Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998380

RESUMO

Ultra High-Performance Concrete (UHPC) is a cement-based composite material with great strength and durability. Fibers can effectively increase the ductility, strength, and fracture energy of UHPC. This work describes the impacts of individual or hybrid doping of basalt fiber (BF) and steel fiber (SF) on the mechanical properties and microstructure of UHPC. We found that under individual doping, the effect of BF on fluidity was stronger than that of SF. Moreover, the compressive, flexural, and splitting tensile strength of UHPC first increased and then decreased with increasing BF dosage. The optimal dosage of BF was 1%. At a low content of fiber, UHPC reinforced by BF demonstrated greater flexural strength than that reinforced by SF. SF significantly improved the toughness of UHPC. However, a high SF dosage did not increase the strength of UHPC and reduced the splitting tensile strength. Secondly, under hybrid doping, BF was partially substituted for SF to improve the mechanical properties of hybrid fiber UHPC. Consequently, when the BF replacement rate increased, the compressive strength of UHPC gradually decreased; on the other hand, there was an initial increase in the fracture energy, splitting tensile strength, and flexural strength. The ideal mixture was 0.5% BF + 1.5% SF. The fluidity of UHPC with 1.5% BF + 0.5% SF became the lowest with a constant total volume of 2%. The microstructure of hydration products in the hybrid fiber UHPC became denser, whereas the interface of the fiber matrix improved.

2.
Materials (Basel) ; 17(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930222

RESUMO

This study delved into the integration of carbon nanotubes (CNTs) in Ultra-High Performance Concrete (UHPC), exploring aspects such as mechanical properties, microstructure analysis, accelerated chloride penetration, and life service prediction. A dispersed CNT solution (0.025 to 0.075 wt%) was employed, along with a superplasticizer, to ensure high flowability in the UHPC slurry. In addition, the combination of high-strength functional artificial lightweight aggregate (ALA) and micro hollow spheres (MHS) was utilized as a replacement for fine aggregate to not only reduce the weight of the concrete but also to increase its mechanical performance. Experimental findings unveiled that an increased concentration of CNT in CNT1 (0.025%) and CNT2 (0.05%) blends led to a marginal improvement in compressive strength compared to the control mix. Conversely, the CNT3 (0.075%) mixture exhibited a reduction in compressive strength with a rising CNT content as an admixture. SEM analysis depicted that the heightened concentration of CNTs as an admixture induced the formation of nanoscale bridges within the concrete matrix. Ponding test results indicated that, for all samples, the effective chloride transport coefficient remained below the standard limitation of 1.00 × 10-12 m2/s, signifying acceptable performance in the ponding test for all samples. The life service prediction outcomes affirmed that, across various environmental scenarios, CNT1 and CNT2 mixtures consistently demonstrated superior performance compared to all other mixtures.

3.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893743

RESUMO

This study investigates utilizing spherical polystyrene (PS) beads as artificial flaws to improve ultrahigh-performance concrete (UHPC) tensile performance using a uniaxial tensile test and explains the corresponding mechanisms by analyzing the internal material structure of UHPC specimens with X-ray CT scanning. With a hooked steel fiber volume fraction of 2%, three PS bead dosages were employed to study tensile behavior changes in dog-bone UHPC specimens. A 33.4% increase in ultimate tensile strength and 174.8% increase in ultimate tensile strain were recorded after adding PS beads with a volume fraction of 2%. To explain this improvement, X-ray CT scanning was utilized to investigate the post-test internal material structures of the dog-bone specimens. AVIZO software was used to analyze the CT information. The CT results revealed that PS beads could not only serve as the artificial flaws to increase the cracking behavior of the matrix of UHPC but also significantly optimize the fiber orientation. The PS beads could serve as stirrers during the mixing process to distribute fiber more uniformly. The test results indicate a relationship between fiber orientation and UHPC tensile strength.

4.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893745

RESUMO

Precast ultra-high-performance concrete (UHPC) has emerged as indispensable in the engineering sector due to its cost-effectiveness and superior performance. Currently, precast UHPC grapples with challenges pertaining to slow setting times and insufficient early strength, largely attributed to its high water-reducing agent content. Effective utilization of early strength agents to augment UHPC's early strength is pivotal in addressing this issue. This study investigates the efficacy of two distinct concrete early strength agents, namely calcium formate (Ca(HCO2)2) and aluminum sulfate (Al2(SO4)3). A UHPC system with a water/cement ratio of 0.17 was used; both single and compound doping experiments were conducted using varied dosages of the aforementioned early strength agents. Our results show that both early strength agents significantly reduce setting time and enhance early strength at appropriate dosages. Specifically, the addition of 0.3% Ca(HCO2)2 led to a 33.07% decrease in setting time for UHPC. Moreover, the incorporation of 0.3% Ca(HCO2)2 and 0.5% Al2(SO4)3 resulted in a strength of 81.9 MPa at 1.5 days, representing a remarkable increase of 118.4%. It is noteworthy that excessive use of Ca(HCO2)2 inhibits the hydration process, whereas an abundance of Al2(SO4)3 diminishes the early strength effect. Simultaneously, this article provides recommendations regarding the dosage of two distinct early strength agents, offering a novel solution for expediting the production of prefabricated UHPC with a low water/cement ratio and high water-reducing agent content.

5.
Materials (Basel) ; 17(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893978

RESUMO

Manufactured sand (MS) is a promising alternative aggregate to quartz sand (QS) in ultra-high-performance concrete (UHPC) in the preparation of ultra-high-performance manufactured sand concrete (UHPMC), which possesses the characteristics of high strength, low cost, and environmental friendliness. In this study, the effects of variable compositional characteristics including the water-binder ratio, the stone powder (SP) content, and the MS replacement ratio on the mechanical and flexural strength of UHPMC were compared and analyzed based on response surface methodology (RSM). Meanwhile, the damage characteristics of UHPMC during compressive and flexural stress were monitored and evaluated using acoustic emission (AE) technology. The results reveal that the compressive and flexural strengths of UHPMC are both negatively correlated with the water-binder ratio, while they are positively correlated with the MS replacement rate. They tend to firstly increase and subsequently decrease with the increase in the stone powder content. In the load-displacement curve of concrete with a high MS replacement ratio and a low water-binder ratio, the slope in the elastic stage is steeper, the stiffness is higher, and the bending toughness and ductility are also better. The specimens with a 10% to 0% stone powder content present a steeper elastic phase slope, a slightly higher stiffness, and superior ductility. The specimens with a low MS replacement ratio and a high water-binder ratio display earlier cracking and weaker resistance, and the destruction process is complex and very unstable. The damage mode analysis based on RA-AF shows that an increase in the MS replacement ratio and a decrease in the water-binder ratio can both reduce the tensile cracking of UHPMC specimens under a four-point bending test. Although 10% stone powder can marginally slow down crack growth, the failure mode is not significantly affected.

6.
Sci Rep ; 14(1): 10903, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740773

RESUMO

Assembly construction is extensively employed in bridge construction due to its ability to accelerate construction and improve quality. To speed the recovery of bridges after major earthquakes, this study proposes an assembled connection for precast piers and footings based on assembly construction. The precast piers are connected to the footings using ultra-high-performance concrete (UHPC) post-cast cupped sockets. Two specimens are tested with a 1:4 scale, namely, the cast-in-place (CIP) specimen and, the UHPC cupped socket pier specimen. Finite element models (FEM) of a continuous girder bridge with cupped socket connections are developed and verified by experimental results. The seismic fragility analysis is conducted to investigate the difference between the cupped socket connection and the CIP connection. The experimental results showed that the plastic hinge was formed on the precast piers and there was little damage to the UHPC sockets. The results of FEA indicate that UHPC cupped socket piers have slightly higher seismic fragility than the seismic fragility of cast-in-place piers. Then, some methods were proposed to reduce the seismic fragility of UHPC cupped socket piers, and their availability was confirmed by comparing them with the seismic fragility of CIP piers. Finally, an example bridge with this connection is introduced to illustrate replacing prefabricated piers after an earthquake.

7.
Materials (Basel) ; 17(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38793484

RESUMO

Ultra-high-performance concrete (UHPC) with a low steel fiber volume fraction offers lower material costs than UHPC with typical steel fiber volume fractions, and has the potential to mitigate the ductility degradation of rebar-reinforced UHPC (R-UHPC). This study explores the reinforcement effect on the tensile behavior of UHPC with a low fiber volume fraction with the aim of facilitating more cost-efficient UHPC applications. The axial tensile behavior of 30 UHPC specimens with low fiber volume fractions at different reinforcement ratios was tested through direct tensile tests. The findings indicate that adopting UHPC with a low fiber volume fraction can significantly mitigate the ductility deterioration of rebar-reinforced UHPC (R-UHPC), and both increasing the reinforcement ratio and decreasing the fiber volume fraction contribute to the improvement in ductility. The failure modes of R-UHPC are determined by the ratio of reinforcement ratio and fiber volume fraction, rather than a single parameter, which also means that R-UHPC with different parameters may correspond to different methods to predict tensile load-bearing capacity. For UHPC with a fiber volume fraction low to 0.5%, incorporating steel rebars gives superior multi-crack cracking behavior and excellent capacity to restrict the maximum crack width. Increasing the fiber volume fraction from 0.5% to 1.0% at the same reinforcement ratio will yield little benefit other than an increase in tensile load-bearing capacity.

8.
Sci Rep ; 14(1): 8224, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589625

RESUMO

Herein, a practical ultra-high-performance concrete (UHPC) was created by adding two different shapes of steel fibers and curing them at ambient temperature using palygorskite-nanofiber (PN) as the modifier. The compressive strength, flexural strength, water absorption capacity, and porosity were analyzed to determine the effects of the steel fibers and PNs on the UHPC mechanical and physical properties. The steel fibers and PNs were found to improve these properties. The UHPC mechanical properties were outstanding at 1.5% fiber dosage, while physical properties were excellent at 1.0% fiber dosage. The mechanical and physical characteristics of UHPC were preferably at a PN dosage of 0.2% and the fiber dosage of 1.0%. The compressive and flexural strengths of straight-steel-fiber UHPC were 145.57 and 19.67 MPa, respectively, i.e., 42.0 and 109.4% higher than those of the reference specimens (i.e., those without fibers or PNs); the water absorption capacity and porosity decreased by 50.1 and 60.7%, respectively. The compressive and flexural strengths of hooked-end-steel-fiber UHPC were 18.3 and 96.0% higher than those of the reference specimens, respectively, and the water absorption capacity and porosity decreased by 43.2 and 29.8%, respectively. These results could provide vital information for the promotion and practical application of UHPC.

9.
Materials (Basel) ; 17(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38591583

RESUMO

Ultra-high-performance concrete (UHPC), a new cement-based material that offers high mechanical strength and good durability, has been widely applied in construction and rehabilitation projects in recent years. An optimum bending system is achieved by positioning the UHPC layer at the bottom tensile zone of the composite beam and placing the normal-strength concrete (NC) layer at the upper compression zone, which is described as the UHPC-NC composite beam. The fatigue behavior of reinforced UHPC-NC composite beams was described in this study, with an emphasis on the effects of UHPC layer thickness and fatigue load level on the fatigue life of the beam, deformation of the interface between UHPC and NC layers, as well as the bending stiffness of the beam. A total of 9 reinforced UHPC-NC composite beams were tested under cyclic loading. The test variables include UHPC layer thicknesses (zero, 200, and 360 mm), reinforcement ratios (1.184% and 1.786%), and the upper load levels (0.39~0.65). The results showed that good bonding had been achieved without delamination between UHPC and NC layers prior to the final fatigue failure of the beam, and the bending stiffness of the composite beam experienced a three-stage reduction under cyclic loading. Furthermore, an equation was proposed to predict the stiffness reduction coefficient of UHPC-NC composite beams under cyclic loading.

10.
Materials (Basel) ; 17(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673200

RESUMO

Ultra-high performance concrete (UHPC) with excellent durability has broad application prospects in improving the durability of reinforced concrete (RC) structures. To clarify the influence of freeze-thaw cycles on the axial compression performance of UHPC-RC composite columns, axial compression tests were carried out on composite columns with different cycles (0, 100, 200, 300 cycles) and stirrup spacing (35, 70, 105 mm). The results showed that the UHPC shell did not fall off when the composite column was destroyed, even in the freeze-thaw environment. Under the action of freeze-thaw cycles, the peak load Nu,t and initial elastic modulus E of the composite column decreased, but the ductility coefficient µ increased. Increasing the stirrup spacing could significantly improve the ductility of the composite column. After 100 freeze-thaw cycles, the ductility coefficient µ of the 35 mm stirrup spacing specimen was 112.6% higher than that of the 105 mm specimen. A prediction model for the bearing capacity of UHPC-RC composite columns under freeze-thaw cycles was established, and the predicted results were in good agreement with the experimental results. This study lays a theoretical and experimental foundation for the application and design of UHPC-RC composite columns in the freeze-thaw environment.

11.
Environ Sci Pollut Res Int ; 31(18): 26824-26838, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456977

RESUMO

Silica fume is usually used in UHPC, three times more than that for normal concrete, to enhance mechanical properties and durability. However, silica fume (SF) is an expensive material and has high production costs. This work is aimed at investigating the shrinkage and durability performance of previously developed UHPC mixtures utilizing the two calcareous waste materials, namely limestone powder (LSP) and cement kiln dust (CKD), by partially replacing the silica fume. The optimally selected mixtures of UHPC, having flow and strength above the minimum required, were used for detailed investigation in terms of shrinkage and durability characteristics. The results showed that by replacing SF with up to 20% of LSP and up to 20% of CKD, the mechanical properties of UHPC remained satisfactory compared to the control mixture with 100% SF. However, the ultimate shrinkage was higher for mixtures incorporating LSP or CKD, indicating the need for more volume of steel fibers to compensate for the shrinkage strains. The developed UHPCs also exhibited high resistance against reinforcement corrosion and sulfate attack, making them suitable for use in aggressive exposure conditions. However, special attention needs to be paid to the CKD content, where it is recommended to limit the content of CKD to about 15% or less to control the durability performance of the UHPCs. In addition, the sustainability analysis of developed UHPC mixtures was carried out using the life-cycle assessment and eco-strength intensity index. The results indicated that the UHPC mixtures possess a higher life-cycle and are therefore more sustainable.


Assuntos
Carbonato de Cálcio , Materiais de Construção , Poeira , Pós , Dióxido de Silício , Carbonato de Cálcio/química , Dióxido de Silício/química , Teste de Materiais
12.
Materials (Basel) ; 17(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473581

RESUMO

Ultra-high-performance concrete (UHPC) is an advanced cement-based material with excellent mechanical properties and durability. However, with the improvement of UHPC's compressive properties, its insufficient tensile properties have gradually attracted attention. This paper reviews the tensile properties of steel fibers in UHPC. The purpose is to summarize the existing research and to provide guidance for future research. The relevant papers were retrieved through three commonly used experimental methods for UHPC tensile properties (the direct tensile test, flexural test, and splitting test), and classified according to the content, length, type, and combination of the steel fibers. The results show that the direct tensile test can better reflect the true tensile strength of UHPC materials. The tensile properties of UHPC are not only related to the content, shape, length, and hybrids of the steel fibers, but also to the composition of the UHPC matrix, the orientation of the fibers, and the geometric dimensions of the specimen. The improvement of the tensile properties of the steel fiber combinations depends on the effectiveness of the synergy between the fibers. Additionally, digital image correlation (DIC) technology is mainly used for crack propagation in UHPC. The analysis of the post-crack phase of UHPC is facilitated. Theoretical models and empirical formulas for tensile properties can further deepen the understanding of UHPC tensile properties and provide suggestions for future research.

13.
Materials (Basel) ; 17(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38541457

RESUMO

Distortion deformation usually imposes a potential threat to bridge safety. In order to comprehensively understand the distortion effect on thin-walled ultra-high performance concrete (UHPC) box girders, an innovative approach encompassing the governing distortion differential equation is introduced in this study based on the general definition of distortion angle within the cross-section plane. The analytical results obtained from the proposed method are in accordance with those obtained from the energy method, and exhibit favorable agreement with experimental findings documented in the existing literature. Furthermore, a finite element model is developed on the ANSYS 2021 R1 software platform with the employment of a Shell 63 element. Numerical outcomes are also in good agreement with the experimental data, affirming the validity and reliability of the findings. In addition, parameter analysis results indicate that the distortion angle remains approximately constant at a location approximately 1/10 of the span from the mid-span cross-section of the box girder, regardless of changes in the span-to-depth ratio. Increasing the web thickness yields a notable reduction in the distortion effects, and decreasing the wall thickness can effectively mitigate the distortion-induced transverse bending moment. Compared with normal-strength concrete box girders, UHPC box girders can reduce the distortion angle within the span range, which is beneficial for maintaining the overall stability of the box girders. The outcomes obtained from this study yield engineers an enhanced understanding of distortion effect on the UHPC girder performance.

14.
Heliyon ; 10(2): e24260, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298661

RESUMO

This paper presents the developmental process of ultra-high performance concrete (UHPC), the most advanced form of concrete. The entire process exclusively utilized locally available materials. The mixes were prepared without using any specialized mixer or treatments, such as elevated pressure, etc. The primary objective of the research was to develop low-cost non-proprietary version of UHPC by optimizing both cementitious and non-cementitious materials to attain the highest levels of workability, compressive strength, flexural strength and durability. The research utilizes a trial-and-error approach, subjecting specimens to curing in both regular and heated water. The findings validate the viability of producing self-compacting UHPC with compressive strength ranging from 120 to 160 MPa, employing local materials and manufacturing methods. Raw materials and mixing sequence had a significant influence on the fresh and hardened properties of UHPC. The inclusion of steel fibers and the application of heat treatment remarkably enhanced the compressive strength. Furthermore, cost analysis revealed that this particular UHPC is only slightly over four times more expensive than conventional concrete, in contrast to commercially available UHPC, which is approximately 10 times expensive than traditional concrete.

15.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255560

RESUMO

Utilizing waste materials in producing ultra-high-performance concrete (UHPC) represents a highly effective approach to creating environmentally sustainable concrete using renewable resources. This study focused on incorporating ground glass cullet (GP) at various replacement levels in UHPC production. Additionally, plastic bottle fibers (PBFs) were derived from discarded plastic bottles and employed in the mix. The replacement levels for GP spanned from 0% to 40%. Single-use plastic bottles were transformed into strip fibers, both with and without the inclusion of microsteel fibers, at varying contents of 1.1% and 2.2% (volume-based). A single-fiber test was conducted on PBFs under different strain rates. The introduction of optimal GP content had a profound positive iMPact on compressive strength. Incorporating 2.2% plastic strips induced strain hardening behavior, while further inclusion of microsteel fibers resulted in substantial enhancements in mechanical properties. Two types of microsteel fibers were employed, characterized by different aspect ratios of 65 and 100. The optimum GP content was identified as 10%. Moreover, the UHPC mix achieved superior compressive strength, exceeding 140 MPa when composed of 1.3% (volume-based) microsteel fibers with an aspect ratio of 65 and 2.2% PBF (volume-based). Notably, mixtures featuring microsteel fibers with a higher aspect ratio demonstrated the highest flexural strength, exceeding 8000 N in the presence of 2.2% PBF. Longer microsteel fibers exhibited adequate slip properties, facilitating strain transfer and achieving a strain-hardening response in conjunction with plastic bottle fibers. These findings illuminate the potential for harnessing hazardous waste materials to improve the performance and sustainability of UHPC formulations.

16.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068199

RESUMO

Ultra-high-performance concrete (UHPC) is a cement-based material with excellent impact resistance. Compared with traditional concrete, it possesses ultra-high strength, ultra-high toughness, and ultra-high durability, making it an ideal material for designing structures with impact resistance. The research on the impact resistance performance of UHPC and its composite structures is of great significance for the structural design of protective engineering projects. However, currently, there is still insufficient research on the impact resistance performance of UHPC composite structures. To study the impact resistance performance, experiments were conducted on UHPC targets using high-speed projectiles. The results were compared with impact tests on granite targets. The results indicated that when subjected to projectile impact, the UHPC targets exhibited smaller surface craters compared with the granite targets, while the penetration depth was lower in the granite targets. Afterwards, the process of a projectile impacting the UHPC composite structure was numerically simulated using ANSYS 16.0/LS-DYNA finite element software. The numerical simulation results of penetration depth and crater diameter were in good agreement with the experimental results, which indicates the rationality of the numerical model. Based on this, further analysis was carried out on the influence of impact velocity, impact angle, and reinforcement ratio on the penetration depth of the composite structure. The results show that the larger the incident angle or the smaller the velocity of the projectile is, the easier it is to deflect the projectile. There is a linear relationship between penetration depth and reinforcement ratio; as the reinforcement ratio increases, the penetration depth decreases significantly. This research is of great significance in improving the safety and reliability of key projects and also contributes to the application and development of ultra-high-performance materials in the engineering field.

17.
Materials (Basel) ; 16(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38138737

RESUMO

Structurally deficient bridges are commonly retrofitted using conventional methodologies, including reinforced concrete, steel jackets, and fiber-reinforced polymers. Although these retrofit methods aim to improve structural performance, exposure to aggressive environments may undermine the durability performance of the retrofit material. More recently, ultra-high-performance concrete (UHPC) has provided an alternative to conventional construction methods, with its superior material characteristics favoring its use in retrofit applications. In this study, a large-scale reinforced concrete (RC) T-beam is constructed and artificially damaged. The T-beam is then retrofitted with an external envelope of UHPC on all faces. Sandblasting is introduced to the surface, providing partially exposed reinforcement in the T-beam to simulate material deterioration. Additional reinforcement is placed in the web and flange, followed by casting the enveloping layer of UHPC around the specimen. The feasibility of this method is discussed, and the structural performance of the beam is assessed by subjecting the beam to cyclic and ultimate flexural loading. This paper presents the results of cyclic and ultimate testing on the RC-UHPC composite T-beam regarding load-displacement, failure mode, and strain responses. The retrofitted T-beam specimen is subjected to a cyclic loading range of 131 kN for 1.576 million cycles. Despite no visible cracks in the cyclic testing, the specimen experiences a 12.22% degradation in stiffness. During the ultimate flexural testing, the specimen shows no relative slip between the two concretes, and the typical flexural failure mode is observed. By increasing the longitudinal reinforcement ratio in the web, the failure mode can shift from localized cracking, predominantly observed in the UHPC shell, toward a more distributed cracking pattern along the length of the beam, which is similar to conventional reinforced concrete beams.

18.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959511

RESUMO

To accurately predict the shear-bearing capacity of UHPC beams, it is crucial to quantify the shear contribution of the fiber bridging effect and UHPC compression zone. Nevertheless, it should be noted that the shear contribution of UHPC in the compression zone is not fully considered in most existing calculation methods, and the probability distribution of fibers within the matrix is also not taken into full account, which reduces the calculation accuracy of the shear bearing capacity of UHPC beams. In this paper, a UHPC beam shear test database containing 247 samples was created, and the influencing factors on the shear capacity of UHPC beams, such as the shear span ratio, the web reinforcement ratio, and the volume fraction of steel fiber, were analyzed. It was found that the ratio of cracking load to ultimate load ranges from 0.2 to 0.6, and the failure in the compression zone of UHPC beams can be divided into diagonal tension failure and shear compression failure. Based on the failure mechanism of the compression zone, considering the contribution of fiber micro tensile strength, a formula for calculating the shear-bearing capacity of UHPC beams with and without web reinforcement was proposed. Verified by experimental data, the proposed formula accurately predicts the shear-bearing capacity of UHPC beams. In comparison with other shear capacity formulas in current design codes, the proposed formula in this paper provides a higher prediction accuracy.

19.
Materials (Basel) ; 16(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959537

RESUMO

To investigate the impact of the filament winding angle of glass-fiber reinforced plastic (GFRP) on the seismic behavior of GFRP tube ultra-high performance concrete (UHPC) composite columns, this study designs two types of GFRP tube UHPC composite columns. Quasi-static tests are conducted on the specimens subjected to horizontal reciprocating load and axial force, and the skeleton curve characteristics of the structure are analyzed. Furthermore, a finite element analysis model of the composite column is established to explore the effects of the diameter-thickness ratio, circumferential elastic modulus of confined tubes, and tensile strength of concrete on the seismic performance of the composite column. The analysis includes a review of the skeleton curve, energy dissipation capacity, and stiffness degradation of the structure under different designs. The results indicate that the use of GFRP tubes effectively enhances the seismic performance of UHPC columns. The failure mode, peak load, and peak displacement of the composite columns are improved. The finite element analysis results are in good agreement with the experimental results, validating the effectiveness of the analysis model. Extended analysis reveals that the bearing capacity of the specimen increases while the energy dissipation capacity decreases with a decrease in the diameter-thickness ratio and an increase in the circumferential elastic modulus. Although the tensile strength of concrete has some influence on the seismic performance of the specimen, its effect is relatively small. Through regression analysis, a formula for shear capacity suitable for GFRP tube UHPC composite columns is proposed. This formula provides a theoretical reference for the design and engineering practice of GFRP tube UHPC composite columns.

20.
Materials (Basel) ; 16(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37959596

RESUMO

This study aims to address the issues posed by frost damage to concrete structures in cold regions, focusing on reinforcement and repair methods to increase the service life of existing structures instead of costly reconstruction solutions. Due to the limitations of conventional concrete in terms of durability and strength, this research focused on ultra-high-performance concrete (UHPC) by replacing part of the cement with recycled brick powder (RBP) to strengthen ordinary C50 concrete, obtaining UHPC-NC specimens. Mechanical tests investigated the bonding performance of UHPC-NC specimens under various conditions, including interface agents, surface roughness treatments, and freeze-thaw after 0, 50, 100, and 150 cycles with a 30% replacement rate of RBP. Additionally, a multi-factor calculation formula for interface bonding strength was established according to the test data, and the bonding mechanism and model were analyzed through an SEM test. The results indicate that the interface bonding of UHPC-NC specimens decreased during salt freezing compared to hydro-freezing, causing more severe damage. However, the relative index of splitting tensile strength for cement paste specimens showed increases of 14.01% and 14.97%, respectively, compared to specimens without an interface agent. Using an interface agent improved bonding strength and cohesiveness. The UHPC-NC bonding model without an interfacial agent can be characterized using a three-zone model. After applying an interfacial agent, the model can be characterized by a three-zone, three-layer bonding model. Overall, the RBP-UHPC-reinforced C50 for damaged concrete showed excellent interfacial bonding and frost resistance performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA