Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nefrologia (Engl Ed) ; 44(4): 576-581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39216982

RESUMO

Autosomal dominant tubulointerstitial kidney disease (ADTKD) comprises a heterogeneous group of rare hereditary kidney diseases characterized by family history of progressive chronic kidney disease (CKD) with bland urine sediment, absence of significant proteinuria and normal or small-sized kidneys. Current diagnostic criteria require identification of a pathogenic variant in one of five genes - UMOD, MUC1, REN, HNF1ß, SEC61A1. The most prevalent form of ADTKD is uromodulin-associated kidney disease (ADTKD-UMOD). Genetic study of a Portuguese family diagnosed with familial juvenile hyperuricemic nephropathy (FJHN), one of the nosological entities in the spectrum of ADTKD, revealed a previously unreported large deletion in UMOD encompassing the entire terminal exon, which strictly cosegregated with CKD and hyperuricemia/gout, establishing the primary diagnosis of ADTKD-UMOD; as well as an ultra-rare nonsense SLC8A1 variant cosegregating with the UMOD deletion in patients that consistently exhibited an earlier onset of clinical manifestations. Since the terminal exon of UMOD does not encode for any of the critical structural domains or amino acid residues of mature uromodulin, the molecular mechanisms underlying the pathogenicity of its deletion are unclear and require further research. The association of the SLC8A1 locus with FJHN was first indicated by the results of a genome-wide linkage analysis in several multiplex families, but those data have not been subsequently confirmed. Our findings in this family revive that hypothesis.


Assuntos
Hiperuricemia , Linhagem , Uromodulina , Humanos , Uromodulina/genética , Hiperuricemia/genética , Masculino , Feminino , Deleção de Sequência , Adulto , Gota/genética , Deleção de Genes , Nefropatias
2.
Kidney Int Rep ; 9(7): 2209-2226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39081747

RESUMO

Introduction: Monoallelic variants in the ALG5 gene encoding asparagine-linked glycosylation protein 5 homolog (ALG5) have been recently shown to disrupt polycystin-1 (PC1) maturation and trafficking via underglycosylation, causing an autosomal dominant polycystic kidney disease-like (ADPKD-like) phenotype and interstitial fibrosis. In this report, we present clinical, genetic, histopathologic, and protein structure and functional correlates of a new ALG5 variant, p.R79W, that we identified in 2 distant genetically related Irish families displaying an atypical late-onset ADPKD phenotype combined with tubulointerstitial damage. Methods: Whole exome and targeted sequencing were used for segregation analysis of available relatives. This was followed by immunohistochemistry examinations of kidney biopsies, and targeted (UMOD, MUC1) and untargeted plasma proteome and N-glycomic studies. Results: We identified a monoallelic ALG5 variant [GRCh37 (NM_013338.5): g.37569565G>A, c.235C>T; p.R79W] that cosegregates in 23 individuals, of whom 18 were clinically affected. We detected abnormal localization of ALG5 in the Golgi apparatus of renal tubular cells in patients' kidney specimens. Further, we detected the pathological accumulation of uromodulin, an N-glycosylated glycosylphosphatidylinositol (GPI)-anchored protein, in the endoplasmic reticulum (ER), but not mucin-1, an O- and N-glycosylated protein. Biochemical investigation revealed decreased plasma and urinary uromodulin levels in clinically affected individuals. Proteomic and glycoproteomic profiling revealed the dysregulation of chronic kidney disease (CKD)-associated proteins. Conclusion: ALG5 dysfunction adversely affects maturation and trafficking of N-glycosylated and GPI anchored protein uromodulin, leading to structural and functional changes in the kidney. Our findings confirm ALG5 as a cause of late-onset ADPKD and provide additional insight into the molecular mechanisms of ADPKD-ALG5.

3.
Int Immunopharmacol ; 134: 111997, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759370

RESUMO

Cystitis is a common disease closely associated with urinary tract infections, and the specific mechanisms underlying its occurrence and development remain largely unknown. In this study, we discovered that IGFBP1 suppresses the occurrence and development of cystitis by stabilizing the expression of Umod through m6A modification, inhibiting the NF-κB and ERK signaling pathways. Initially, we obtained a bladder cystitis-related transcriptome dataset from the GEO database and identified the characteristic genes Umod and IGFBP1. Further exploration revealed that IGFBP1 in primary cells of cystitis can stabilize the expression of Umod through m6A modification. Overexpression of both IGFBP1 and Umod significantly inhibited cell apoptosis and the NF-κB and ERK signaling pathways, ultimately suppressing the production of pro-inflammatory factors. Finally, using a rat model of cystitis, we demonstrated that overexpression of IGFBP1 stabilizes the expression of Umod, inhibits the NF-κB and ERK signaling pathways, reduces the production of pro-inflammatory factors, and thus prevents the occurrence and development of cystitis. Our study elucidates the crucial role of IGFBP1 and Umod in cystitis and reveals the molecular mechanisms that inhibit the occurrence and development of cystitis. This research holds promise for offering new insights into the treatment of cystitis in the future.


Assuntos
Cistite , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Sistema de Sinalização das MAP Quinases , NF-kappa B , Ratos Sprague-Dawley , Animais , Feminino , Humanos , Ratos , Apoptose , Cistite/metabolismo , Modelos Animais de Doenças , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , NF-kappa B/metabolismo , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo
4.
Pediatr Nephrol ; 39(8): 2363-2375, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520530

RESUMO

BACKGROUND: Autosomal dominant tubulointerstitial kidney disease (ADTKD) results from mutations in various genes, including REN, UMOD, MUC1, and HNF1B. ADTKD due to REN mutations (ADTKD-REN) is often characterized as a proteinopathy that triggers the endoplasmic reticulum stress (ERS) cascade, potentially sharing similarities with ADTKD-UMOD and ADTKD-MUC1 at the cellular level. This study, inspired by a patient harboring a W17R mutation, investigates ERS activation by this mutation alongside two other renin variants, W10R and L381P. METHODS: We established stable cell lines expressing both wild-type and mutated renin forms (W17R, W10R, and L381P). Using luciferase reporter assays, RT-qPCR, and confocal microscopy, we evaluated ERS activation, determined the cellular localization of the renin variants, and characterized the mitochondrial network in the W17R line. RESULTS: The L381P line exhibited ERS activation, including transcriptional upregulation of MANF and CRELD2. No ERS activation was observed in the W17R line, while the W10R line exhibited intermediate characteristics. Notably, the W17R variant was misrouted to the mitochondria resulting in changes of the mitochondrial network organisation. CONCLUSIONS: ERS activation is not a universal response to different renin mutations in ADTKD-REN. The pathogenesis of the W17R mutation may involve mitochondrial dysfunction rather than the ER pathway, albeit further research is needed to substantiate this hypothesis fully. Testing CRELD2 and MANF as targeted therapy markers for a specific subgroup of ADTKD-REN patients is recommended. Additionally, fludrocortisone treatment has shown efficacy in stabilizing the renal function of our patient over a four-year period without significant side effects.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Mutação , Nefrite Intersticial , Renina , Humanos , Renina/genética , Renina/metabolismo , Estresse do Retículo Endoplasmático/genética , Nefrite Intersticial/genética , Nefrite Intersticial/patologia , Retículo Endoplasmático/metabolismo , Masculino , Linhagem Celular
5.
Int Urol Nephrol ; 56(1): 249-261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37322316

RESUMO

BACKGROUND: UMOD is exclusively produced by renal epithelial cells. Recent genome-wide association studies (GWAS) suggested that common variants in UMOD gene are closely connected with the risk of CKD. However, a comprehensive and objective report on the current status of UMOD research is lacking. Therefore, we aim to conduct a bibliometric analysis to quantify and identify the status quo and trending issues of UMOD research in the past. METHODS: We collected data from the Web of Science Core Collection database and used the Online Analysis Platform of Literature Metrology, the Online Analysis Platform of Literature Metrology and Microsoft Excel 2019 to perform bibliometricanalysis and visualization. RESULTS: Based on the data from the WoSCC database from 1985 to 2022, a total of 353 UMOD articles were published in 193 academic journals by 2346 authors from 50 different countries/regions and 396 institutions. The United States published the most papers. Professor Devuyst O from University of Zurich not only published the greatest number of UMOD-related papers but also is among the top 10 co-cited authors. KIDNEY INTERNATIONAL published the most necroptosis studies, and it was also the most cited journal. High-frequency keywords mainly included 'chronic kidney disease', 'Tamm Horsfall protein' and 'mutation'. CONCLUSIONS: The number of UMOD-related articles has steadily increased over the past decades Current UMOD studies focused on Biological relevance of the UMOD to kidney function and potential applications in the risk of CKD mechanisms, these might provide ideas for further research in the UMOD field.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Humanos , Estados Unidos , Rim , Mutação , Insuficiência Renal Crônica/genética , Bibliometria , Uromodulina
6.
Am J Kidney Dis ; 83(1): 71-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690632

RESUMO

RATIONALE & OBJECTIVE: Uromodulin (UMOD) is the most abundant protein found in urine and has emerged as a promising biomarker of tubule health. Circulating UMOD is also detectable, but at lower levels. We evaluated whether serum UMOD levels were associated with the risks of incident kidney failure with replacement therapy (KFRT) and mortality. STUDY DESIGN: Prospective cohort. SETTING & PARTICIPANTS: Participants in AASK (the African American Study of Kidney Disease and Hypertension) with available stored serum samples from the 0-, 12-, and 24-month visits for biomarker measurement. PREDICTORS: Baseline log-transformed UMOD and change in UMOD over 2 years. OUTCOMES: KFRT and mortality. ANALYTICAL APPROACH: Cox proportional hazards and mixed-effects models. RESULTS: Among 500 participants with baseline serum UMOD levels (mean age, 54y; 37% female), 161 KFRT events occurred during a median of 8.5 years. After adjusting for baseline demographic factors, clinical factors, glomerular filtration rate, log-transformed urine protein-creatinine ratio, and randomized treatment groups, a 50% lower baseline UMOD level was independently associated with a 35% higher risk of KFRT (adjusted HR, 1.35; 95% CI, 1.07-1.70). For annual UMOD change, each 1-standard deviation lower change was associated with a 67% higher risk of KFRT (adjusted HR, 1.67; 95% CI, 1.41-1.99). Baseline UMOD and UMOD change were not associated with mortality. UMOD levels declined more steeply for metoprolol versus ramipril (P<0.001) as well as for intensive versus standard blood pressure goals (P = 0.002). LIMITATIONS: Small sample size and limited generalizability. CONCLUSIONS: Lower UMOD levels at baseline and steeper declines in UMOD over time were associated with a higher risk of subsequent KFRT in a cohort of African American adults with chronic kidney disease and hypertension. PLAIN-LANGUAGE SUMMARY: Prior studies of uromodulin (UMOD), the most abundant protein in urine, and kidney disease have focused primarily on urinary UMOD levels. The present study evaluated associations of serum UMOD levels with the risks of kidney failure with replacement therapy (KFRT) and mortality in a cohort of African American adults with hypertension and chronic kidney disease. It found that participants with lower levels of UMOD at baseline were more likely to experience KFRT even after accounting for baseline kidney measures. Similarly, participants who experienced steeper annual declines in UMOD also had a heightened risk of kidney failure. Neither baseline nor annual change in UMOD was associated with mortality. Serum UMOD is a promising biomarker of kidney health.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Insuficiência Renal , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Uromodulina , Estudos Prospectivos , Negro ou Afro-Americano , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Hipertensão/complicações , Insuficiência Renal/complicações , Insuficiência Renal Crônica/complicações , Taxa de Filtração Glomerular/fisiologia , Biomarcadores
7.
G Ital Nefrol ; 40(5)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38010247

RESUMO

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a low-prevalence pathology mainly associated with pathogenic variants of the UMOD gene. It is characterized by the progressive deterioration of renal function, associated with hyperuricemia and accompanied by a family history of gout or hyperuricemia. Often, clinical variability and a lack of molecular testing results in diagnostic failure to determine the ADTKD-UMOD association. Case presentation: We describe the case of a 14-year-old male who presented to the nephrology service with hyperuricemia, renal ultrasonographic changes, and progression to chronic kidney disease in 4 years. He had a family history of hyperuricemia. A probable genetic disease with an autosomal dominant inheritance pattern was considered, confirmed by the presence of a probably pathogenic variant of the UMOD gene, not previously reported in the literature. Conclusion: The investigation of this case led to the identification of a new variant in the UMOD gene, broadening the spectrum of known variants for ADTKD-UMOD. In addition, in this case, a comprehensive anamnesis, that takes into account family history, was the key point to carry out genetic tests that confirmed the diagnosis suspicion. Directed Genetic tests are currently an essential diagnostic tool and should be performed as long as they are available and there is an indication to perform them.


Assuntos
Gota , Hiperuricemia , Doenças Renais Policísticas , Masculino , Humanos , Adolescente , Uromodulina , Gota/genética , Testes Genéticos/métodos , Doenças Renais Policísticas/genética , Mutação
8.
EMBO Mol Med ; 15(12): e18242, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37885358

RESUMO

Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated UmodC171Y and UmodR186S knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage. Deletion of the wild-type Umod allele in heterozygous UmodR186S mice increased the formation of uromodulin aggregates and ER stress. Studies in kidney tubular cells confirmed differences in uromodulin aggregates, with activation of mutation-specific quality control and clearance mechanisms. Enhancement of autophagy by starvation and mTORC1 inhibition decreased uromodulin aggregates. These studies substantiate the role of toxic aggregates as driving progression of ADTKD-UMOD, relevant for therapeutic strategies to improve clearance of mutant uromodulin.


Assuntos
Nefropatias , Rim , Animais , Camundongos , Alelos , Progressão da Doença , Rim/metabolismo , Nefropatias/genética , Mutação , Uromodulina/genética , Uromodulina/metabolismo
9.
Case Rep Nephrol Dial ; 13(1): 129-134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900933

RESUMO

IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis worldwide, with varying clinical presentations. The hereditary susceptibility to IgAN is rather complex. In this report, a Chinese case of IgAN was recruited. Renal biopsy showed the tubular atrophy and dilatation, but the glomerular lesions were rather weak except slight mesangial hyperplasia. Immunological staining of kidney tissue revealed the positive immunological staining of IgA and C3. By using whole-exome sequencing, a heterozygous variant in UMOD gene was found and was confirmed by Sanger sequencing. The variant in UMOD gene might contribute to the disease and this case helps understand the correlation of genotype and phenotypes of UMOD mutations.

10.
Obstet Med ; 16(3): 162-169, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720000

RESUMO

Introduction: Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an increasingly recognized cause of chronic kidney disease. ADTKD pregnancy outcomes have not previously been described. Methods: A cross-sectional survey was sent to women from ADTKD families. Results: Information was obtained from 85 afffected women (164 term pregnancies) and 23 controls (50 pregnancies). Only 16.5% of genetically affected women knew they had ADTKD during pregnancy. Eighteen percent of ADTKD mothers had hypertension during pregnancy versus 12% in controls (p = 0.54) and >40% in comparative studies of chronic kidney disease in pregnancy. Eleven percent of births of ADTKD mothers were <37 weeks versus 0 in controls (p < 0.0001). Cesarean section occurred in 19% of pregnancies in affected women versus 38% of unaffected individuals (p = 0.06). Only 12% of babies required a neonatal intensive care unit stay. Conclusions: ADTKD pregnancies had lower rates of hypertension during pregnancy versus other forms of chronic kidney disease, which may have contributed to good maternal and fetal outcomes.

11.
Urolithiasis ; 51(1): 45, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881140

RESUMO

Melon seed extracts have high antioxidant activities and are effective against a variety of diseases, including kidney stones. In kidney stone model rats, the anti-urolithiatic effects of the hydro-ethanolic extract of melon seed and potassium citrate were studied and compared. After urolithiasis induction by ethylene glycol, the extract and potassium citrate were treated orally for 38 days concurrent with ethylene glycol. Then, urine and kidney sampling were done, and the urinary parameter levels were measured. The melon and potassium citrate treatments reduced the kidney index, the levels of urinary calcium and oxalate, calcium oxalate deposit numbers, the score of crystal deposits, histo-pathological damages, and the score of inflammation in the kidney sections, while elevating the urinary pH, magnesium, and citrate levels, and also the expression of the UMOD, spp1, and reg1 genes in the kidney of treated animals. The effect of potassium citrate is the same as the effect of melon in treated animals. So, their effects could be by normalizing urinary parameters, reducing crystal deposits, excreting small deposits from the kidney, reducing the chance of them being retained in the urinary tract, and elevating the expression of the UMOD, spp1, and reg1 genes, which are involved in kidney stone formation.


Assuntos
Cucumis melo , Cálculos Renais , Masculino , Animais , Ratos , Citrato de Potássio , Cálculos Renais/tratamento farmacológico , Etilenoglicóis , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Uromodulina
12.
Biomedicines ; 11(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831047

RESUMO

Vesicoureteral reflux (VUR) is associated with urinary tract infections (UTI) and renal scars. The kidney damage is correlated with the grade of reflux and the number of UTI, but other factors may also play a role. Uromodulin (UMOD) is a protein produced by kidney tubular cells, forming a matrix in the lumen. We evaluated whether the common variant rs4293393 in the UMOD gene was associated with febrile UTI (FUTI) and/or scars in a group of children with VUR. A total of 31 patients with primary VUR were enrolled. Renal scars were detected in 16 children; no scar was detected in 15 children. Genotype rs4293393 TC (TC) was present in 8 patients, 7 (88%) had scars; genotype rs4293393 TT (TT) was found in 23 patients, and 9 (39%) had scars. Among children with scars, those with TC compared with those with TT were younger (mean age 77 vs. 101 months), their reflux grade was comparable (3.7 vs. 3.9), and the number of FUTI was lower (2.9 vs. 3.7 per patient). Children with VUR carrying UMOD genotype rs4293393 TC seem more prone to developing renal scars, independent of FUTI.

13.
Gene ; 863: 147264, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804854

RESUMO

OBJECTIVE: Calcium and oxalate are the most abundant metabolites present in the stone matrix. The SPP1 and UMOD gene has specific expression in kidneys and are involved in various stages of stone formation. Therefore, genetic variants in the SPP1 and UMOD genes may enhance the development of renal stone disease. This study has been designed to understand the association of genetic variants of SPP1 and UMOD genes with renal stone disease. MATERIALS AND METHOD: A prospective study has been carried out, including 150 renal stone disease patients and 150 healthy individuals. Biochemical parameters were performed, including serum calcium levels, creatinine, parathyroid hormone, and 24-Hour urine metabolites. The genotyping of SPP1 (rs1126616) and UMOD (rs4293393) gene variants were performed using a customized TaqMan probe. T-test was used for continuous biochemical data analysis. The Chi-square test has been applied to assess the risk of a particular genotype associated with renal stone disease. In addition, correlation analysis for biochemical parameters and genetic variants with the renal stone disease has been performed using Shapley additive explanations (SHAP) values calculated with the help of the pycaret library. RESULT: Renal stone patients had significantly higher levels of parathyroid hormone (93.37 ± 52.78 pg/ml vs 64.67 ± 31.50 pg/ml, P=<0.0001), serum creatinine (0.94 ± 0.38 mg/dl vs 0.77 ± 0.17 mg/dl, P=<0.0001) and 24hr urine metabolites in comparison to the healthy controls. Heterozygous (CT) variant of SPP1 and homozygous (GG) variant of UMOD genes were significantly associated with an increased risk of developing the renal stone disease (p = 0.0100, OR = 2.06, 95 %CI = 1.13-3.75; p=<0.0001, OR = 5.773, 95 % CI = 2.03-16.38, respectively). Individuals with hyperparathyroidism and CC (SPP1) and GG (UMOD) genotypes have a high risk (P = 0.0055, OR = 2.75, 95 %CI = 1.35-5.67; P = 0.0129, OR = 10.03, 95 %CI = 1.60-110.40, respectively) of developing a renal stone. In addition, individuals with hypercalciuria and TT genotype of SPP1 (P = 0.0112, OR = 2.92, 95 % CI = 1.33-6.35), AG genotype of UMOD (P=<0.0001, OR = 5.45, 95 %CI = 2.24-13.96) and GG genotype of UMOD (P=<0.0001, OR = 10.02, 95 %CI = 3.53-24.63) have high risk of developing renal stones. Moreover, Individuals with hyperoxaluria and AG + GG (UMOD) genotype have a greater risk (P=<0.0001, OR = 7.35, 95 % CI = 3.83-13.68) of developing a renal stone. The renal stone risk was persistent (P=<0.0002, OR = 2.44, 95 % CI = 1.52-3.86) when analyzed for the synergistic effect of risk genotypes of SPP1 (CT) and UMOD (GG) gene. Further, correlation analysis also confirmed the strong association between genetic variants and renal stone development. CONCLUSION: Genetic variants of the SPP1 and UMOD genes were associated with renal stone disease. In the presence of risk genotype and hyperparathyroidism, hypercalciuria, and hyperoxaluria, the susceptibility to develop the renal stone disease risk gets modulated.


Assuntos
Hiperoxalúria , Cálculos Renais , Humanos , Cálcio , Hipercalciúria , Estudos Prospectivos , Fatores de Risco , Cálculos Renais/genética , Hormônio Paratireóideo/genética , Uromodulina/genética , Osteopontina/genética
14.
CEN Case Rep ; 12(2): 249-253, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36417174

RESUMO

OHVIRA syndrome (or Herlyn-Werner-Wunderlich syndrome) is a rare condition, consisting classically of obstructed hemi-vagina with ipsilateral renal agenesis. It may be associated with complex uterine malformations and more rarely with lower urinary tract anomalies. The contralateral kidney usually has normal function. A genetic etiology of this syndrome has not yet been confirmed. We report a patient who was diagnosed to have unilateral renal agenesis in early childhood, and then presented after menarche with features of OHVIRA syndrome. The contralateral kidney was relatively small and echogenic, and serum creatinine and uric acid were raised. A likely causal variant of the UMOD gene was detected on whole exome sequencing. Genetic studies in more patients with OHVIRA syndrome may elucidate further, whether the association with UMOD gene is causal in nature.


Assuntos
Anormalidades Múltiplas , Nefropatias , Anormalidades Urogenitais , Feminino , Pré-Escolar , Humanos , Rim/anormalidades , Vagina/anormalidades , Anormalidades Múltiplas/diagnóstico , Nefropatias/diagnóstico , Uromodulina
15.
Kidney Int Rep ; 7(11): 2332-2344, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36531871

RESUMO

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare inherited disorder characterized by progressive loss of kidney function, nonsignificant urinalysis and tubulointerstitial fibrosis. ADTKD progresses to end stage renal disease (ESRD) in adulthood. The classification of ADTKD is an evolving concept and the agreement is now that, due to the overlap in terms of phenotype characteristics, this should be based on the involved gene. The umbrella term ADTKD therefore includes different conditions as follows: ADTKD-UMOD, ADKTD-MUC1, ADTKD-REN, and ADTK-HNF1B, with ADTKD-SEC61A1 and ADTKD-DNAJB11 as a further rare and atypical diagnosis recently described. The employment of next-generation sequencing (NGS) as a diagnostic tool in patients with familial kidney disease has improved the diagnostic accuracy in this field with ADTKD now being considered the third genetic cause of renal disease worldwide after autosomal dominant polycystic kidney disease (ADPKD) and Alport syndrome. On average, the disease pathogenesis is similar across the different subtypes, With the exception of HNF1B, the different mutated genes give rise to misfolded proteins leading to cellular stress and cytotoxicity. Research is now focused in better defining the underlying mechanism of fibrosis to guide therapeutic interventions. The aim of this review is to discuss how the knowledge of ADTKD has evolved in the last decades, with emphasis on the clinical features, molecular diagnosis, and pathogenic aspects of the different diseases included under the ADTKD term.

16.
Am J Med Genet C Semin Med Genet ; 190(3): 309-324, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36250282

RESUMO

The clinical characteristics of autosomal dominant tubulointerstitial kidney disease (ADTKD) include bland urinary sediment, slowly progressive chronic kidney disease (CKD) with many patients reaching end stage renal disease (ESRD) between age 20 and 70 years, and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD. Pathogenic variants in UMOD, MUC1, and REN are the most common causes of ADTKD. ADTKD-UMOD is also associated with hyperuricemia and gout. ADTKD-REN often presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-MUC1 patients present only with CKD. This review describes the pathophysiology, genetics, clinical manifestation, and diagnosis for ADTKD, with an emphasis on genetic testing and genetic counseling suggestions for patients.


Assuntos
Testes Genéticos , Insuficiência Renal Crônica , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Uromodulina/genética , Mutação
17.
Biomedicines ; 10(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36140271

RESUMO

The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.

18.
Kidney Int ; 102(2): 405-420, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643372

RESUMO

Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Adulto , Testes Genéticos , Estudo de Associação Genômica Ampla , Humanos , Mutação , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/genética
19.
Int J Med Sci ; 19(2): 364-376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35165522

RESUMO

Autosomal dominant tubulointerstitial kidney disease due to UMOD mutations (ADTKD-UMOD) results in chronic interstitial nephritis, which gradually develops into end-stage renal disease. It is believed that the accumulation of mutant uromodulin causes the endoplasmic reticulum (ER) stress, then leads to the kidney damage. But the underlying mechanism remains unclear. To find the ADTKD-UMOD patients, UMOD gene screening was performed in 26 patients with unexplained chronic interstitial nephritis, during the past 10 years in our department, and among them three ADTKD-UMOD cases were discovered. Routine pathological staining and electron microscopy sections were reviewed again to confirm their kidney lesions. Immunostaining of UMOD and ER stress marker GRP78, as well as CHOP have all been done. The strong colocalization of UMOD with GRP78 and CHOP in ADTKD-UMOD patients but not in other chronic interstitial nephritis patients had been found. Moreover in vitro experiments, ER stress induced by tunicamycin (TM) not only significantly increased the expression of GRP78 and CHOP, but also caused the epithelial to myofibroblast transformation (EMT) of renal tubular epithelial cells, evidenced by decreased expression of E-cadherin and increased expression of vimentin, and extracellular matrix (ECM) deposition, evidenced by increased expression of fibronectin (FN). CHOP knockdown could restore the upregulation of vimentin and FN induced by TM. Thus, specific activation of CHOP in renal tubular epithelial cells induced by UMOD protein might be the key reason of renal interstitial fibrosis in ADTKD-UMOD patients.


Assuntos
Transição Epitelial-Mesenquimal/genética , Nefrite Intersticial/genética , Fator de Transcrição CHOP/metabolismo , Regulação para Cima/genética , Uromodulina/genética , Adulto , Estresse do Retículo Endoplasmático/genética , Feminino , Humanos , Masculino , Mutação , Adulto Jovem
20.
Front Med (Lausanne) ; 9: 1077655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36606057

RESUMO

Autosomal dominant tubulointerstitial kidney disease due to UMOD mutations (ADTKD-UMOD) is a rare condition associated with high variability in the age of end-stage kidney disease (ESKD). An autosomal dominant inheritance is the general rule, but de novo UMOD mutations have been reported. It was reported that the median age of ESKD was 47 years (18-87 years) and men were at a much higher risk of progression to ESKD. Here, we reported a 13-year-old young girl with unexplained chronic kidney disease (CKD) (elevated serum creatine) and no positive family history. Non-specific clinical and histological manifestations and the absence of evidence for kidney disease of other etiology raised strong suspicion for ADTKD. Trio whole-exome sequencing confirmed that she carried a de novo heterozygous mutation c.280T > C (p.Cys94Arg) in the UMOD gene. The functional significance of the novel mutation was supported by a structural biology approach. With no targeted therapy, she was treated as CKD and followed up regularly. The case underscores the clinical importance of a gene-based unifying terminology help to identify under-recognized causes of CKD, and it demonstrates the value of whole-exome sequencing in unsolved CKD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA