RESUMO
High production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) are semi-volatile organic compounds (semi-VOCs) of great environmental concern because of their presence worldwide and health problems resulting from long-term exposure to some of them. It is essential to have robust analytical methods to monitor the concentrations of these compounds not only in environmental samples but also individual exposure. In this pilot study we develop and validate a multiresidue analytical method based on ultrasound-assisted extraction and gas-chromatography mass spectrometry for the simultaneous determination of 56 semi-VOCs using silicone wristbands (SWBs) as personal passive samplers. The developed method provided recoveries between 43% and 114% on sampled SWBs and method detection and quantification limits in the range of 0.1-35 ng/g and 0.3-119 ng/g, respectively. A preliminary study was performed with a small group of adults living in the industrial city of Tarragona (north-eastern Spain) to evaluate the applicability of SWBs for monitoring individual exposure to the studied HPVCs and PAHs. Benzothiazoles, benzenesulfonamides, UV stabilisers and phenolic antioxidants were determined for the first time in SWBs. Phthalates (PAEs), stood out above the rest, accounting for 52% of the total concentrations. Diethylhexyl phthalate was the compound found at the highest concentrations with values between 1.1 and 82 µg/g. Carcinogenic and non-carcinogenic dermal risk assessment was performed for adults and considering two scenarios (low and high). PAHs were the compounds with the highest carcinogenic and non-carcinogenic dermal risk regardless of the exposure scenario. The second family of compounds that contributed the most to the total risk were PAEs but high punctual concentrations of these compounds caused significant differences between exposure scenarios.
RESUMO
Phycocyanin was extracted from Spirulina platensis using conventional extraction (CE), direct ultrasonic-assisted extraction (direct UAE), indirect ultrasonic-assisted extraction (indirect UAE), and microwave-assisted extraction (MAE) methods at different temperatures, extraction intervals, stirring rate, and power intensities while maintaining the same algae to solvent ratio (1:15 w/v). The optimization of the extraction parameters indicated that the direct UAE yielded the highest phycocyanin concentration (29.31 ± 0.33 mg/mL) and antioxidant activity (23.6 ± 0.56 mg TE/g algae), while MAE achieved the highest purity (Rp = 0.5 ± 0.002). Based on the RP value, phycocyanin extract obtained by MAE (1:15 w/v algae to solvent ratio, 40 min, 40 °C, and 900 rpm) was selected as active compound in an alginate-based hydrogel formulation designed as potential wound dressings. Phycocyanin extracts and loaded hydrogels were characterized by FT-IR analysis. SEM analysis confirmed a porous structure for both blank and phycocyanin loaded hydrogels, while the mechanical properties remained approximately unchanged in the presence of phycocyanin. Phycocyanin release kinetics was investigated at two pH values using Zero-order, First-order, Higuchi, and Korsmeyer-Peppas kinetics models. The Higuchi model best fitted the experimental results. The R2 value at higher pH was nearly 1, indicating a superior fit compared with lower pH values.
Assuntos
Alginatos , Hidrogéis , Ficocianina , Spirulina , Ficocianina/química , Hidrogéis/química , Alginatos/química , Spirulina/química , Antioxidantes/química , Antioxidantes/síntese química , Micro-Ondas , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de HidrogênioRESUMO
N-methylsansalvamide (SA), one of cyclic pentadepsipeptides produced by several Fusarium strains, is a promising therapeutic agent for the treatment of cancer disease. In order to make sufficient amount of SA for drug development, a green and efficient extraction process of SA from the mycelia of strain Fusarium sp. R1 using deep eutectic solvent-assisted ultrasound extraction (DES-UAE) was firstly achieved in this work. Solvent screening results indicated that choline chloride-acetic acid (ChCl-Aa) was shown to be the best DES for SA extraction. Through single-factor trials, Plackett-Burman design (PBD) and BoxBehnken design (BBD) experiments, the optimal conditions for DES-UAE with the highest SA yield of 58.2 ± 1.1 mg/g were obtained as follows: ChCl-Aa ratio of 1:2.0 (M/M), water content of 16.4 %, liquid-solid ratio of 37:1 (mL/g), ultrasonic power of 175 W for 47.4 min at 46.3 °C. Compared to conventional extraction approaches, DES-UAE exhibited better SA yield since it caused more serious damage to the surface of mycelia powder on basis of scanning electron microscopy (SEM) analysis. Furthermore, molecular interaction studies suggested that SA has a variety of interactions with ChCl-Aa, including hydrogen and electrovalent bonds as well as van der Waals forces. Finally, the recovery rate of SA reached up to 99.5 % when the ratio of distilled water and DES extracts was 15:1 (V/V). These findings provide the way for large-scale production of SA.
RESUMO
This study evaluates the antibacterial and antifungal effects of ethanol extracts from Gnaphalium uliginosum L. derived from freshly harvested plant biomass, including stems, leaves, flowers, and roots. The extract was analyzed using gas chromatography-mass spectrometry (GC-MS) to determine its antimicrobial activity against phytopathogenic bacteria and fungi. Two methods were used in the experiments: agar well diffusion and double serial dilution. Extraction was carried out using the maceration method with different temperature regimes (25 °C, 45 °C, and 75 °C) and the ultrasonic method at various powers (63-352 W) for different durations (5 and 10 min). It was found that the 70% ethanol extract obtained through the ultrasonic experiment at 189 W power for 10 min and at 252 W power for 5 min had the highest antimicrobial activity compared to the maceration method. The most sensitive components of the extracts were the Gram-positive phytopathogenic bacteria Clavibacter michiganensis and the Gram-negative phytopathogenic bacteria Erwinia carotovora spp., with MIC values of 156 µg/mL. Among the fungi, the most sensitive were Rhizoctonia solani and Alternaria solani (MIC values in the range of 78-156 µg/mL). The evaluation of the antimicrobial activity of extracts using the diffusion method established the presence of a growth suppression zone in the case of C. michiganensis (15-17 mm for flowers, leaves, and total biomass), which corresponds to the average level of antimicrobial activity. These findings suggest that G. uliginosum has potential as a source of biologically active compounds for agricultural use, particularly for developing novel biopesticides.
RESUMO
Monascus is a filamentous fungus with a long history of application in China, which can produce a variety of secondary metabolites, including Monascus red pigments, Monascus orange pigments, Monascus yellow pigments, and citrinin. There is widespread attention being paid to natural pigments because of their safety. Among the many natural pigments, orange pigment has a wide range of applications because of its unique color, but current production levels in the orange pigment industry are limited to a certain extent due to the insufficiently wide range of sources and low production. In this study, the ARTP mutation was used to obtain a strain with high-yield orange pigment and low citrinin. The strain RS7 was obtained through two-step mutagenesis, and all three pigments were improved to different degrees. The color value of orange pigment was elevated from the original 108 U/mL to 180 U/mL, an increase of 66.7% compared to the original strain, and the citrinin content was reduced by 69%. The result of microscopic morphology showed that RS7 has more wrinkles and is more convex than the R1 strain, but there was little change between the two strains. Therefore, the ARTP mutation influenced the growth and the biosynthesis of pigments in Monascus. In addition, the conditions of ultrasonic extraction of Monascus pigments were optimized using the response surface, and the separation of pigments was achieved with the method of thin-layer chromatography. Pigment stability results showed that the temperature had no significant effect on orange pigment, while tea polyphenol could improve its stability. This study generated a strain with high-yielding orange pigment and could lay a foundation for the future application of Monascus orange pigment in the food industry.
RESUMO
The polysaccharides were extracted from the leaves of Mallotus oblongifolius (MO) using an ultrasonic-assisted extraction method in this study. The main variables affecting the yield of polysaccharides extracted from Mallotus appallatus (MOPS) were identified and optimized while concurrently investigating its antioxidant capacity, hypoglycemic activity, and digestive properties. The results indicated that the optimal ultrasound-assisted extraction of MOPS involved an ultrasound power of 200 W, a liquid-to-solid ratio of 25:1 (mL:g), an extraction temperature of 75 °C, and an ultrasound time of 45 min, leading to an extraction yield of (7.36 ± 0.45)% (m/m). The MOPS extract exhibited significant scavenging activity against DPPH and ABTS radicals with IC50 values of (25.65 ± 0.53) µg/mL and (100.38 ± 0.38) µg/mL, respectively. Furthermore, it effectively inhibited the enzymatic activities of α-glucosidase and α-amylase with IC50 values of (2.27 ± 0.07) mg/mL and (0.57 ± 0.04) mg/mL, respectively. The content of MOPS remained relatively stable in the stomach and small intestine; however, their ability to scavenge DPPH radicals and ABTS radicals and exhibit reducing power was attenuated, and the inhibition of α-amylase and α-glucosidase activity was diminished. In conclusion, the ultrasonic extraction of MOPS showed feasibility and revealed antioxidant and hypoglycemic effects. However, the activities were significantly reduced after gastric and small intestinal digestion despite no significant change in the MOPS content.
RESUMO
The extraction process plays a crucial role in the production of Tibetan medicines. This study focused on assembling a set of online near-infrared (NIR) spectroscopy detection devices for the extraction of medicinal herbs. The original infrared device was transformed into an online detection system. After evaluating the stability of the system, we applied online NIR spectroscopy monitoring to the flavonoid contents (total flavonoids, quercetin-3-O-sophoroside, and luteolin) of Meconopsis quintuplinervia Regel. during the ultrasonic extraction process and determined the extraction endpoint. Nine batches of samples were employed to construct quantitative and discriminant models, half of the remaining two batches of samples are used for external verification. Our research shows that the residual predictive deviation (RPD) values of total flavonoids, quercetin-3-O-sophoroside and luteolin models exceeded 2.5. The R values for external verification of the three ingredients were above 0.9, with RPD values generally exceeding 2 and RSEP values within 10 %, demonstrating the model's strong predictive performance. Most of the extraction endpoints of the flavonoid components in M. quintuplinervia ranged from 18 to 58 min, with high consistency between the predicted extraction endpoints of the external validation, suggesting accurate determination of extraction endpoints based on predicted values. This study can provide a reference for the online NIR spectroscopy quality monitoring of the extraction process of Chinese and Tibetan herbs.
Assuntos
Flavonoides , Medicina Tradicional Tibetana , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Flavonoides/análise , Flavonoides/isolamento & purificação , Quimiometria/métodosRESUMO
This study focuses on optimizing the ultrasound-assisted extraction (UAE) of bioactive compounds from purple-fleshed sweet potatoes (PFSP) for potential use as natural colorants. Factors such as time, temperature, and solid-to-liquid ratio were varied using a Box-Behnken Design. The optimal conditions were determined as 75 min, 70 °C, and a 1:15 m/v solid-to-liquid ratio, resulting in 18.372 mg/100 g total anthocyanin (TA) and 151.160 mg GAE/100 g total phenolic content (TPC). The validation yielded 18.822 mg/100 g for total anthocyanin and 162.174 mg GAE/100 g for total phenolic content, showing a 7% difference from predictions. UAE significantly increased TA extraction by 81% and TPC by 93% compared with the conventional method, with a notable reduction in process time from 24 h to 75 min. Additionally, three kinetic models were tested to compare extraction mechanisms, confirming the efficiency of UAE for PFSP bioactive compound recovery. This study proposes the UAE technique as a highly effective means of extracting bioactive compounds from PFSP, offering promising applications across multiple industries.
RESUMO
Dictyophora rubrovolvata volva, an agricultural by-product, is often directly discarded resulting in environmental pollution and waste of the proteins' resources. In this study, D. rubrovolvata volva proteins (DRVPs) were recovered using the ultrasound-assisted extraction (UAE) method. Based on one-way tests, orthogonal tests were conducted to identify the effects of the material-liquid ratio, pH, extraction time, and ultrasonic power on the extraction rate of DRVPs. Moreover, the impact of UAE on the physicochemical properties, structure characteristics, intermolecular forces, and functional attributes of DRVPs were also examined. The maximum protein extraction rate was achieved at 43.34% under the best extraction conditions of UAE (1:20 g/mL, pH 11, 25 min, and 550 W). UAE significantly altered proteins' morphology and molecular size compared to the conventional alkaline method. Furthermore, while UAE did not affect the primary structure, it dramatically changed the secondary and tertiary structure of DRVPs. Approximately 13.42% of the compact secondary structures (α-helices and ß-sheets) underwent a transition to looser structures (ß-turns and random coils), resulting in the exposure of hydrophobic groups previously concealed within the molecule's core. In addition, the driving forces maintaining and stabilizing the sonicated protein aggregates mainly involved hydrophobic forces, disulfide bonding, and hydrogen bonding interactions. Under specific pH and temperature conditions, the water holding capacity, oil holding capacity, foaming capacity and stability, emulsion activity, and stability of UAE increased significantly from 2.01 g/g to 2.52 g/g, 3.90 g/g to 5.53 g/g, 92.56% to 111.90%, 58.97% to 89.36%, 13.85% to 15.37%, and 100.22% to 136.53%, respectively, compared to conventional alkali extraction. The findings contributed to a new approach for the high-value utilization of agricultural waste from D. rubrovolvata.
RESUMO
Enzyme-assisted ultrasonic extraction (EAUE) was utilized and optimized for extracting polysaccharides from Schizochytrium limacinum meal (SLMPs) via the response surface methodology. The optimal EAUE conditions were determined as follows: enzyme concentration at 5.18%, ultrasonic temperature at 53 °C, ultrasonic duration of 40 min, ultrasonic power at 60 W, and a liquid-to-material ratio of 34 mL/g, achieving a polysaccharide extraction yield of 11.86 ± 0.61%. The purified polysaccharide component, SLMP1-1, isolated using DEAE Sepharose Fast Flow and Sephadex G-100 columns, exhibited potent antioxidant activity. SLMP1-1, with a molecular weight of 25.5 kDa, comprises glucose, mannose, arabinose, and galactose in a molar ratio of 16.39:14.75:1:693.03. 1H NMR analysis revealed the α configuration of SLMP1-1. Antioxidant assessments, including DPPH, ABTS, and ferric ion reduction assays, were detected with inhibitory values at 21.82-82.98%, 38.21-98.46%, and 3.30-20.30% at 0.2-1.0 mg/mL. This confirmed the effective antioxidant capacity of SLMP1-1, which is notably enhanced post oral and gastric digestion. The findings suggest that polysaccharides extracted from Schizochytrium limacinum meal hold significant promise as natural antioxidants.
RESUMO
A rapid and highly sensitive method for the quantification of 34 restricted dyes (including acid, basic, disperse, direct, and azo dyes) in solid textile raw material wastes was developed by employing ultrasonic extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS). More specifically, the proposed method employed methanol as the extraction solvent, while the mobile phases consisted of acetonitrile and 10 mmol/L ammonium acetate + 0.05% ammonia. A good linearity was achieved over the concentration range of 0.01-200 ng/mL with correlation coefficients (R) between 0.991-0.999, limits of detection (LODs) of 0.25-40.0 µg/kg (S/N = 3) and limits of quantification (LOQs) of 0.84-133.4 µg/kg (S/N = 10). 34 dyes were recovered at three levels ranging from 84.5 to 106.9% with relative standard deviation (RSDs) ranging from 0.59% to 10.61%. Further, the method was applied for the accurate analysis of 32 counts of cotton yarn, waste cotton, and printed fabrics within 15 min. The dyestuffs accurately quantified by this rapid chromatographic procedure covered a wide range of carcinogenic and allergenic dyestuffs listed in the Oeko-Tex Standard 100 (version 02.2023) colourants. The ultrasound technique combined with the ultra-high performance liquid chromatography-tandem mass spectrometry method proposed in this work is thus suitable for the rapid screening, confirmation, and quantitative detection of industrial synthetic dyes within solid waste originating from textile raw materials.
Assuntos
Corantes , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Corantes/análise , Espectrometria de Massas em Tandem/métodos , Resíduos Sólidos/análise , Têxteis/análise , Extração em Fase SólidaRESUMO
The effects of different extraction methods (traditional extraction, ultrasound extraction, cellulase extraction, and ultrasound-assisted cellulase extraction) on the yield of mulberry leaf protein (MLP) were investigated, and the results revealed that multi-frequency ultrasound-assisted cellulase extraction was the most efficient extraction method. The mechanism of the synergistic extraction method used to efficiently extract protein from mulberry leave was investigated, focusing on the kinetics and thermodynamics of the enzymatic process. The results revealed that kinetic parameters KM decreased by 14.07% and kA increased by 5.02%, and the thermodynamic parameters Ea, ΔH, and ΔS decreased by 44.81%, 48.41%, and 21.12 %, respectively, following the process of multi-frequency ultrasound (MFU) pretreatment. The spectral analysis with fluorescence spectra manifested that ultrasound exposed hydrophobic groups and induced molecular unfolding of MLP. Atomic force microscope showed that ultrasound decreased particle size while increasing flexibility of MLP. The effect of ultrasound increases the binding frequency of cellulase and substrates, resulting in greater affinity between the two and promoting the solubilization of MLP. This study provides a theoretical basis to improve the application prospects of MLP.
Assuntos
Celulase , Morus , Morus/química , Cinética , Proteínas/análise , Termodinâmica , Folhas de Planta/químicaRESUMO
In order to obtain homogeneous Sanghuangporus vaninii polysaccharides with antioxidant and anti-inflammatory activities, a response surface method (RSM) was used to compare the polysaccharide extraction rate of hot water extraction and ultrasonic-assisted extraction from Sanghuangporus vaninii. The optimal conditions for ultrasonic-assisted extraction were determined as follows: an extraction temperature of 60 °C, an extraction time of 60 min, a solid-liquid ratio of 40 g/mL, and an ultrasonic power of 70 W. An SVP (Sanghuangporus vaninii polysaccharides) extraction rate of 1.41% was achieved. Five homogeneous monosaccharides were obtained by gradient ethanol precipitation with diethylaminoethyl-cellulose (DEAE) and SephadexG-100 separation and purification. The five polysaccharides were characterized by high performance liquid chromatography, the ultraviolet spectrum, the Fourier transform infrared spectrum, TG (thermogravimetric analysis), the Zeta potential, and SEM (scanning electron microscopy). The five polysaccharides had certain levels of antioxidant activity in vitro. In addition, we the investigated the anti-inflammatory effects of polysaccharides derived from Sanghuangporus vaninii on lipopolysaccharide (LPS)-induced RAW 264.7 cells and Kupffer cells. Further, we found that SVP-60 significantly inhibited the levels of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-induced RAW 264.7 cells and promoted the level of the anti-inflammatory cytokine IL-10 in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Our study provides theoretical support for the potential application of Sanghuangporus vaninii in the field of antioxidant and anti-inflammatory activities in vitro.
Assuntos
Antioxidantes , Lipopolissacarídeos , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , CitocinasRESUMO
We optimized an ultrasound-assisted extraction process of Phellinus linteus mycelium polysaccharides (PLPs) and studied their monosaccharide composition and bacteriostatic properties. Based on a single-factor experiment, a three-factor, three-level Box-Behnken design was used to optimize the ultrasound-assisted extraction process of PLP, using the yield of PLP as the index. The chemical composition and monosaccharide composition of PLP were determined by chemical analysis and HPLC analysis, respectively. Microscopic morphological analysis of the surface of PLP was performed via swept-surface electron microscopy. The bacteriostatic properties of PLP were determined using the spectrophotometric turbidimetric method. The results showed that the best extraction process of PLP with ultrasonic assistance achieved a result of 1:42 g/mL. In this method, the ultrasonic temperature was 60 °C, ultrasonic extraction was performed for 20 min, and the yield of PLP was 12.98%. The monosaccharide composition of PLP mainly contains glucose (Glc), mannose (Man), galactose (Gal), and glucuronic acid (GlcA). The intracellular polysaccharide of Phellinus igniarius Mycelia (PIP) is an irregular spherical accumulation, the surface is rough and not smooth, and the extracellular polysaccharide (PEP) is a crumbly accumulation. PIP has a stronger inhibitory ability for S. aureus and E. coli and a slightly weaker inhibitory effect for B. subtilis; the inhibitory effect of PEP on S. aureus, E. coli, and B. subtilis is slightly inferior to that of PIP.
Assuntos
Escherichia coli , Staphylococcus aureus , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , MonossacarídeosRESUMO
Theoretical analysis of the process of biologically active substances (BAS) extraction from plant raw materials in conditions of ultrasonic action and without it to describe the kinetics of the process has been conducted. A mathematical model of the process of BAS extraction from plant raw materials to establish the dependence of changes in the concentration of BAS in the volume of cells in the intercellular space and in the main volume of the extractant has been developed. On the basis of the solution of the mathematical model the duration of the model of BAS extraction process from plant raw materials has been established, results show that the duration of the process of extraction of oil from plant raw materials in an acoustic extractor decreases by 1.5 times ultrasonic extraction can be used for the extraction of biologically active substances, such as essential oils, lipids and dietary supplements from plants.
Assuntos
Óleos Voláteis , Óleos de Plantas , Temperatura Alta , Ultrassonografia , Modelos Teóricos , Extratos VegetaisRESUMO
The large quantity of olive roots resulting from a large number of old and unfruitful trees encouraged us to look for ways of adding value to these roots. For this reason, the current research work is devoted to the valorization of olive roots by identifying active phytochemicals and assessing their biological activities, including the cytotoxicity and antiviral potential of different extracts from the Olea europaea Chemlali cultivar. The extract, obtained by ultrasonic extraction, was analyzed using the liquid chromatography-mass spectrometry technique (LC-MS). The cytotoxicity was evaluated through the use of the microculture tetrazolium assay (MTT) against VERO cells. Subsequently, the antiviral activity was determined for HHV-1 (Human Herpesvirus type 1) and CVB3 (Coxsackievirus B3) replication in the infected VERO cells. LC-MS analysis allowed the identification of 40 compounds, classified as secoiridoids (53%), organic acids (13%), iridoids (10%), lignans (8%), caffeoylphenylethanoid (5%), phenylethanoids (5%),sugars and derivatives (2%), phenolic acids (2%), and flavonoids (2%). It was found that extracts were not toxic to the VERO cells. Moreover, the extracts did not influence the appearance of HHV-1 or CVB3 cytopathic effects in the infected VERO cells and failed to decrease the viral infectious titer.
Assuntos
Olea , Chlorocebus aethiops , Animais , Humanos , Olea/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Células Vero , Cromatografia Líquida de Alta Pressão/métodos , Fenóis/química , Folhas de Planta/química , Cromatografia Líquida , Iridoides/química , Extratos Vegetais/química , Flavonoides/químicaRESUMO
Coenzyme Q10 (CoQ10) is a vitamin-like compound found naturally in plant- and animal-derived materials. This study aimed to determine the level of CoQ10 in some food by-products (oil press cakes) and waste (fish meat and chicken hearts) to recover this compound for further use as a dietary supplement. The analytical method involved ultrasonic extraction using 2-propanol, followed by high-performance liquid chromatography with diode array detection (HPLC-DAD). The HPLC-DAD method was validated in terms of linearity and measuring range, limits of detection (LOD) and quantification (LOQ), trueness, and precision. As a result, the calibration curve of CoQ10 was linear over the concentration range of 1-200 µg/mL, with an LOD of 22 µg/mL and an LOQ of 0.65 µg/mL. The CoQ10 content varied from not detected in the hempseed press cake and the fish meat to 84.80 µg/g in the pumpkin press cake and 383.25 µg/g in the lyophilized chicken hearts; very good recovery rates and relative standard deviations (RSDs) were obtained for the pumpkin press cake (100.9-116.0% with RSDs between 0.05-0.2%) and the chicken hearts (99.3-106.9% CH with RSDs between 0.5-0.7%), showing the analytical method's trueness and precision and thus its accuracy. In conclusion, a simple and reliable method for determining CoQ10 levels has been developed here.
RESUMO
The butterfly pea flower (Clitoria ternatea L.) (BPF) has a high anthocyanin content, which can be incorporated into polymer-based films to produce intelligent packaging for real-time food freshness indicators. The objective of this work was to systematically review the polymer characteristics used as BPF extract carriers and their application on various food products as intelligent packaging systems. This systematic review was developed based on scientific reports accessible on the databases provided by PSAS, UPM, and Google Scholar between 2010 and 2023. It covers the morphology, anthocyanin extraction, and applications of anthocyanin-rich colourants from butterfly pea flower (BPF) and as pH indicators in intelligent packaging systems. Probe ultrasonication extraction was successfully employed to extract a higher yield, which showed a 246.48% better extraction of anthocyanins from BPFs for food applications. In comparison to anthocyanins from other natural sources, BPFs have a major benefit in food packaging due to their unique colour spectrum throughout a wide range of pH values. Several studies reported that the immobilisation of BPF in different polymeric film matrixes could affect their physicochemical properties, but they could still effectively monitor the quality of perishable food in real-time. In conclusion, the development of intelligent films employing BPF's anthocyanins is a potential strategy for the future of food packaging systems.
RESUMO
Double emulsions (W1/O/W2) have long been used in the food and pharmaceutical industries to encapsulate hydrophobic and hydrophilic drugs and bioactive compounds. This study investigated the effect of different types of emulsifiers (plant- vs. animal-based proteins) on the encapsulation properties of Mentha piperita leaf extract (MLE) prepared using the double emulsion method. Using response surface methodology, the effect of ultrasound-assisted extraction conditions (amplitude 20-50%; time 10-30 min; ethanol concentration 70-90%) on the total phenolic content (TPC) and antioxidant activity (percent inhibition) of the MLE was studied. MLE under optimized conditions (ethanol concentration 76%; amplitude 39%; time 30 min) had a TPC of 62.83 mg GA equivalents/g and an antioxidant activity of 23.49%. The optimized MLE was encapsulated using soy, pea, and whey protein isolates in two emulsifying conditions: 4065× g/min and 4065× g/30 s. The droplet size, optical images, rheology, and encapsulation efficiency (EE%) of the different encapsulated MLEs were compared. The W1/O/W2 produced at 4065× g/min exhibited a smaller droplet size and higher EE% and viscosity than that prepared at 4065× g/30 s. The higher EE% of soy and pea protein isolates indicated their potential as an effective alternative for bioactive compound encapsulation.
RESUMO
INTRODUCTION: Due to the variety, chemical composition and complex structure, the quality control of Bupleuri Radix (BR) is a challenging task. There are still many trace compounds in BR that are difficult to extract and detect. OBJECTIVE: To develop an innovative method of trisiloxane surfactant vesicles ultrasonic extraction (TSVUE) combined with ultrahigh-performance liquid chromatography tandem mass spectrometry for the identification from Bupleurum chinense DC. (BC) to Bupleurum scorzonerifolium Willd (BS) based on metabolomics. METHODS: Based on extraction effect for BR, five different types of surfactants vesicles were prepared and compared. Then, a single-factor test and a response surface methodology study were adopted to obtain the optimal conditions for the surfactant vesicles ultrasonic extraction method. Finally, a non-targeted metabolomics method with information dependent acquisition mode was performed to analyse differential metabolites in BC and BS. RESULTS: Sugar-based surfactant containing trisiloxane [N-3-propyl-methyltrisiloxane-N-glucoheptonamne (Si(3)N-GHA)] displayed higher extraction efficiency compared to other types of surfactants when it comes to being used in pretreatment methods. And a TSVUE method was established and optimised. In total, 131 constituents were identified in two BR herbs, of which 35 were unreported, and 11 were characterised as chemical markers. CONCLUSIONS: This method provides promising perspectives for rapidly identifying trace compounds in complex systems of traditional Chinese medicine (TCM), as well as for laying the foundation in the identification of similar herbs from the same species. Meanwhile, these findings serve as a promising application of trisiloxane surfactant vesicles in the extraction field of TCM.