirmed CAF-mediated direct suppressive effects on T-cell anticancer capacity through ECM remodelling, promoting the expression of immune checkpoints, cytokine secretion and the release of extracellular vesicles. The consequential impact of CAFs on T-cell function is then reflected in affecting T-cell proliferation and apoptosis, migration and infiltration, differentiation and exhaustion. Emerging evidence highlights the existence of specific CAF subsets with distinct capabilities to modulate the immune landscape of TME in various cancers, suggesting the possibility of their exploitation as possible prognostic biomarkers and therapeutic targets.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Linfócitos T , Microambiente Tumoral , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Matriz Extracelular/metabolismo , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo
5.
J Cell Mol Med ; 28(12): e18504, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923838

RESUMO

Despite remarkable advancements in the treatment of multiple myeloma (MM), relapse remains a challenge. However, the mechanisms underlying this disease remain unclear. This study aimed to identify potential biomarkers that could open new avenues for MM treatment. Microarray data and clinical characteristics of patients with MM were obtained from the Gene Expression Omnibus database. Differential expression analysis and protein-protein interaction (PPI) network construction were used to identify hub genes associated with MM. Predictive performance was further assessed using receiver operating characteristic curves and nomogram construction. Functional enrichment analysis was conducted to investigate possible mechanisms. Mendelian randomization (MR) was used to evaluate the causal relationship between the crucial gene and MM risk. Topological analysis of the PPI network revealed five hub genes associated with MM, with myeloperoxidase (MPO) being the key gene owing to its highest degree and area under the curve values. MPO showed significant differences between patients with MM and controls across all datasets. Functional enrichment analysis revealed a strong association between MPO and immune-related pathways in MM. MR analysis confirmed a causal relationship between MPO and the risk of MM. By integrating microarray analysis and MR, we successfully identified and validated MPO as a promising biomarker for MM that is potentially implicated in MM pathogenesis and progression through immune-related pathways.


Assuntos
Biomarcadores Tumorais , Análise da Randomização Mendeliana , Mieloma Múltiplo , Peroxidase , Mapas de Interação de Proteínas , Mieloma Múltiplo/genética , Humanos , Mapas de Interação de Proteínas/genética , Biomarcadores Tumorais/genética , Peroxidase/genética , Peroxidase/metabolismo , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Curva ROC , Análise em Microsséries , Nomogramas
6.
Cancers (Basel) ; 16(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791926

RESUMO

The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.

7.
Mol Cancer ; 23(1): 75, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582847

RESUMO

Tertiary lymphoid structures (TLS) are clusters of immune cells that resemble and function similarly to secondary lymphoid organs (SLOs). While TLS is generally associated with an anti-tumour immune response in most cancer types, it has also been observed to act as a pro-tumour immune response. The heterogeneity of TLS function is largely determined by the composition of tumour-infiltrating lymphocytes (TILs) and the balance of cell subsets within the tumour-associated TLS (TA-TLS). TA-TLS of varying maturity, density, and location may have opposing effects on tumour immunity. Higher maturity and/or higher density TLS are often associated with favorable clinical outcomes and immunotherapeutic response, mainly due to crosstalk between different proportions of immune cell subpopulations in TA-TLS. Therefore, TLS can be used as a marker to predict the efficacy of immunotherapy in immune checkpoint blockade (ICB). Developing efficient imaging and induction methods to study TA-TLS is crucial for enhancing anti-tumour immunity. The integration of imaging techniques with biological materials, including nanoprobes and hydrogels, alongside artificial intelligence (AI), enables non-invasive in vivo visualization of TLS. In this review, we explore the dynamic interactions among T and B cell subpopulations of varying phenotypes that contribute to the structural and functional diversity of TLS, examining both existing and emerging techniques for TLS imaging and induction, focusing on cancer immunotherapies and biomaterials. We also highlight novel therapeutic approaches of TLS that are being explored with the aim of increasing ICB treatment efficacy and predicting prognosis.


Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Humanos , Inteligência Artificial , Prognóstico , Neoplasias/terapia , Linfócitos B/patologia , Fenótipo , Microambiente Tumoral , Estruturas Linfoides Terciárias/genética , Estruturas Linfoides Terciárias/patologia
8.
Mol Cancer ; 23(1): 73, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581063

RESUMO

T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.


Assuntos
Neoplasias , Linfócitos T , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Imunoterapia , Transdução de Sinais , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética
9.
J Cell Mol Med ; 28(8): e18309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613345

RESUMO

There are hundreds of prognostic models for ovarian cancer. These genes are based on different gene classes, and there are many ways to construct the models. Therefore, this paper aims to build the most stable prognostic evaluation system known to date through 101 machine learning strategies. We combined 101 algorithm combinations with 10 machine learning algorithms to create antigen presentation-associated genetic markers (AIDPS) with outstanding precision and steady performance. The inclusive set of algorithms comprises the elastic network (Enet), Ridge, stepwise Cox, Lasso, generalized enhanced regression model (GBM), random survival forest (RSF), supervised principal component (SuperPC), Cox partial least squares regression (plsRcox), survival support vector machine (Survival-SVM). Then, in the train cohort, the prediction model was fitted using a leave-one cross-validation (LOOCV) technique, which involved 101 different possible combinations of prognostic genes. Seven validation data sets (GSE26193, GSE26712, GSE30161, GSE63885, GSE9891, GSE140082 and ICGC_OV_AU) were compared and analysed, and the C-index was calculated. Finally, we collected 32 published ovarian cancer prognostic models (including mRNA and lncRNA). All data sets and prognostic models were subjected to a univariate Cox regression analysis, and the C-index was calculated to demonstrate that the antigen presentation process should be the core criterion for evaluating ovarian cancer prognosis. In a univariate Cox regression analysis, 22 prognostic genes were identified based on the expression profiles of 283 genes involved in antigen presentation and the intersection of genes (p < 0.05). AIDPS were developed by our machine learning-based integration method, which was applied to these 22 genes. One hundred and one prediction models are fitted using the LOOCV framework, and the C-index is calculated for each model across all validation sets. Interestingly, RSF + Lasso was the best model overall since it had the greatest average C-index and the highest C-index of any combination of models tested on the validated data sets. In comparing external cohorts, we found that the C-index correlated AIDPS method using the RSF + Lasso method in 101 prediction models was in contrast to other features. Notably, AIDPS outperformed the vast majority of models across all data sets. Antigen-presenting anti-tumour immune pathways can be used as a representative gene set of ovarian cancer to track the prognosis of patients with cancer. The antigen-presenting model obtained by the RSF + Lasso method has the best C-INDEX, which plays a key role in developing antigen-presenting targeted drugs in ovarian cancer and improving the treatment outcome of patients.


Assuntos
Apresentação de Antígeno , Neoplasias Ovarianas , Humanos , Feminino , Apresentação de Antígeno/genética , Neoplasias Ovarianas/genética , Algoritmos , Sistemas de Liberação de Medicamentos
10.
Autoimmunity ; 57(1): 2321908, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38466182

RESUMO

Macrophages play a crucial role in tumor initiation and progression, while macrophage-associated gene signature in colorectal cancer (CRC) patients has not been investigated. Our study aimed to identify macrophage-related molecular subgroups and develop a macrophage-related risk model to predict CRC prognosis. The mRNA expression profile and clinical information of CRC patients were obtained from TCGA and GEO databases. CRC patients from TCGA were divided into high and low macrophage subgroups based on the median macrophage score. The ESTIMATE and CIBERSORT algorithms were used to assess immune cell infiltration between subgroups. GSVA and GSEA analyses were performed to investigate differences in enriched pathways between subgroups. Univariate and LASSO Cox regression were used to build a prognostic risk model, which was further validated in the GSE39582 dataset. A high macrophage score subgroup was associated with poor prognosis, highly activated immune-related pathways and an immune-active microenvironment. A total of 547 differentially expressed macrophage-related genes (DEMRGs) were identified, among which seven genes (including RIMKLB, UST, PCOLCE2, ZNF829, TMEM59L, CILP2, DTNA) were identified by COX regression analyses and used to build a risk score model. The risk model shows good predictive and diagnostic values for CRC patients in both TCGA and GSE39852 datasets. Furthermore, multivariate Cox regression analysis showed that the risk score was an independent risk factor for overall survival in CRC patients. Our findings provided a novel insight into macrophage heterogeneity and its immunological role in CRC. This risk score model may serve as an effective prognostic tool and contribute to personalised clinical management of CRC patients.


Assuntos
Neoplasias Colorretais , Biologia Computacional , Humanos , Bases de Dados Factuais , Expressão Gênica , Macrófagos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Microambiente Tumoral/genética
11.
Clin Transl Med ; 14(3): e1620, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38468489

RESUMO

As single-cell RNA sequencing enables the detailed clustering of T-cell subpopulations and facilitates the analysis of T-cell metabolic states and metabolite dynamics, it has gained prominence as the preferred tool for understanding heterogeneous cellular metabolism. Furthermore, the synergistic or inhibitory effects of various metabolic pathways within T cells in the tumour microenvironment are coordinated, and increased activity of specific metabolic pathways generally corresponds to increased functional activity, leading to diverse T-cell behaviours related to the effects of tumour immune cells, which shows the potential of tumour-specific T cells to induce persistent immune responses. A holistic understanding of how metabolic heterogeneity governs the immune function of specific T-cell subsets is key to obtaining field-level insights into immunometabolism. Therefore, exploring the mechanisms underlying the interplay between T-cell metabolism and immune functions will pave the way for precise immunotherapy approaches in the future, which will empower us to explore new methods for combating tumours with enhanced efficacy.


Assuntos
Neoplasias , Linfócitos T , Humanos , Reprogramação Metabólica , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/terapia , Redes e Vias Metabólicas , Microambiente Tumoral
12.
J Ovarian Res ; 17(1): 34, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317200

RESUMO

BACKGROUND: Ovarian cancer (OC) is the most lethal gynecologic malignant tumour. The mechanism promoting OC initiation and progression remains unclear. SET domain bifurcated histone lysine methyltransferase 1(SETDB1) acts as an oncogene in a variety of tumours. This study aims to explore the role of SETDB1 in OC. METHODS: GEO, TCGA, CSIOVDB and CPTAC databases jointly analysed SETDB1 mRNA and protein expression. Effect of SETDB1 expression on the clinical prognosis of OC patients was analysed through online Kaplan‒Meier plotter and CSIOVDB database. Then, the effect of SETDB1 in OC cells progression and mobility was examined using MTT, EdU, colony formation and transwell assay. Additionally, Cistrome DB database was used to visualize the binding of SETDB1 protein and splicing factor 3b subunit 4 (SF3B4) promoter, and dual-luciferase reporter gene assay was performed to confirm the interaction. Finally, bioinformatics analysis was employed to reveal the relationship between SETDB1 and the microenvironment of OC. RESULTS: In the present study, we found that SETDB1 was obviously upregulated in OC and its overexpression predicted poor prognosis of OC patients. Then, we verified that SETDB1 promoted the progression and motility of OC cells in vitro. Knockdown of SETDB1 had the opposite effect. Further research showed that SETDB1 acted as a transcription factor to activate SF3B4 expression. SF3B4 knockdown impaired the effect of SETDB1 to promote the proliferative capacity and motility of OC cells. Finally, the results of bioinformatics analysis confirmed that SETDB1 regulated the immune microenvironment of ovarian cancer. CONCLUSION: SETDB1 promoted ovarian cancer progression by upregulating the expression of SF3B4 and inhibiting the tumour immunity. SETDB1 may be a promising prognostic and therapeutic marker for OC.


Assuntos
Histona-Lisina N-Metiltransferase , Neoplasias Ovarianas , Fatores de Processamento de RNA , Feminino , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Fatores de Processamento de RNA/genética , Microambiente Tumoral , Regulação para Cima
13.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339054

RESUMO

Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the beneficial effects of post-transplant cyclophosphamide (PTCy) in a humanised mouse model of GVHD, without comprising GVL immunity. NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice were injected with human peripheral blood mononuclear cells (PBMCs) (Day 0), then with cyclophosphamide (33 mg/kg) on Days 3 and 4, and with BBG (50 mg/kg) (or saline) on Days 0-10. PTCy with BBG reduced clinical GVHD development like that of PTCy alone. However, histological analysis revealed that the combined treatment reduced liver GVHD to a greater extent than PTCy alone. Flow cytometric analyses revealed that this reduction in liver GVHD by PTCy with BBG corresponded to an increase in human splenic CD39+ Tregs and a decrease in human serum interferon-γ concentrations. In additional experiments, humanised NSG mice, following combined treatment, were injected with human THP-1 acute myeloid leukaemia cells on Day 14. Flow cytometric analyses of liver CD33+ THP-1 cells showed that PTCy with BBG did not mitigate GVL immunity. In summary, PTCy combined with BBG can reduce GVHD without compromising GVL immunity. Future studies investigating P2X7 antagonism in combination with PTCy may lead to the development of novel treatments that more effectively reduce GVHD in allogeneic HSCT patients without promoting leukaemia relapse.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Corantes de Rosanilina , Humanos , Animais , Camundongos , Leucócitos Mononucleares , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/tratamento farmacológico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Ciclofosfamida/uso terapêutico , Leucemia/tratamento farmacológico , Estudos Retrospectivos
14.
J Drug Target ; 31(10): 1050-1064, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962291

RESUMO

Therapy on lipid metabolism is emerging as a groundbreaking cancer treatment, offering the unprecedented opportunity to effectively treat and in several cases. Tumorigenesis is inextricably linked to lipid metabolism. In this regard, the features of lipid metabolism include lipid synthesis, decomposition, metabolism and lipid storage and mobilisation from intracellular lipid droplets. Most importantly, the regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects. Different cancers and immune cells have different dependence on lipid metabolism, playing a pivotal role in differentiation and function of immune cells. However, what lies before the immunotherapy targeting lipid metabolism is side effects of systemic toxicity and defects of individual drugs, which strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies. This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells and their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.HighlightsThe regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects.Preparations of focusing lipid metabolism have side effects of systemic toxicity and defects of individual drugs. It strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies.This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells as well as their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Metabolismo dos Lipídeos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia , Lipídeos , Microambiente Tumoral
15.
Br J Pharmacol ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030588

RESUMO

BACKGROUND AND PURPOSE: Triple-negative breast cancer (TNBC) has poorer outcomes than other breast cancers (BC), including HER2+ BC. Cathepsin D (CathD) is a poor prognosis marker overproduced by BC cells, hypersecreted in the tumour microenvironment with tumour-promoting activity. Here, we characterized the immunomodulatory activity of the anti-CathD antibody F1 and its improved Fab-aglycosylated version (F1M1) in immunocompetent mouse models of TNBC (C57BL/6 mice harbouring E0771 cell grafts) and HER2-amplified BC (BALB/c mice harbouring TUBO cell grafts). EXPERIMENTAL APPROACH: CathD expression was evaluated by western blotting and immunofluorescence, and antibody binding to CathD by ELISA. Antibody anti-tumour efficacy was investigated in mouse models. Immune cell recruitment and activation were assessed by immunohistochemistry, immunophenotyping, and RT-qPCR. KEY RESULTS: F1 and F1M1 antibodies remodelled the tumour immune landscape. Both antibodies promoted innate antitumour immunity by preventing the recruitment of immunosuppressive M2-polarized tumour-associated macrophages (TAMs) and by activating natural killer cells in the tumour microenvironment of both models. This translated into a reduction of T-cell exhaustion markers in the tumour microenvironment that could be locally supported by enhanced activation of anti-tumour antigen-presenting cell (M1-polarized TAMs and cDC1 cells) functions. Both antibodies inhibited tumour growth in the highly-immunogenic E0771 model, but only marginally in the immune-excluded TUBO model, indicating that anti-CathD immunotherapy is more relevant for BC with a high immune cell infiltrate, as often observed in TNBC. CONCLUSION AND IMPLICATION: Anti-CathD antibody-based therapy triggers the anti-tumour innate and adaptive immunity in preclinical models of BC and is a promising immunotherapy for immunogenic TNBC.

16.
Front Biosci (Landmark Ed) ; 28(9): 230, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37796706

RESUMO

BACKGROUND: Epigenetic modifications, such as transcription, DNA repair, and replication significantly influence tumour development. Aberrant gene expression and modifications can have a crucial impact on the initiation and progression of tumours. The minichromosome maintenance (MCM) protein family, which is responsible for DNA synthesis, plays a crucial role in tumorigenesis and chemotherapy resistance by regulating the cell cycle and DNA replication stress. Recent studies have shown that dysregulation of the MCMs can lead to these negative outcomes. This study aimed to examine the role of the MCM proteins in DNA synthesis in 33 types of cancers. METHODS: Various public databases were used to examine the expression, methylation regulation, mutations, and functions of eight MCM proteins (MCM2-9) in pan-cancer. The study investigated the correlation between abnormal MCM expression and clinical outcomes, including prognosis and drug response. The microRNA-mRNA network upstream of the MCM genes and the downstream signalling pathways were extensively investigated to determine the molecular mechanisms that drive tumour development. RESULTS: The study found that the MCM gene expressions differed depending on the type of cancer; high MCM gene expression was linked to poor overall survival in most cancers. Additionally, MCM gene expression was associated with various immunological features and drug sensitivity. These findings offer important insights for the development of targeted cancer therapies. CONCLUSIONS: Altogether, this study reveals that the MCM genes are differentially expressed across various cancers and are associated with clinical prognoses. These genes may influence the occurrence and development of tumours through several pathways, including the PI3K-AKT, PAS/MAPK and TSC/mTOR signalling pathways and immune-related pathways.


Assuntos
Multiômica , Neoplasias , Humanos , Fosfatidilinositol 3-Quinases , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Neoplasias/genética , DNA , Proteínas de Ciclo Celular/genética
17.
Bioessays ; 45(7): e2300045, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147791

RESUMO

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is central for the initiation of anti-tumoural immune responses. Enormous effort has been made to optimise the design and administration of STING agonists to stimulate tumour immunogenicity. However, in certain contexts the cGAS-STING axis fuels tumourigenesis. Here, we review recent findings on the regulation of cGAS expression and activity. We particularly focus our attention on the DNA-dependent protein kinase (DNA-PK) complex, that recently emerged as an activator of inflammatory responses in tumour cells. We propose that stratification analyses on cGAS and DNA-PK expression/activation status should be carried out to predict treatment efficacy. We herein also provide insights into non-canonical functions borne by cGAS and cGAMP, highlighting how they may influence tumourigenesis. All these parameters should be taken into consideration concertedly to choose strategies aiming to effectively boost tumour immunogenicity.


Assuntos
Neoplasias , Proteínas Quinases , Humanos , Carcinogênese , DNA , Neoplasias/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Animais
18.
Int Immunopharmacol ; 118: 109987, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36924564

RESUMO

INTRODUCTION: Glioblastoma is a primary intracranial tumour with extremely high disability and fatality rates among adults. Existing diagnosis and treatment methods have not significantly improved the overall poor prognosis of patients. Nifuroxazide, an oral antibiotic, has been reported to act as a tumour suppressor in a variety of tumours and to participate in the process of antitumour immunity. However, whether it can inhibit the growth of glioma is still unclear. METHODS: We explored the potential mechanism of nifuroxazide inhibiting the growth of glioblastoma cells through in vitro and in vivo experiments. RESULTS: nifuroxazide can inhibit the proliferation of glioblastoma cells, promote G2 phase arrest, induce apoptosis, and inhibit epithelial-mesenchymal transition through the MAP3K1/JAK2/STAT3 pathway. Similarly, clinical sample analysis confirmed that MAP3K1 combined with STAT3 can affect the prognostic characteristics of patients with glioma. In addition, nifuroxazide can drive the M1 polarization of microglioma cells, inhibit the expression of CTLA4 and PD-L1 in tumour cells, and promote the infiltration of CD8 T cells to exert antitumour effects. Combination treatment with PD-L1 inhibitors can significantly prolong the survival time of mice. CONCLUSION: we found that nifuroxazide can inhibit the growth of glioblastoma and enhance antitumour immunity. Thus, nifuroxazide is an effective drug for the treatment of glioblastoma and has great potential for clinical application.


Assuntos
Glioblastoma , Nitrofuranos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Nitrofuranos/farmacologia , Nitrofuranos/uso terapêutico , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/uso terapêutico , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral
19.
Clin Exp Pharmacol Physiol ; 50(5): 353-368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36786378

RESUMO

Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resveratrol/farmacologia , Células Matadoras Naturais , Imunidade
20.
Semin Immunol ; 66: 101726, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758378

RESUMO

Conventional dendritic cells type 1 (cDC1) are critical for inducing protective CD8+ T cell responses to tumour and viral antigens. In many instances, cDC1 access those antigens in the form of material internalised from dying tumour or virally-infected cells. How cDC1 extract dead cell-associated antigens and cross-present them in the form of peptides bound to MHC class I molecules to CD8+ T cells remains unclear. Here we review the biology of dendritic cell natural killer group receptor-1 (DNGR-1; also known as CLEC9A), a C-type lectin receptor highly expressed on cDC1 that plays a key role in this process. We highlight recent advances that support a function for DNGR-1 signalling in promoting inducible rupture of phagocytic or endocytic compartments containing dead cell debris, thereby making dead cell-associated antigens accessible to the endogenous MHC class I processing and presentation machinery of cDC1. We further review how DNGR-1 detects dead cells, as well as the functions of the receptor in anti-viral and anti-tumour immunity. Finally, we highlight how the study of DNGR-1 has opened new perspectives into cross-presentation, some of which may have applications in immunotherapy of cancer and vaccination against viral diseases.


Assuntos
Apresentação Cruzada , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Receptores Imunológicos , Antígenos/metabolismo , Células Dendríticas , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA