Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121805, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018859

RESUMO

Sulfurized nanoscale zero-valent iron supported on biochar (BC-SNZVI) has been successfully synthesized for 2,4,6-trichlorophenol (2,4,6-TCP) removal, while was only effectively under acidic conditions. To obtain highly efficient removal of 2,4,6-TCP within a broader pH range, weak static magnetic fields (WMF) was applied in BC-SNZVI/2,4,6-TCP aqueous systems. Results showed 30 mT WMF supported the most extensive 2,4,6-TCP removal, and 87.4% of 2,4,6-TCP (initial concentration of 30 mg/L) was removed by 0.5 g/L BC-SNZVI at neutral pH (pH = 6.8) within 180 min, which was increased by 54.4% compared to that without WMF. The observed rate constant (Kobs) under 30 mT WMF was 2.1-fold greater than that without WMF. Although three typical anions (NO3- (0.5-10.0 mM), H2PO4- (0.05-0.5 mM), and HCO3- (0.5-5.0 mM)) still inhibited 2,4,6-TCP removal, WMF could efficiently alleviate the inhibitory effects. Moreover, 73.1% of 2,4,6-TCP was successfully removed by BC-SNZVI under WMF in natural water. WMF remarkably boosted the dechlorination of 2,4,6-TCP, increasing the 2,4,6-TCP dechlorination efficiency from 45.2% (in the absence of WMF) to 83.8% (in the presence of WMF) by the end of 300 min. And the complete dechlorination product phenol appeared within 10 min. Force analysis confirmed the magnetic field gradient force (FB) moved paramagnetic Fe2+ at the SNZVI surface along the direction perpendicular to the external applied field, promoting the mass-transfer controlled SNZVI corrosion. Corrosion resistance analysis revealed WMF promoted the electron-transfer controlled SNZVI corrosion by decreasing its self-corrosion potential (Ecorr). With the introduction of sulfur, the magnitude of FB doubled and the Ecorr decreased comparing with NZVI. Our findings provide a facile and viable strategy for treating chlorinated phenols at neutral pH.


Assuntos
Carvão Vegetal , Clorofenóis , Ferro , Carvão Vegetal/química , Ferro/química , Clorofenóis/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Campos Magnéticos
2.
Environ Res ; 195: 110751, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33472042

RESUMO

Understanding the formation and transformation of radicals generated by a low pressure mercury lamp emitting both 254 nm ultraviolet (UV254) and 185 nm vacuum UV (VUV185) is currently challenging due to the complexity of concurrent redox reactions occurring in this complex system. Because hydrogen peroxide (H2O2) is a common product of both oxidizing and reducing radicals generated during the VUV irradiation process, monitoring the variations in H2O2 levels can help us better understand the presence and relative dominance of different radicals. In this study, we systematically evaluated the effects of several selected anions on the formation of H2O2 under a variety of pH and dissolved oxygen (DO) conditions. Results show that although addition of these anions inhibited the formation of H2O2, their H2O2-inhibition mechanisms are markedly different. At low concentrations (≤1.0 mg/L), chloride reduced the generation of H2O2 primarily by consuming hydroxyl radicals (•OH); however, in high concentrations (11.0 mg/L), its light-screening effect was dominant. In comparison, the presence of bromide (≤1.0 mg/L) inhibited H2O2 formation mainly by reacting rapidly with both •OH and H2O2. Carbonate and phosphorous species exerted influence mainly by consuming •OH. Along with irradiation, increasing pH significantly decreased H2O2 levels, confirming that H2O2 was formed mainly by •OH. In contrast, raising DO did not raise H2O2 maximum yields, confirming that reducing radicals like aqueous electrons (e-aq) and hydrogen atoms (•H) are not the key precursors of H2O2 in this process. Mathematically, the evolutions of H2O2 can be reliably modeled (R2 ≥ 0.80) using a kinetics model incorporating H2O2 formation and decomposition kinetics. The results of this study may contribute to better understanding the use of VUV technology in water/wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Radical Hidroxila , Oxirredução , Raios Ultravioleta , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA