Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Environ Res ; : 119888, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39216736

RESUMO

Low pressure membrane takes a great role in hydraulic fracturing wastewater (HFW), while membrane fouling is a critical issue for the stable operation of microfiltration (MF). This study focused on fouling mitigation by sodium percarbonate (SPC) oxidation, activated by ultraviolet (UV) and ferrous ion (Fe(II)). The higher the concentration of oxidizer, the better the anti-fouling performance of MF membrane. Unlike severe MF fouling without oxidation (17.26 L/(m2·h)), UV/SPC and Fe(II)/SPC under optimized dosage improved the final flux to 740 and 1553 L/(m2·h), respectively, and the latter generated Fe(III) which acted as a coagulant. Fe(II)/SPC oxidation enabled a shift in fouling mechanism from complete blocking to cake filtration, while UV/SPC oxidation changed it to standard blockage. UV/SPC oxidation was stronger than Fe(II)/SPC oxidation in removing UV254 and fluorescent organics for higher oxidizing capacity, but the opposite was noted for DOC removal. The deposited foulants on membrane surface after oxidation decreased by at least 88% compared to untreated HFW. Correlation analysis showed that UV254, DOC and organic fraction were key parameters responsible for membrane fouling (correlation coefficient>0.80), oxidizing capacity and turbidity after oxidation were also important parameters. These results provide new insights for fouling control during the HFW treatment.

2.
Environ Sci Pollut Res Int ; 31(34): 46979-46993, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985420

RESUMO

Skin homeostasis is predominantly compromised by exposure to UV-B irradiation, leading to several physiopathological processes at cellular and tissue levels that deteriorate skin function and integrity. The current study investigated the photo-protective role of seabuckthorn fruit pulp (SBT) extract against UV-B-induced damage in primary human skin fibroblasts (HDFs) and Balb/C mice skin. We subjected HDFs and Balb/C mice to UV-B irradiation and measured multiple cellular damage indicators. We found that UV-B-irradiated HDFs treated with SBT had a considerably greater survival rate than cells exposed to UV-B radiation alone. The UV-B irradiation-induced ROS generation led to the degradation of the extracellular matrix, inflammation, DNA damage, endoplasmic reticulum (ER) stress, and apoptosis. SBT treatment significantly reduced these manifestations. Topical application of SBT alleviated UV-B-induced epidermal thickening, leukocyte infiltration, and degradation of extracellular matrix in Balb/c mice skin. Based on our results, we conclude that SBT has the potential to be developed as a therapeutic/cosmetic remedy for the prevention of skin photo-damage.


Assuntos
Dano ao DNA , Estresse do Retículo Endoplasmático , Fibroblastos , Hippophae , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Extratos Vegetais , Pele , Raios Ultravioleta , Animais , Camundongos , Hippophae/química , Fibroblastos/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
3.
J Hazard Mater ; 477: 135371, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39084014

RESUMO

Salicylic esters (SEs), the widely used ultraviolet (UV) absorbers in sunscreen products, have been found to have health risks such as skin sensitization and estrogenic effects. This study aims to design SE substitutes that maintain high UV absorbance while reducing estrogenicity. Using molecular docking and Gaussian09 software for initial assessments and further application of a combination of two-dimensional and three-dimensional quantitative structure-activity relationships (2D-QSAR and 3D-QSAR, respectively) models, we designed 73 substitutes. The best-performing molecules, ethylhexyl salicylate (EHS)-5 and EHS-15, significantly reduced estrogenicity (44.54 % and 17.60 %, respectively) and enhanced UV absorbance (249.56 % and 46.94 %, respectively). Through screening for human health risks, we found that EHS-5 and EHS-15 were free from skin sensitivity and eye irritation and exhibited reduced skin permeability compared with EHS. Furthermore, the photolysis and synthetic pathways of EHS-5 and EHS-15 were deduced, demonstrating their good photodegradability and potential synthesizability. In addition, we analyzed the mechanisms underlying the changes in estrogenic effects and UV absorption properties. We identified covalent hydrogen bond basicity and acidity Propgen value for atomic molecular properties and the highest occupied molecular orbital eigenvalue as the main factors affecting the estrogenic effect and UV absorbance of SEs, respectively. This study focuses on the design and screening of SEs, exhibiting enhanced functionality, reduced health risks, and synthetic feasibility.


Assuntos
Estrogênios , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Salicilatos , Protetores Solares , Protetores Solares/química , Protetores Solares/toxicidade , Salicilatos/química , Salicilatos/toxicidade , Estrogênios/química , Estrogênios/toxicidade , Humanos , Raios Ultravioleta , Fotólise , Animais , Pele/efeitos dos fármacos , Pele/efeitos da radiação
4.
Water Res ; 261: 122013, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981354

RESUMO

Ultrafiltration (UF) is increasingly used in the pretreatment of shale gas produced water (SGPW), whereas severe membrane fouling hampers its actual operation. In this work, ferrate(VI)-based oxidation was proposed for membrane fouling alleviation in SGPW pretreatment, and the activation strategies of calcium peroxide (CaO2) and ultraviolet (UV) were selected for comparison. The findings indicated that UV/Fe(VI) was more effective in removing fluorescent components, and the concentration of dissolved organic carbon was reduced by 24.1 %. With pretreatments of CaO2/Fe(VI) and UV/Fe(VI), the terminal specific membrane flux was elevated from 0.196 to 0.385 and 0.512, and the total fouling resistance diminished by 52.7 % and 76.2 %, respectively. Interfacial free energy analysis indicated that the repulsive interactions between pollutants and membrane were notably enhanced by Fe(VI)-based oxidation, thereby delaying the deposition of cake layers on the membrane surface. Quenching and probe experiments revealed that high-valent iron intermediates (Fe(IV)/Fe(V)) played significant roles in both CaO2/Fe(VI) and UV/Fe(VI) processes. Besides, hydroxyl radicals (•OH) were also important reactive species in the UV/Fe(VI) treatment, and the synergistic effect of Fe(IV)/Fe(V) and •OH showed a positive influence on SGPW fouling mitigation. In general, these findings establish a theoretical underpinning for the application of Fe(VI)-based oxidation for UF membrane fouling mitigation in SGPW pretreatment.


Assuntos
Radical Hidroxila , Ferro , Membranas Artificiais , Oxirredução , Ultrafiltração , Ferro/química , Radical Hidroxila/química , Purificação da Água/métodos
5.
Water Res ; 260: 121959, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38909420

RESUMO

Combined sewer overflows (CSOs) introduce microbial contaminants into the receiving water bodies, thereby posing risks to public health. This study systematically investigated the disinfection performance and mechanisms of the combined process of ultraviolet and peracetic acid (UV/PAA) in CSOs with selecting Escherichia coli (E. coli) as a target microbial contaminant. The UV/PAA process exhibited superior performance in inactivating E. coli in simulated CSOs compared with UV, PAA, and UV/H2O2 processes. Increasing the PAA dosage greatly enhanced the disinfection efficiency, while turbidity and organic matter hindered the inactivation performance. Singlet oxygen (1O2), hydroxyl (•OH) and organic radicals (RO•) contributed to the inactivation of E. coli, with •OH and RO• playing the prominent role. Variations of intracellular reactive oxygen species, malondialdehyde, enzymes activities, DNA contents and biochemical compositions of E. coli cells suggested that UV/PAA primarily caused oxidative damage to intracellular molecules rather than the damage to the lipids of the cell membrane, therefore effectively limited the regrowth of E. coli. Additionally, the UV/PAA process displayed an outstanding performance in disinfecting actual raw CSOs, achieving a 2.90-log inactivation of total bacteria after reaction for 4 min. These results highlighted the practical applicability and effectiveness of the UV/PAA process in the disinfection of CSOs.


Assuntos
Desinfecção , Escherichia coli , Ácido Peracético , Esgotos , Raios Ultravioleta , Desinfecção/métodos , Ácido Peracético/farmacologia , Escherichia coli/efeitos dos fármacos , Esgotos/microbiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
6.
MedComm (2020) ; 5(7): e625, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38919335

RESUMO

Overexposure to ultraviolet light (UV) has become a major dermatological problem since the intensity of ultraviolet radiation is increasing. As an adaption to outside environments, amphibians gained an excellent peptide-based defense system in their naked skin from secular evolution. Here, we first determined the adaptation and resistance of the dark-spotted frogs (Pelophylax nigromaculatus) to constant ultraviolet B (UVB) exposure. Subsequently, peptidomics of frog skin identified a series of novel peptides in response to UVB. These UV-induced frog skin peptides (UIFSPs) conferred significant protection against UVB-induced death and senescence in skin cells. Moreover, the protective effects of UIFSPs were boosted by coupling with the transcription trans-activating (TAT) protein transduction domain. In vivo, TAT-conjugated UIFSPs mitigated skin photodamage and accelerated wound healing. Transcriptomic profiling revealed that multiple pathways were modulated by TAT-conjugated UIFSPs, including small GTPase/Ras signaling and MAPK signaling. Importantly, pharmacological activation of MAPK kinases counteracted UIFSP-induced decrease in cell death after UVB exposure. Taken together, our findings provide evidence for the potential preventive and therapeutic significance of UIFSPs in UV-induced skin damage by antagonizing MAPK signaling pathways. In addition, these results suggest a practicable alternative in which potential therapeutic agents can be mined from organisms with a fascinating ability to adapt.

7.
J Dermatol Sci ; 114(3): 124-132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749796

RESUMO

BACKGROUND: Ultraviolet (UV) damage is closely related to skin photoaging and many skin diseases, including dermatic tumors. N6-methyladenosine (m6A) modification is an important epigenetic regulatory mechanism. However, the role of m6A methylation in apoptosis induced by repeated UV irradiation has not been characterized. OBJECTIVE: To explore m6A methylation changes and regulatory mechanisms in the repeated UV-induced skin damage process, especially apoptosis. METHODS: HaCaT cells and BALB/c-Nu nude mice were exposed to repeated UVB/UVA+UVB irradiation. Colorimetry and flow cytometry were used to measure cellular viability and apoptosis. m6A-modified genes were detected via colorimetry and methylated RNA immunoprecipitation (MeRIP) sequencing. Methyltransferases and demethylases were detected via RT-PCR, western blotting and immunohistochemistry. Transfection of siRNA and plasmid was performed to knock down or overexpress the selected genes. RESULTS: After UVB irradiation, 861 m6A peaks were increased and 425 m6A peaks were decreased in HaCaT cells. The differentially modified genes were enriched in apoptosis-related pathways. The m6A demethylase FTO was decreased in both HaCaT cells and mouse skin after UV damage. Overexpressing FTO could improve cell viability, inhibit apoptosis and decrease RNA-m6A methylation, including LPCAT3-m6A, which increase LPCAT3 expression, cell viability promotion and apoptosis inhibition. CONCLUSION: Our study identified the cell m6A methylation change lists after repeated UVB irradiation, and revealed that FTO and LPCAT3 play key roles in the m6A methylation pathogenesis of UV-induced skin cell apoptosis. FTO-m6A-LPCAT3 might serve as a novel upstream target for preventing and treating photoaging and UV-induced skin diseases.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Apoptose , Células HaCaT , Camundongos Endogâmicos BALB C , Camundongos Nus , Envelhecimento da Pele , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Apoptose/efeitos da radiação , Apoptose/genética , Humanos , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Metilação/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Envelhecimento da Pele/genética , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Queratinócitos/efeitos da radiação , Queratinócitos/metabolismo , Sobrevivência Celular/efeitos da radiação , Epigênese Genética/efeitos da radiação , Feminino
8.
Water Res X ; 23: 100225, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38711797

RESUMO

This study thoroughly explores the application of Ultraviolet (UV) water treatment technology in urban wastewater treatment and water supply in China, highlighting its crucial role in enhancing water quality safety. UV technology, with its environmentally friendly and low-carbon characteristics, is deemed more in line with the demands of sustainable development compared to traditional chemical disinfection methods. The widespread application of UV technology in urban wastewater treatment in China, particularly in the context of urban sewage treatment, is examined. However, to better promote and apply UV technology, there is a need to deepen the understanding of this technology and its application among a broad base of users and design units. The importance of gaining in-depth knowledge about the performance of UV water treatment equipment, the design calculation basis, and operational considerations, as well as the ongoing development of relevant standards, is underscored to ensure that the equipment used in projects complies with engineering design and production requirements. Furthermore, the positive trend of UV technology in the field of advanced oxidation, indicating a promising trajectory for engineering applications, is pointed out. Regarding the prospects of industrial development, a thorough analysis is conducted in the article, emphasizing the necessity for all stakeholders to collaborate and adopt a multi-level approach to promote the sustainable development and application of UV water treatment technology. This collaborative effort is crucial for providing effective safeguards for China's environment, ecology, and human health.

9.
Heliyon ; 10(9): e30490, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726110

RESUMO

The Contamination Sanitization Inspection and Disinfection (CSI-D) device is a handheld fluorescence-based imaging system designed to disinfect food contact surfaces using ultraviolet-C (UVC) illumination. This study aimed to determine the optimal CSI-D parameters (i.e., UVC exposure time and intensity) for the inactivation of the following foodborne bacteria plated on non-selective media: generic Escherichia coli (indicator organism) and the pathogens enterohemorrhagic E. coli, enterotoxigenic E. coli, Salmonella enterica, and Listeria monocytogenes. Each bacterial strain was spread-plated on non-selective agar and exposed to high-intensity (10 mW/cm2) or low-intensity (5 mW/cm2) UVC for 1-5 s. Control plates were not exposed to UVC. The plates were incubated overnight at 37 °C and then enumerated. Three trials for each bacterial strain were conducted. Statistical analysis was carried out to determine if there were significant differences in bacterial growth between UVC intensities and exposure times. Overall, exposure to low or high intensity for 3-5 s resulted in consistent inhibition of bacterial growth, with reductions of 99.9-100 % for E. coli, 96.8-100 % for S. enterica, and 99.2-100 % for L. monocytogenes. The 1 s exposure time showed inconsistent results, with a 66.0-100 % reduction in growth depending on the intensity and bacterial strain. When the results for all strains within each species were combined, the 3-5 s exposure times showed significantly greater (p < 0.05) growth inhibition than the 1 s exposure time. However, there were no significant differences (p > 0.05) in growth inhibition between the high and low UVC intensities. The results of this study show that, in pure culture conditions, exposure to UVC with the CSI-D device for ≥3 s is required to achieve consistent reduction of E. coli, S. enterica, and L. monocytogenes.

10.
AAPS J ; 26(3): 48, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622446

RESUMO

Pazopanib is a multi-kinase inhibitor used to treat advanced/metastatic renal cell carcinoma and advanced soft tissue tumors; however, side effects such as diarrhea and hypertension have been reported, and dosage adjustment based on drug concentration in the blood is necessary. However, measuring pazopanib concentrations in blood using the existing methods is time-consuming; and current dosage adjustments are made using the results of blood samples taken at the patient's previous hospital visit (approximately a month prior). If the concentration of pazopanib could be measured during the waiting period for a doctor's examination at the hospital (in approximately 30 min), the dosage could be adjusted according to the patient's condition on that day. Therefore, we aimed to develop a method for rapidly measuring blood pazopanib concentrations (in approximately 25 min) using common analytical devices (a tabletop centrifuge and a spectrometer). This method allowed for pazopanib quantification in the therapeutic concentration range (25-50 µg/mL). Additionally, eight popular concomitant medications taken simultaneously with pazopanib did not interfere with the measurements. We used the developed method to measure blood concentration in two patients and obtained similar results to those measured using the previously reported HPLC method. By integrating it with the point of care and sample collection by finger pick, this method can be used for measurements in pharmacies and patients' homes. This method can maximize the therapeutic effects of pazopanib by dose adjustment to control adverse events.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sulfonamidas , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/secundário , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Monitoramento de Medicamentos , Pirimidinas , Indazóis
11.
J Nutr Biochem ; 129: 109636, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38561079

RESUMO

The purpose of this study is to investigate if grape consumption, in the form of grape powder (GP), could protect against ultraviolet (UV)-induced cataract. Mice were fed with the regular diet, sugar placebo diet, or a grape diet (regular diet supplemented with 5%, 10%, and 15% GP) for 3 months. The mice were then exposed to UV radiation to induce cataract. The results showed that the GP diet dose-dependently inhibited UV-induced cataract and preserved glutathione pools. Interestingly, UV-induced Nrf2 activation was abolished in the groups on the GP diet, suggesting GP consumption may improve redox homeostasis in the lens, making Nrf2 activation unnecessary. For molecular target prediction, a total of 471 proteins regulated by GP were identified using Agilent Literature Search (ALS) software. Among these targets, the X-linked inhibitor of apoptosis (XIAP) was correlated with all of the main active ingredients of GP, including resveratrol, catechin, quercetin, and anthocyanins. Our data confirmed that GP prevented UV-induced suppression of XIAP, indicating that XIAP might be one of the critical molecular targets of GP. In conclusion, this study demonstrated that GP protected the lens from UV-induced cataract development in mice. The protective effects of GP may be attributed to its ability to improve redox homeostasis and activate the XIAP-mediated antiapoptotic pathway.


Assuntos
Catarata , Suplementos Nutricionais , Fator 2 Relacionado a NF-E2 , Raios Ultravioleta , Vitis , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Animais , Camundongos , Antocianinas/farmacologia , Catarata/prevenção & controle , Catarata/metabolismo , Catarata/etiologia , Glutationa/metabolismo , Cristalino/metabolismo , Cristalino/efeitos da radiação , Cristalino/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Vitis/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
12.
Int J Womens Dermatol ; 10(2): e128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572264

RESUMO

Background: Exposure to ultraviolet radiation is a leading risk factor for developing all types of skin cancer. In the United States, an estimated 7.8 million young adults engage in indoor tanning. Objective: Here, it is hypothesized that certain populations of students at undergraduate universities, namely sorority members, have a greater frequency of tanning bed usage than other groups of students and that regardless of sorority status, the most important motivating factor will be the intent to enhance one's appearance. Methods: Undergraduate students at 2 state-funded universities were recruited for participation in this institutional review board-exempt survey via distribution to e-mail addresses and social media accounts affiliated with student organizations/clubs. Results: Among all respondents, the most common motivating factors for tanning bed use were the perception of improved self-appearance and boosted self-confidence. Female sorority members were more likely to use tanning beds and also more likely to report being motivated by enhanced appearance and self-confidence, than their female counterparts who were not sorority members. Limitations: The sample size (n = 321) and population of this study allows data to only be generalizable to surrounding states with similar demographics. The findings of this study are subject to recall bias as the data is self-reported. Conclusion: Tanning bed use remains a popular practice among young people. Understanding motivations for tanning bed use among populations at increased risk of partaking in this behavior allows for educating these groups on the risks associated with ultraviolet radiation exposure. It is crucial that providers continue to promote skin health and take steps to dissuade detrimental practices and possible habit-forming behaviors at the individual and state levels.

13.
BMC Public Health ; 24(1): 737, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454389

RESUMO

BACKGROUND: Skin cancers resulting from excessive exposure to solar ultraviolet (UV) radiation are on the rise. This study aims to investigate the impact of facial-aging app intervention on promoting safe and healthy behaviors and its influence on reducing students' UV exposure. METHOD: Utilizing a Pretest-Posttest repeated-measures design, we developed a theory-guided web app on the WhatsApp platform, named the Sunshine and Skin Health app. This app allows users to visualize their altered faces in three stages of adolescence, middle age, and old age based on sun protection behavior. The intervention continued within WhatsApp, incorporating 27 health messages grounded in the PMT theory, eight educational files, and a skin cancer video clip. The primary outcome is the change in sun protection behavior between the two groups (intervention and control) immediately after the intervention (T2) and the secondary outcome is the change in sun protection behavior between the two groups at 3 months follow-up (T3). The data are analyzed in SPSS 22 and a significance level of 0.05 is considered. RESULTS: The results revealed no significant difference between the two groups before the intervention. However, in the intervention group, there were significant differences in the utilization of sunglasses, hats, and sunscreen in the last month, as well as sunscreen reapplication after washing their hands and face, both immediately after the intervention and at the 3-month follow-up, compared to the control group (P = 0.001). Furthermore, a significant intervention effect, time effect, and interaction effect between group and time were observed in behaviors related to using sunscreen in the last month and sunscreen reapplication after washing hands and face (P = 0.001). Specifically, the intervention group exhibited a significant difference from Time 1 to 2 and from Time 1 to 3 (p = 0.001), but no significant difference from Time 2 to 3. In contrast, the control group did not show any significant differences over time. CONCLUSIONS: This study indicated that the Facial-Aging web app can effectively encourage safe behaviors in sunlight. To ensure the maintenance and sustainability of these behaviors over the long term, it is crucial to consider implementing booster sessions. TRIAL REGISTRATION: Iranian Registry of Clinical Trials IRCT20200924048825N1. Registered prospectively on 8 February 2021.


Assuntos
Aplicativos Móveis , Neoplasias Cutâneas , Adolescente , Humanos , Pessoa de Meia-Idade , Envelhecimento , Comportamentos Relacionados com a Saúde , Irã (Geográfico) , Instituições Acadêmicas , Neoplasias Cutâneas/prevenção & controle , Estudantes , Protetores Solares/uso terapêutico , Raios Ultravioleta/efeitos adversos , Idoso
14.
Work ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38427526

RESUMO

BACKGROUND: Quantitatively analyzing the impact of UV radiation and noise during welding operations is essential to assess the exposure, identify potential hazards, and develop targeted safety protocols to ensure worker safety and adherence to safety regulations, especially in developing countries with inadequate adherence to safety standards and resources. OBJECTIVES: This study employs machine learning for predicting ultraviolet radiation and noise levels during welding, emphasizing worker safety. The focus is on the Indian foundry sector to gauge actual exposure vis-á-vis safety standards. MATERIALS AND METHODS: Ultraviolet radiation and noise emitted during the welding of a ferrous alloy were collected from three foundries in Agra, India. Five machine learning (ML) algorithms were applied for data analysis and prediction of UV radiation and noise levels, and a relative performance comparison was carried out on the compiled data against safety standards. RESULTS: Out of all the ML algorithms applied, the Support Vector Machine regression algorithm (RMSE = 356.93) obtained the best performance on UV radiation data, and the Random Forest algorithm (RMSE = 11.4) was found to give the best results for the noise level prediction task. CONCLUSIONS: This work represents the first known application of machine learning techniques for predicting UV radiation and noise levels in arc welding processes. The results show the efficacy of algorithms such as SVM regression and Random Forest for the problem. Further, the datasets and ML algorithms implemented in the work will be made openly available to support further research endeavors in this and related areas.

15.
Water Res ; 252: 121242, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342066

RESUMO

Water reuse is a growing global reality. In regulating water reuse, viruses have come to the fore as key pathogens due to high shedding rates, low infectious doses, and resilience to traditional wastewater treatments. To demonstrate the high log reductions required by emerging water reuse regulations, cost and practicality necessitate surrogates for viruses for use as challenge organisms in unit process evaluation and monitoring. Bacteriophage surrogates that are mitigated to the same or lesser extent than viruses of concern are routinely used for individual unit process testing. However, the behavior of these surrogates over a multi-barrier treatment train typical of water reuse has not been well-established. Toward this aim, we performed a meta-analysis of log reductions of common bacteriophage surrogates for five treatment processes typical of water reuse treatment trains: advanced oxidation processes, chlorination, membrane filtration, ozonation, and ultraviolet (UV) disinfection. Robust linear regression was applied to identify a range of doses consistent with a given log reduction of bacteriophages and viruses of concern for each treatment process. The results were used to determine relative conservatism of surrogates. We found that no one bacteriophage was a representative or conservative surrogate for viruses of concern across all multi-barrier treatments (encompassing multiple mechanisms of virus mitigation). Rather, a suite of bacteriophage surrogates provides both a representative range of inactivation and information about the effectiveness of individual processes within a treatment train. Based on the abundance of available data and diversity of virus treatability using these five key water reuse treatment processes, bacteriophages MS2, phiX174, and Qbeta were recommended as a core suite of surrogates for virus challenge testing.


Assuntos
Bacteriófagos , Purificação da Água , Água , Bacteriófago phi X 174 , Purificação da Água/métodos , Desinfecção/métodos , Levivirus
16.
Free Radic Biol Med ; 211: 1-11, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092271

RESUMO

The transcription factor Nuclear factor e2-related factor 2 (Nrf2) is pivotal in orchestrating cellular antioxidant defense mechanisms, particularly in skin cells exposed to ultraviolet (UV) radiation and electrophilic phytochemicals. To comprehensively investigate Nrf2's role in maintaining cellular redox equilibrium following UV-induced stress, we engineered a novel Nrf2 fusion-based reporter system for real-time, live-cell quantification of Nrf2 activity in human melanoma cells. Utilizing live quantitative imaging, we dissected the kinetic profiles of Nrf2 activation in response to an array of stimuli, including UVA and UVB radiation, as well as a broad spectrum of phytochemicals including ferulic acid, gallic acid, hispidulin, p-coumaric acid, quercetin, resveratrol, tannic acid, and vanillic acid as well as well-known Nrf2 inducers, tert-butylhydroquinone (tBHQ) and sulforaphane (SFN). Intriguingly, we observed distinct dynamical patterns of Nrf2 activity contingent on the specific stimuli applied. Sustained activation of Nrf2 was empirically correlated with the increased antioxidant response element (ARE) activity. Our findings demonstrate the nuanced impact of different phenolic compounds on Nrf2 activity and the utility of our Nrf2-CTΔ16-YFP reporter in characterizing the dynamics of Nrf2 translocation in response to diverse stimuli. In summary, our innovative reporter system not only revealed compounds capable of modulating UVA-induced Nrf2 activity but also showcased its utility as a robust tool for future antioxidant compound screening efforts.


Assuntos
Antioxidantes , Melanoma , Humanos , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Melanoma/genética , Elementos de Resposta Antioxidante/genética , Estresse Oxidativo
17.
Chemosphere ; 346: 140609, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926165

RESUMO

Sulfate radical-based oxidation processes were investigated to understand the relationship between persulfate (PS) consumption and total organic carbon (TOC) removal from industrial wastewater under various PS concentrations. First, the degradation and mineralization of Bisphenol A (BPA) (initial concentration: 11 mg/L) were investigated in ultraviolet (UV)/PS systems. Complete degradation was achieved within 30 min of UV irradiation, and 41%-72% TOC removal was achieved at PS concentrations of 200 and 400 mg/L. The consumed concentration of S2O82- and generated concentration of SO42- increased gradually to similar levels. The ratio of the PS consumption to TOC removal based on the mass concentration (mg/L) was 14.5 and 23.2 at 180 min for 200 and 400 mg/L of S2O82-, respectively. Three types of coagulation-treated industrial wastewater from metal-processing, food-processing, and adhesive-producing plants were obtained, and TOC removal was analyzed using the same UV/PS systems (initial TOC concentration: 100 mg/L). The TOC removal rates ranged from 16.9% to 94.4% after 180 min of UV irradiation at PS concentrations of 1,000, 2,000, 4,000, and 8,000 mg S2O82-/L. Despite the higher TOC removal at higher PS concentrations, the PS activation efficiency decreased significantly as the PS concentration increased. Only approximately 30%-40% activation efficiency was achieved at a PS concentration of 8,000 mg/L. In this study, the ratio of PS consumption to TOC removal ranged from 20.6 to 43.9.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/efeitos da radiação , Oxirredução , Raios Ultravioleta , Sulfatos , Carbono , Peróxido de Hidrogênio
18.
BMC Neurosci ; 24(1): 67, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097940

RESUMO

BACKGROUND: The behavioral photosensitivity of animals could be quantified via the optomotor response (OMR), for example, and the luminous efficiency function (the range of visible light) should largely rely on the repertoire and expression of light-absorbing proteins in the retina, i.e., the opsins. In fact, the OMR under red light was suppressed in medaka lacking the red (long-wavelength sensitive [LWS]) opsin. RESULTS: We investigated the ultraviolet (UV)- or blue-light sensitivity of medaka lacking the violet (short-wavelength sensitive 1 [SWS1]) and blue (SWS2) opsins. The sws1/sws2 double or sws1/sws2/lws triple mutants were as viable as the wild type. The remaining green (rhodopsin 2 [RH2]) or red opsins were not upregulated. Interestingly, the OMR of the double or triple mutants was equivalent or even increased under UV or blue light (λ = 350, 365, or 450 nm), which demonstrated that the rotating stripes (i.e., changes in luminance) could fully be recognized under UV light using RH2 alone. The OMR test using dichromatic stripes projected onto an RGB display consistently showed that the presence or absence of SWS1 and SWS2 did not affect the equiluminant conditions. CONCLUSIONS: RH2 and LWS, but not SWS1 and SWS2, should predominantly contribute to the postreceptoral processes leading to the OMR or, possibly, to luminance detection in general, as the medium-wavelength-sensitive and LWS cones, but not the SWS cones, are responsible for luminance detection in humans.


Assuntos
Oryzias , Raios Ultravioleta , Animais , Humanos , Oryzias/metabolismo , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Filogenia
19.
ACS Nano ; 17(22): 22418-22429, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37931219

RESUMO

Plasmonic optical nanoantennas offer compelling solutions for enhancing light-matter interactions at the nanoscale. However, until now, their focus has been mainly limited to the visible and near-infrared regions, overlooking the immense potential of the ultraviolet (UV) range, where molecules exhibit their strongest absorption. Here, we present the realization of UV resonant nanogap antennas constructed from paired rhodium nanocubes. Rhodium emerges as a robust alternative to aluminum, offering enhanced stability in wet environments and ensuring reliable performance in the UV range. Our results showcase the nanoantenna's ability to enhance the UV autofluorescence of label-free streptavidin and hemoglobin proteins. We achieve significant enhancements of the autofluorescence brightness per protein by up to 120-fold and reach zeptoliter detection volumes, enabling UV autofluorescence correlation spectroscopy (UV-FCS) at high concentrations of several tens of micromolar. We investigate the modulation of fluorescence photokinetic rates and report excellent agreement between the experimental results and numerical simulations. This work expands the applicability of plasmonic nanoantennas to the deep UV range, unlocking the investigation of label-free proteins at physiological concentrations.


Assuntos
Ródio , Proteínas/química , Polímeros , Espectrometria de Fluorescência/métodos
20.
Foods ; 12(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37893706

RESUMO

Vegetative cells of Listeria monocytogenes and Escherichia coli and spores of Bacillus subtilis and Aspergillus niger were inoculated in soy milk at an initial concentration of ≈5 log CFU/mL. Inoculated and control (non-inoculated) soy milk samples were submitted to three types of treatments using a tubular annular thin film short-wave ultraviolet (UV-C) reactor with 1 mm of layer thickness. Treatments applied depended on the flow rate and the number of entries to the reactor, with UV-C doses ranging from 20 to 160 J/mL. The number of entries into the reactor tube (NET) was established as the most determining parameter for the efficiency of the UV-C treatments. Conidiospores of A. niger were reported as the most resistant, followed by B. subtilis spores, while vegetative cells were the most sensible to UV-C, with Listeria monocytogenes being more sensible than Escherichia coli. Treatments of just 80 J/mL were needed to achieve a 5 log CFU/mL reduction of L. monocytogenes while 160 J/mL was necessary to achieve a similar reduction for A. niger spores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA