Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.908
Filtrar
1.
J Pharm Biomed Anal ; 249: 116383, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39096626

RESUMO

Fuzuloparib is a novel orally bioactive poly-ADP-ribose polymerase inhibitor (PARPi), which was approved by the Chinese Regulatory Agency (CRA) in 2020 for the treatment of platinum-sensitive recurrent ovarian, fallopian tube, and primary peritoneal cancers. This study firstly presents a rapid and accurate ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for analyzing the levels of fuzuloparib and its major metabolite (SHR165202), and to investigate drug-drug interaction between fuzuloparib and curcumin in vitro and in vivo studies. After protein precipitation with acetonitrile, mobile phase consisted of acetonitrile and 0.1 % formic acid with a gradient elution was used to successfully separate fuzuloparib, SHR165202 and talazoparib (internal standard, IS). The results indicated that fuzuloparib and SHR165202 had good linearity over the calibration range of 2-50 ng/mL and 1-20 ng/mL, respectively. The precision, accuracy, stability, matrix effect, and extraction recovery required for methodological validation all complied with the requirements of the Bioanalytical Method Validation Guidelines. In vitro microsome incubation experiments, curcumin exhibited inhibitory effect on fuzuloparib in both rat liver microsomes (RLM) and human liver microsomes (HLM) with half-maximal inhibitory concentration (IC50) value of 10.54 µM and 47.64 µM, respectively, and the corresponding mechanism was non-competitive. Furthermore, the inhibitory mechanism of curcumin on fuzuloparib was validated through molecular docking. In pharmacokinetic experiments in rats, curcumin significantly altered the plasma exposure of fuzuloparib, resulting in significant increases in AUC(0-t) and Cmax of fuzuloparib and a significant decrease in CLz/F. Moreover, the metabolite SHR165202 showed significant increases in AUC(0-t), AUC(0-∞), Tmax and Cmax and a significant decrease in CLz/F. This further supports the notion that curcumin could inhibit the metabolism of fuzuloparib. Therefore, when co-administering fuzuloparib and curcumin in clinic, it is recommended to monitor plasma levels of fuzuloparib and pay close attention to adverse effects. If necessary, the dose of fuzuloparib needs to be reduced.

2.
Heliyon ; 10(13): e34109, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091946

RESUMO

The orally given, irreversible, third-generation inhibitor of the epidermal growth factor receptor (EGFR), known as Nazartinib (EGF816), is now undergoing investigation in Phase II clinical trials conducted by Novartis for Non-Small Cell Lung Cancer. The primary aim of the current research was to establish a rapid, specific, environmentally friendly, and highly versatile UPLC-MS/MS methodology for the determination of nazartinib (NZT) levels in human liver microsomes (HLMs). Subsequently, same approach was used to examine the metabolic stability of NZT. The UPLC-MS/MS method employed in HLMs was validated as stated in the bioanalytical method validation criteria outlined by the US- FDA. The evaluation of the metabolic stability of NZT and the identification of potentially structural alarms were performed using the StarDrop software package that includes the P450 and DEREK software. The calibration curve for NZT showed a linearity in the range from 1 to 3000 ng/mL. The inter-day accuracy and precision exhibited a range of values between -4.33 % and 4.43 %, whereas the intra-day accuracy and precision shown a range of values between -2.78 % and 7.10 %. The sensitivity of the developed approach was verified through the determination of a LLOQ of 0.39 ng/mL. The intrinsic clearance and in vitro half-life of NZT were assessed to be 46.48 mL/min/kg and 17.44 min, respectively. In our preceding inquiry, we have effectively discerned the bioactivation center, denoted by the carbon atom between the unsaturated conjugated system and aliphatic linear tertiary amine. In the context of computational software, making minor adjustments or substituting the dimethylamino-butenoyl moiety throughout the drug design process may increase the metabolic stability and safety properties of new synthesized derivatives. The efficiency of utilizing different in silico software approaches to conserve resources and reduce effort was proved by the outcomes attained from in vitro incubation experiments and the use of NZT in silico software.

3.
Phytochem Anal ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107233

RESUMO

INTRODUCTION: Frankincense is used for analgesic, tumor-suppressive, and anti-inflammatory treatments in Traditional Chinese Medicine but poses toxicological concerns. Vinegar processing is a common technique used to reduce the toxicity of frankincense. OBJECTIVE: This study aimed to investigate the chemical composition and quality evaluation of raw and vinegar-processing frankincense by multiple UPLC-MS/MS techniques. Additionally, we purposed refining the vinegar processing technique and identifying potentially harmful ingredients in the raw frankincense. METHODOLOGY: Sub-chronic oral toxicity studies were conducted on raw and vinegar-processing frankincense in rats. The composition of frankincense was identified by UPLC-Q-TOF-MS/MS. Chemometrics were used to differentiate between raw and vinegar-processing frankincense. Potential chemical markers were identified by selecting differential components, which were further exactly determined by UPLC-QQQ-MS/MS. Moreover, the viability of the HepG2 cells of those components with reduced contents after vinegar processing was assessed. RESULTS: The toxicity of raw frankincense is attenuated by vinegar processing, among which vinegar-processing frankincense (R40) (herb weight: rice vinegar weight = 40:1) exhibited the lowest toxicity. A total of 83 components were identified from frankincense, including 40 triterpenoids, 37 diterpenoids, and 6 other types. The contents of six components decreased after vinegar-processing, with the lowest levels in R40. Three components, specifically 3α-acetoxy-11-keto-ß-boswellic acid (AKBA), 3α-acetoxy-α-boswellic acid (α-ABA), and 3α-acetoxy-ß-boswellic acid (ß-ABA), inhibited the viability of HepG2 cells. The processing of frankincense with vinegar at a ratio of 40:1 could be an effective method of reducing the toxicity in raw frankincense. CONCLUSION: Our research improves understanding of the toxic substance basis and facilitates future assessments of frankincense quality.

4.
Bioanalysis ; 16(11): 535-544, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-39088034

RESUMO

Aim: A new, selective and simple UPLC-MS/MS method was developed and validated for the determination of lifitegrast in human plasma and tear in order to obtain PK data. Materials & methods: Lifitegrast-d4 solutions were added in the samples, and then were extracted and transferred to a UPLC vial. Results: The respective working ranges were 25.00-2000.00 pg/ml in plasma and 4.00-1000.00 µg/ml in tear. The fully validated method complied with existing regulatory criteria for accuracy and precision, recovery, etc. It was applied to plasma and tear samples, which were from a clinical study, successfully. Conclusion: This method is useful in the evaluation of lifitegrast in plasma and tear.


[Box: see text].


Assuntos
Espectrometria de Massas em Tandem , Lágrimas , Humanos , Espectrometria de Massas em Tandem/métodos , Lágrimas/química , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massa com Cromatografia Líquida
5.
J Pharm Biomed Anal ; 250: 116396, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128283

RESUMO

Critical events in Alzheimer's disease (AD) involve an imbalance between the production and clearance of amyloid-ß (Aß) peptides from the brain. The ratio of Aß42 to Aß40 in plasma was useful for evaluating AD, but quantification is limited by factors including preanalytical analyte loss and insufficient sensitivity. The availability of a targeted UPLC-MS/MS method with adequate analytical sensitivity and accurate values traceable to the SI units is essential for implementing a strategy for assay standardization. A targeted UPLC-MS/MS method for plasma Aß42 and Aß40 quantification was developed based on selected characteristic peptides spiked by 15N-labeled Aß. The calibrator was assigned using an amino acid analysis reference method trace to SI units. UPLC-MS/MS conditions and sample preparation procedures were assessed. 59 plasma samples comparison were used to evaluate immunoassays. Additionally, two clinical cohorts were selected for diagnostic performance evaluation. The LOQ of Aß42 and Aß40 is 10 pg mL-1 and 20 pg mL-1, respectively. The linear range was 10-500 pg mL-1 for Aß42 and 20-1000 pg mL-1 for Aß40, recoveries between 95.3 % and 108.2 % for Aß42, 93.2 % and 104.1 % for Aß40, imprecisions were <7 %. The accuracy of method was validated by analysis of a certified reference material. Clinical cohorts for diagnostic performance evaluation shown that the area under the curve (AUC) for plasma Aß42 and Aß42/Aß40 to differentiate between AD and CN were 0.767 and 0.799, respectively. A robust UPLC-MS/MS method was developed and demonstrated that suitable for a wide range of plasma Aß42 and Aß40. Applied to the investigation of clinically discrepant results, this method can act as an arbiter of the concentration of plasma Aß42 and Aß40 present.

6.
Middle East J Dig Dis ; 16(2): 96-101, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39131108

RESUMO

Background: Sofosbuvir (SOF) is a revolutionary treatment for patients with hepatitis C virus (HCV). However, its efficacy and safety among patients with end-stage renal disease (ESRD) remains controversial. In this study, we examined the levels of SOF metabolite (GS-331007) (SOF-007) in human plasma of patients infected with HCV having ESRD using an optimized liquid chromatography-mass spectrometry (LC-MS) analytical method. Methods: In this case-control study, 10 clinically confirmed cases and five controls were enrolled. SOF-007 was extracted from plasma using methanol precipitation. The limit of detection (LOD) for the drug and its metabolite were 0.85 and 2.3, respectively. Such a wide range of quantification in a period of separation time shorter than 3.0 minutes (run time) allowed monitoring of the plasma concentration of analytes up to 4 hours (pre-dialysis and post-dialysis) for 12 weeks in non-cirrhotic patients with HCV infection undergoing dialysis. Results: SOF-007 in the plasma of HCV patients with healthy kidneys showed no cumulative effect. An analysis comparing patients with ESRD and healthy participants showed that their behaviour was similar, followed by dialysis with a relatively small cumulative effect. Conclusion: The plasma concentrations of SOF-007 decreased significantly after the 4-hour period of dialysis compared with the plasma concentrations hemodialysis of pre-dialysis in HCV patients with ESRD.

7.
Biomed Chromatogr ; : e5987, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126351

RESUMO

The traditional formulation Hanchuan zupa granules (HCZPs) have been widely used for controlling coronavirus disease 2019 (COVID-19). However, its active components remain unknown. Here, HCZP components targeting the spike receptor-binding domain (S-RBD) of SARS-CoV-2 were investigated using a surface plasmon resonance (SPR) biosensor-based active ingredient recognition system (SPR-AIRS). Recombinant S-RBD proteins were immobilized on the SPR chip by amine coupling for the prescreening of nine HCZP medicinal herbs. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identified gallic acid (GA) and methyl gallate (MG) from Rosa rugosa as S-RBD ligands, with KD values of 2.69 and 0.95 µM, respectively, as shown by SPR. Molecular dynamics indicated that GA formed hydrogen bonds with G496, N501, and Y505 of S-RBD, and MG with G496 and Y505, inhibiting S-RBD binding to angiotensin-converting enzyme 2 (ACE2). SPR-based competition analysis verified that both compounds blocked S-RBD and ACE2 binding, and SPR demonstrated that GA and MG bound to ACE2 (KD = 5.10 and 4.05 µM, respectively), suggesting that they blocked the receptor and neutralized SARS-CoV-2. Infection with SARS-CoV-2 pseudovirus showed that GA and MG suppressed viral entry into 293T-ACE2 cells. These S-RBD inhibitors have potential for drug design, while the findings provide a reference on HCZP composition and its use for treating COVID-19.

8.
Front Vet Sci ; 11: 1438295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132444

RESUMO

KPT-335 (Verdinexor) is a novel SINE that potently inhibits the nucleoprotein Exportin 1 (XPO1/CRM1) of tumor cell lines and reduces the replication level of the influenza virus. KPT-335 is mainly used for the treatment of canine tumors. Drugs for the effective treatment of feline tumors are currently unavailable in China. KPT-335 may have potential in the treatment of cat tumors. However, the effects of KPT-335 in cats are unreported, and no relevant methodology has been established for pharmacokinetic studies. In this study, a UPLC-MS/MS method was developed to determine KPT-335 concentrations in cat plasma, followed by pharmacokinetic studies. Briefly, plasma proteins are precipitated with acetonitrile, and the supernatant was collected for detection after centrifugation. The linearity for KPT-335 in cat plasma was in the range of 5-1,000 ng/mL. Satisfactory accuracy and precision were obtained. The intra-day accuracy was between -4.10% and 10.48%, the precision was ≤4.65%; the inter-day accuracy was between -0.11% and 8.09%, and the precision was ≤5.85%. Intra-day and inter-day accuracy and precision were within regulatory limits. The results of preliminary pharmacokinetic studies were as follows: Tmax was 1.46 ± 0.51 h; Cmax was 239.54 ± 190.60 ng·mL-1; T1/2 was 5.16 ± 2.30 h; AUC0-t was 1439.85 ± 964.64 ng·mL-1·h. The AUC0-∞ was 1589.82 ± 1003.75 ng·mL-1·h. The purpose of this study was to develop a rapid and simple UPLC-MS/MS method to detect KPT-335 concentration in cat plasma and to conduct preliminary pharmacokinetic studies to support the future application of KPT-335 in felines.

9.
J Pharm Biomed Anal ; 250: 116389, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39116584

RESUMO

Immunosuppressive drugs (ISDs) are given to avoid the allograft rejection after transplantation. The concentrations of ISDs should be closely monitored owing to their wide inter-individual variability in its pharmacokinetics and narrow therapeutic window. Currently, the whole blood concentration measurement is the major approach of therapeutic drug monitoring of clinical ISDs in organ transplantation. Its correlation with the efficacy of ISDs remains elusive. While the acute rejection after transplantation may occur even when whole-blood ISDs concentrations are within the target range. Since the site of action of ISDs are within the lymphocyte, direct measurement of drug exposure in target cells may more accurately reflect the clinical efficacy of ISDs. Although several methods have been developed for the peripheral blood mononuclear cells (PBMCs) extraction and drug concentration measurement, the complex pre-processing has limited the study of the relationship between intracellular ISDs concentrations and the occurrence of rejection. In this study, the extraction of ISDs in PBMCs was carried out by the liquid-liquid extraction with low temperature purification, without centrifugation. The lower limit of quantitation were 0.2 ng/mL for cyclosporine A, tacrolimus and sirolimus, 1.0 ng/mL for mycophenolic acid, and the within-run and between-run coefficient of variations were both less than 12.4 %. The calibration curves of mycophenolic acid had a linear range (ng/mL): 1.0-128.0 (r2 = 0.9992). The calibration curves of other three ISDs had a linear range (ng/mL): 0.2-20.48 (r2 > 0.9956). A total of 157 clinical samples were analyzed by the UPLC-MS/MS for ISDs concentration in blood or plasma ([ISD]blood or plasma) and the concentration within PBMCs ([ISD]PBMC). Although there was strong association between [ISD]PBMC and [ISD]blood or plasma, the large discrepancies between concentration within [ISD]blood or plasma and [ISD]PBMC were observed in a small proportion of clinical samples. The developed method with short analysis time and little amounts of blood sample can be successfully applied to therapeutic drug monitoring of ISDs in PBMCs for analysis of large numbers of clinical samples and is helpful to explore the clinical value of ISDs concentration in PBMCs.

10.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125006

RESUMO

The aim of individuals consuming health supplements is to attain a robust state through nutritional regulation. However, some unscrupulous manufacturers, motivated by profit, fraudulently incorporate drugs or unauthorized components with therapeutic effects into the product for instant product performance enhancement. The long-term use of these products may inadvertently inflict harm on human health and fail to promote nutritive healthcare. The illegal inclusion of these substances is prevalent in kidney-tonifying and sexuality-enhancing products. Developing effective analytical methods to identify these products and screen for illegal added ingredients can effectively prevent such products from reaching and remaining on the market. A target screening method for the detection and quantification of 90 phosphodiesterase type 5 inhibitors (PDE-5is) in 5 kinds of health products was developed and validated. The type of dietary supplements varied from tablets, capsules, and protein powder to wine and beverages. Sample preparation was completed with a one-step liquid phase extraction. The screening process of 90 PDE-5is was done efficiently within 25 min by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) using the dynamic multiple reaction monitoring (dMRM) technique. The LODs of 90 PDE-5is were detected at levels ranging from 25 to 85 ng/g or ng/mL. This novel targeting methodology was effective and can be applied to routine market supervision. Among 286 batches of samples, 8 batches were found to be positive. Three kinds of PDE-5is were first detected in healthy products. The screening method demonstrated herein will be a promising and powerful tool for rapid screening of PDE-5is.


Assuntos
Suplementos Nutricionais , Espectrometria de Massa com Cromatografia Líquida , Inibidores da Fosfodiesterase 5 , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Suplementos Nutricionais/análise , Espectrometria de Massa com Cromatografia Líquida/métodos , Inibidores da Fosfodiesterase 5/análise , Inibidores da Fosfodiesterase 5/química , Espectrometria de Massas em Tandem/métodos
11.
Heliyon ; 10(13): e33630, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040279

RESUMO

Valproic acid and phenytoin are two prevalent antiepileptic medications known for their narrow indices and propensity for cardiovascular and respiratory system toxicity. Therefore, therapeutic drug monitoring (TDM) of valproic acid (VAL) and phenytoin (PHE) concentrations in patient plasma is extremely beneficial for improving clinical choices, avoiding adverse reactions, and optimizing treatment for individual patients. In this study, a rapid and sensitive ultra-performance liquid chromatographic tandem mass spectrometer (UPLC-MS/MS) method was developed and validated for the simultaneous quantitative determination of valproic acid (VAL) and phenytoin (PHE) in human plasma. Negative electron spray ionization (ESI-) mode with selective ion recording (SIR) was employed to determine the transitions of m/z 142.98 and m/z 250.93 for VAL and PHE, respectively. The internal standard (IS) betamethasone (BETA) was ionized using positive electron spray ionization (ESI+) and detected by multi-reaction monitoring (MRM) mode to obtain precursor ions and specific fragment ions for quantification, and the MRM transition was chosen to be m/z 393.17 â†’ 355.16. The separation was performed using a Phenomenex Synergi Hydro-RP (4 µm, 250 × 4.6 mm, I.D.) with an isocratic mobile phase consisting of acetonitrile - water (75:25, v/v) at a flow rate of 0.8 mL/min. The column temperature was maintained at 25 °C. The lower limit of quantification of VAL and PHE was 3.6 µg/mL and 0.72 µg/mL, respectively, which resulted in a recovery of more than 85 % for most analytes. According to US-FDA bioanalytical technique validation, the specificity, intra- and inter-day precision and accuracy, matrix effect, carryover, dilution, and stability of all analytes were within acceptable ranges. This analytical method was successful in evaluating the levels of valproic acid and phenytoin in human plasma from epileptic patients.

12.
J Sci Food Agric ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041432

RESUMO

BACKGROUND: Hydroxytyrosol (HT) is a bioactive compound present in a limited number of foods such as wines, olives, and olive oils. During alcoholic fermentation, yeast converts aromatic amino acids into higher alcohols such as tyrosol, which can undergo hydroxylation into HT. The aim of this study was to validate an analytical method using ultra performance liquid chromatography coupled with mass spectrometry (UPLC/MS-MS) to quantify HT and its precursors (tyrosine, hydroxyphenylpyruvic acid, hydroxyphenylacetaldehyde, 4-hydroxyphenylacetic acid, and tyrosol) in wines. Their occurrence was evaluated in a total of 108 commercial Spanish wine samples. RESULTS: The validated method simultaneously determined both HT and its precursors, with adequate limits of detection between 0.065 and 21.86 ng mL-1 and quantification limits between 0.199 and 66.27 ng mL-1 in a 5 min run. The concentration of HT in red wines was significantly higher (0.12-2.24 mg L-1) than in white wines (0.01-1.27 mg L-1). The higher the alcoholic degree, the higher was the content of HT. The bioactive 4-hydroxyphenylacetic acid was identified in Spanish wines for the first time at 3.90-127.47 mg L-1, being present in all the samples. CONCLUSION: The highest HT concentrations were found in red wines and in wines with higher ethanol content. These data are useful for a further estimation of the intake of these bioactive compounds and to enlarge knowledge on chemical composition of wines. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

13.
Food Chem ; 459: 140446, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018620

RESUMO

Hibiscus sabdariffa L. (roselle) is a medicinal and edible plant which rich in anthocyanins with potent antioxidant properties. To enhance the stability of roselle anthocyanins, they were encapsulated in nanocapsules composed of carboxymethyl chitosan (CMC), chitosan hydrochloride (CHC), and ß-lactoglobulin (ß-Lg). In vitro simulated digestion assays evaluated the impact of various core-to-wall ratios and ß-Lg concentrations on the bioaccessibility of seven anthocyanins. Nanocapsules with a core-to-wall ratio of 1:2 and ß-Lg at 10 mg/mL exhibited the highest encapsulation efficiency (EE). Cyanidin-3-glucoside had the highest EE, while cyanidin-3-sambubioside showed the outstanding retention rate. Furthermore, simulated digestion experiments combined with molecular docking revealed that peonidin-3-glucoside and petunidin-3-glucoside likely interact with and bind to the outer ß-Lg layer of the nanocapsules, increasing their release during in vitro digestion. This study demonstrates that encapsulating roselle anthocyanins in CMC, CHC, and ß-Lg nanocapsules significantly enhances their bioaccessibility.

14.
Heliyon ; 10(13): e33993, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071580

RESUMO

Background: Quetiapine (QET) abuse has increased due to its anxiolytic and hedonic effects, necessitating protective adjunct treatments. Acacia saligna (A. saligna) flowers, used in traditional medicine, have potential health benefits. Aim: To investigate the protective role of A. saligna flower extract against QET-induced sexual toxicity, and to elucidate the possible underlying mechanisms through metabolomic and physiological studies. Methods: A. saligna extract was subjected to metabolite profiling via High-Resolution Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-ESI-qTOF-MS). Forty-eight adult male albino rats were assigned into six groups for 30 days. The intracavernosal pressure (ICP), semen, biochemical, hormonal, histological, genetic and Western blot (WB) analyses were determined. Results: A. saligna extract is rich in phenolic compounds, flavonoids, tannins, and unsaturated fatty acids. QET significantly decreased ICP and negatively affected semen parameters. A. saligna mitigated decreased sperm motility and ameliorated overexpressed proinflammatory genes in QET-55 group. A. saligna ameliorated the reduction of the antioxidant biomarkers, testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), concurrent with downregulation of the nuclear factor kappa B (NF-κB) protein. A. saligna counteracted the disrupted testicular and prostatic structures revealed by histological examination. Conclusion: The extract from A. saligna, which contains a high concentration of antioxidants and anti-inflammatory chemicals, effectively mitigates sexual toxicity caused by QET. This study provided the first known explanation of the hypothesized processes behind the protective properties of A. saligna through biological, biochemical, and histological parameters. The results emphasize the potential of A. saligna as a safeguarding agent against drug-induced sexual toxicity.

15.
Front Endocrinol (Lausanne) ; 15: 1430720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076513

RESUMO

Background: Bile acids (BAs), products of gut microbiota metabolism, have long been implicated in atherosclerotic disease pathogenesis. Characterizing the serum bile acid profile and exploring its potential role in carotid atherosclerosis (CAS) development are crucial tasks. Methods: In this study, we recruited 73 patients with CAS as the disease group and 77 healthy individuals as the control group. We systematically measured the serum concentrations of 15 bile acids using ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Multivariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression were applied to analyze the impact of bile acids on the disease and select the key BAs. The possible molecular mechanism was elucidated by network pharmacology. Results: (1) The BA profile of patients with CAS significantly differed. (2) Multifactorial logistic regression analysis identified elevated levels of GCDCA (OR: 1.01, P < 0.001), DCA (OR: 1.01, P = 0.005), and TDCA (OR: 1.05, P = 0.002) as independent risk factors for CAS development. Conversely, GCA (OR: 0.99, P = 0.020), LCA (OR: 0.83, P = 0.002), and GUDCA (OR: 0.99, P = 0.003) were associated with protective effects against the disease. GCA, DCA, LCA, and TDCA were identified as the four key BAs. (3) TNF, FXR, GPBAR1, ESR1 and ACE were predicted to be targets of BAs against AS. These four BAs potentially impact AS progression by triggering signaling pathways, including cAMP, PPAR, and PI3K-AKT pathways, via their targets. Conclusion: This study offers valuable insights into potential therapeutic strategies for atherosclerosis that target bile acids.


Assuntos
Ácidos e Sais Biliares , Doenças das Artérias Carótidas , Metabolômica , Farmacologia em Rede , Humanos , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Masculino , Feminino , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/tratamento farmacológico , Doenças das Artérias Carótidas/sangue , Pessoa de Meia-Idade , Metabolômica/métodos , Idoso , Estudos de Casos e Controles , Biomarcadores/sangue , Receptores Acoplados a Proteínas G/metabolismo , Espectrometria de Massas em Tandem
16.
J Sep Sci ; 47(12): e2400247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031562

RESUMO

Glutathione (GSH) is an important antioxidant that is generated and degraded via the GSH cycle. Quantification of the main components in the GSH cycle is necessary to evaluate the process of GSH. In this study, a robust ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of 10 components (GSH; γ-glutamylcysteine; cysteinyl-glycine; n-acetylcysteine; homocysteine; cysteine; cystine; methionine; glutamate; pyroglutamic acid) in GSH cycle was developed. The approach was optimized in terms of derivative, chromatographic, and spectrometric conditions as well as sample preparation. The unstable thiol groups of GSH, γ-glutamylcysteine, cysteinyl-glycine, n-acetylcysteine, cysteine, and homocysteine were derivatized by n-ethylmaleimide. The derivatized and underivatized analytes were separated on an amino column with gradient elution. The method was further validated in terms of selectivity (no interference), linearity (R2 > 0.99), precision (% relative standard deviation [RSD%] range from 0.57 to 10.33), accuracy (% relative error [RE%] range from -3.42 to 10.92), stability (RSD% < 5.68, RE% range from -2.54 to 4.40), recovery (RSD% range from 1.87 to 7.87) and matrix effect (RSD% < 5.42). The validated method was applied to compare the components in the GSH cycle between normal and oxidative stress cells, which would be helpful in clarifying the effect of oxidative stress on the GSH cycle.


Assuntos
Glutationa , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Glutationa/análise , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Homocisteína/análise , Cisteína/análise , Ácido Pirrolidonocarboxílico/análise , Ácido Pirrolidonocarboxílico/química , Ácido Pirrolidonocarboxílico/metabolismo , Dipeptídeos/análise , Acetilcisteína/análise , Acetilcisteína/química , Cistina/análise
17.
J Pharmacol Toxicol Methods ; 128: 107540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38996943

RESUMO

X-376 is a novel anaplastic lymphoma kinase (ALK) inhibitor that is capable of penetrating the blood brain barrier. This makes it suitable for use in patients with ALK-positive non-small cell lung cancer (NSCLC) who have metastases in the central nervous system. This study developed a highly sensitive, fast, eco-friendly, and reliable UPLC-MS/MS approach to quantify X-376 in human liver microsomes (HLMs). This approach was used to evaluate X-376's metabolic stability in HLMs in vitro. The UPLC-MS/MS analytical technique validation followed US-FDA bio-analytical method validation guidelines. StarDrop software, containing P450 metabolic and DEREK modules, was utilized to scan X-376's chemical structure for metabolic lability and hazardous warnings. X-376 and Encorafenib (ENF as internal standard) were resoluted on the Eclipse Plus C18 column utilizing an isocratic mobile phase method. The X-376 calibration curve was linear from 1 to 3000 ng/mL. The precision and accuracy of this study's UPLC-MS/MS approach were tested for intra- and inter-day measurements. Inter-day accuracy was -1.32% to 9.36% while intra-day accuracy was -1.5% to 10.00%. The intrinsic clearance (Clint) and in vitro half-life (t1/2) of X-376 were 59.77 mL/min/kg and 13.56 min. The high extraction ratio of X-376 supports the 50 mg twice-daily dose for ALK-positive NSCLC and CNS metastases patients. In silico software suggests that simple structural changes to the piperazine ring or group substitution in drug design may improve metabolic stability and safety compared to X-376.


Assuntos
Microssomos Hepáticos , Software , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Microssomos Hepáticos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Simulação por Computador , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Reprodutibilidade dos Testes , Espectrometria de Massa com Cromatografia Líquida
18.
Heliyon ; 10(12): e32274, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975205

RESUMO

In this study, a UPLC-MS/MS method was developed for the rapid detection of 71 neuropsychotropic drugs in human serum for drug concentration monitoring and toxicity screening. The analytes were separated from the biological matrix by protein precipitation using a methanol-acetonitrile solvent mixture. The chromatographic separation was performed on a Kromasil ClassicShell C18 column (2.1*50 mm, 2.5 µ m) with gradient elution using acetonitrile-0.2 % acetic acid and 10 mM ammonium acetate as the mobile phases (flow rate 0.4 mL/min, column temperature 40 °C, injection volume 5 µL). An electrospray ion source in both positive and negative ion modes with multiple ion monitoring was used. The total run time was 6 min. All compounds were quantified using the isotope internal standard method. Totally, 71 drugs were detected within their linear ranges with correlation coefficients greater than 0.990. The intra- and inter-batch precision relative standard deviations (RSDs) for the low, medium, and high concentration points were less than 15 %, with an accuracy of 90%-110 %. All compounds except Moclobemide N-oxindole are stabilised within 7 days. The relative matrix effect results for each analyte were within ±20 % of the requirements. The method is validated according to Clinical and Laboratory Standards Institute guidelines, easy to use, and has a low cost.

19.
Chem Biol Interact ; 399: 111146, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39002878

RESUMO

Apixaban is an oral anticoagulant that directly inhibits the target Factor Xa (FXa). In this study, we focused on the in vivo and in vitro effects of adagrasib and asciminib on apixaban metabolism, to discover potential drug-drug interactions (DDI) and explore their inhibitory mechanisms. The levels of apixaban and its metabolite, O-desmethyl-apixaban (M2), were determined by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). In vitro evaluation, the maximum half inhibitory concentration (IC50) of adagrasib in rat liver microsomes (RLM) and human liver microsomes (HLM) against apixaban was 7.99 µM and 117.40 µM, respectively. The IC50 value of asciminib against apixaban in RLM and HLM was 4.28 µM and 18.42 µM, respectively. The results of the analysis on inhibition mechanisms showed that adagrasib inhibited the metabolism of apixaban through a non-competitive mechanism, while asciminib inhibited the metabolism of apixaban through a mixed mechanism. Moreover, the interaction of apixaban with adagrasib and asciminib in Sprague-Dawley (SD) rats was also investigated. It was found that the pharmacokinetic characteristics of apixaban were significantly changed when combined with these two antitumor drugs, where AUC(0-t), AUC(0-∞), t1/2, Tmax, and Cmax were increased, while CLz/F was significantly decreased. But both drugs did not appear to affect the metabolism of M2 in a significant way. Consistent results from in vitro and in vivo demonstrated that both adagrasib and asciminib inhibited the metabolism of apixaban. It provided reference data for the future clinical individualization of apixaban.


Assuntos
Antineoplásicos , Microssomos Hepáticos , Pirazóis , Piridonas , Ratos Sprague-Dawley , Animais , Pirazóis/farmacologia , Pirazóis/metabolismo , Piridonas/farmacologia , Piridonas/farmacocinética , Humanos , Microssomos Hepáticos/metabolismo , Ratos , Masculino , Antineoplásicos/farmacologia , Interações Medicamentosas , Espectrometria de Massas em Tandem , Inibidores do Fator Xa/farmacologia , Inibidores do Fator Xa/farmacocinética , Fenilacetatos , Tiofenos
20.
J Chromatogr A ; 1731: 465169, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39043101

RESUMO

Herein, a magnetic cationic Schiff base polymeric material (Fe3O4@SiO2-Schiff-TAPB-DA) was fabricated simply and rapidly, which was explored as a magnetic adsorbent for magnetic solid-phase extraction (MSPE) for enriching seven avermectins insecticides in surface water and milk matrices combined with ultra-high performance liquid chromatography mass spectrometry (UPLC-MS/MS). Under the optimized pretreatment and instrumental parameters, the analytes showed good linearity in the range of 0.5-200.0 ng·mL-1 with a correlation coefficient (R2) greater than 0.9990 and high precision. The limits of detection for the analytes were 0.004-0.047 µg·L-1 for surface water sample and 0.008-0.250 µg·kg-1 for milk samples. Satisfactory recoveries of spiked target compounds were in the range of 82.25- 100.87 % for surface water sample and 72.73- 119.62 % for milk samples. The results indicated powerfully Fe3O4@SiO2-Schiff-TAPB-DA was of significant potential as an MSPE adsorbent for the detection of avermectin insecticides in surface water and milk, which provides a quick and efficient idea for enriching avermectins insecticides in complicated matrices.


Assuntos
Inseticidas , Ivermectina , Limite de Detecção , Leite , Bases de Schiff , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Leite/química , Animais , Bases de Schiff/química , Ivermectina/análogos & derivados , Ivermectina/análise , Ivermectina/isolamento & purificação , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Inseticidas/análise , Inseticidas/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Dióxido de Silício/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA