Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1441196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351004

RESUMO

Purpose: To analyze the therapeutic effect and mechanism of Urolithin A (UA) on delayed corneal epithelial wound healing. Methods: The C57BL/6 mice were continuously exposed to hyperosmotic stress (HS) for 7 days followed by the removal of central corneal epithelium to establish a delayed corneal epithelial wound healing model in vivo. In vitro, the human corneal epithelial cell line (HCE-T) was also incubated under HS. UA was administered in vivo and in vitro to study its effects on corneal epithelial cells. Senescence-associated ß-galactosidase (SA-ß-gal) staining was performed to detect the level of cell senescence. Transcriptome sequencing (RNA-seq) was conducted to elucidate the molecular mechanism underlying the effect of UA on corneal epithelial repair. Additionally, the expression of senescence-related and ferroptosis-related genes and the levels of lipid peroxides (LPO) and malondialdehyde (MDA) were measured. Results: Hyperosmotic stress (HS) significantly increased the proportion of SA-ß-gal staining positive cells in corneal epithelial cells and upregulated the expression of p16 and p21 (p < 0.0001). Topical application of UA decreased the accumulation of senescent cells in corneal epithelial wounds and promoted epithelial wound healing. The results of RNA-seq of HS-induced corneal epithelial cells showed that the ferroptosis pathway was significantly dysregulated. Further investigation revealed that UA decreased the level of oxidative stress in HCE-T cells, including the levels of LPO and MDA (p < 0.05). Inhibition of ferroptosis significantly prevented cellular senescence in HS-induced HCE-T cells. Conclusion: In this study, UA promoted HS-induced delayed epithelial wound healing by reducing the senescence of corneal epithelial cells through the inhibition of ferroptosis.

2.
Int Immunopharmacol ; 143(Pt 2): 113394, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39437484

RESUMO

Ischemia/reperfusion (I/R) injury has been demonstrated to exert a significant role in acute myocardial infarction (AMI), which constitutes a crucial cause of AMI. Ferroptosis represents a novel form of cell death that is intimately linked to myocardial ischemia-reperfusion (MIR) injury. Urolithin A (UA), an intestinal metabolite of ellagitannins, has not been fully elucidated for its role in MIR injury. In the present study, we analyzed the effects of UA on ischemia-reperfusion-induced oxidative stress and ferroptosis both in vitro and in vivo, and explored the potential mechanisms of UA action. The results indicated that UA was capable of protecting the heart from ischemia-reperfusion injury and enhancing cardiac function both in vitro and in vivo. In addition, UA also attenuated oxidative stress, mitochondrial damage, and ferroptosis during MIR. Mechanistically, UA not only augmented the Nrf2 expression but also promoted Nrf2 entry into the nucleus and activated the downstream antioxidant defense system. Moreover, after the inhibition of Nrf2, the myocardial protective function of UA was lost, and its function of attenuating oxidative stress and ferroptosis was suppressed. In conclusion, we found that UA protected the heart from ischemia-reperfusion injury by attenuating oxidative stress and ferroptosis through the Nrf2 signaling pathway, suggesting that UA might be a potential therapeutic agent for the treatment of AMI.

3.
Nutrients ; 16(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39408336

RESUMO

Background: Urolithin A (Uro-A), a type of polyphenol derived from pomegranate, is known to improve memory function when ingested, in addition to its direct effect on the skin epidermal cells through the activation of longevity gene SIRT1. However, the molI ecular mechanism by which orally ingested Uro-A inhibits cognitive decline via the intestine remains unexplored. Objectives: This study aimed to evaluate the role of Uro-A in improving cognitive function via improved intestinal function and the effect of Uro-A on the inflammation levels and gene expression in hippocampus. Methods: Research to clarify the molecular basis of the functionality of Uro-A was also conducted. Results: The results demonstrated that Uro-A suppressed age-related memory impairment in Aged mice (C57BL/6J Jcl, male, 83 weeks old) by reducing inflammation and altering hippocampal gene expression. Furthermore, exosomes derived from intestinal cells treated with Uro-A and from the serum of Aged mice fed with Uro-A both activated neuronal cells, suggesting that exosomes are promising candidates as mediators of the Uro-A-induced activation of gut-brain interactions. Additionally, neurotrophic factors secreted from intestinal cells may contribute to the Uro-A-induced activation of gut-brain interactions. Conclusions: This study suggests that Uro-A suppresses age-related cognitive decline and that exosomes and other secreted factors may contribute to the activation of the gut-brain interaction. These findings provide new insights into the therapeutic potential of Uro-A for cognitive health.


Assuntos
Cumarínicos , Hipocampo , Camundongos Endogâmicos C57BL , Animais , Cumarínicos/farmacologia , Masculino , Camundongos , Hipocampo/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Disfunção Cognitiva/metabolismo , Inflamação/metabolismo , Cognição/efeitos dos fármacos , Envelhecimento/fisiologia
4.
Mol Neurobiol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292338

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease pathologically characterized by selective degeneration of motor neurons resulting in a catastrophic loss of motor function. The present study aimed to investigate the effect of copper (Cu) exposure on progression of ALS and explore the therapeutic effect and mechanism of Urolithin A (UA) on ALS. 0.13 PPM copper chloride drinking water was administrated in SOD1G93A transgenic mice at 6 weeks, UA at a dosage of 50 mg/kg/day was given for 6 weeks after a 7-week Cu exposure. Motor ability was assessed before terminal anesthesia. Muscle atrophy and fibrosis, motor neurons, astrocytes and microglia in the spinal cord were evaluated by H&E, Masson, Sirius Red, Nissl and Immunohistochemistry Staining. Proteomics analysis, Western blotting and ELISA were conducted to detect protein expression. Mitochondrial adenosine triphosphate (ATP) and malondialdehyde (MDA) levels were measured using an assay kit. Cu-exposure worsened motor function, promoted muscle fibrosis, loss of motor neurons, and astrocyte and microglial activation. It also induced abnormal changes in mitochondria-related biological processes, leading to a significant reduction in ATP levels and an increase in MDA levels. Upregulation of P62 and downregulation of Parkin, PINK1, and LAMP1 were revealed in SOD1G93A mice with Cu exposure. Administration of UA activated mitophagy, modulated mitochondria dysfunction, reduced neuroinflammation, and improved gastrocnemius muscle atrophy and motor dysfunction in SOD1G93A mice with Cu exposure. Mitophagy plays critical role in ALS exacerbated by Cu exposure. UA administration may be a promising treatment strategy for ALS.

5.
Animals (Basel) ; 14(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39335315

RESUMO

Reactive oxygen species (ROS) play a critical role in the functional competence of sperm cells. Conversely, excessive generation of ROS can impair sperm function, including their fertilization ability. Urolithin A (UA), a gut bacteria-derived metabolite produced from the transformation of ellagitannins, with anti-aging and antioxidant properties, was investigated for the first time in bovine sperm cells in the present study. Firstly, different doses of UA (0, 1, and 10 µM; 8-16 sessions) were used during the capacitation process of frozen-thawed bovine sperm. Sperm motility was assessed using optical microscopy and CASA. Sperm vitality (eosin-nigrosin), ROS, and ATP levels, as well as mitochondrial membrane potential (JC1) and oxygen consumption were evaluated. A second experiment to test the effect of different doses of UA (0, 1, and 10 µM; 9 sessions) in both the capacitation medium, as above, and the fertilization medium, was also implemented. The embryonic development and quality were evaluated. UA, at a concentration of 1 µM, significantly improved sperm movement quality (p < 0.03). There was a trend towards an increase in the oxygen consumption rate (OCR) of capacitated sperm with 1 µM and 10 µM UA supplementation. Moreover, an increase in ATP levels (p < 0.01) was observed, accompanied by a reduction in ROS levels at the higher UA concentration. These results suggest that UA may enhance spermatozoa mitochondrial function, modifying their metabolic activity while reducing the oxidative stress. Also, the number of produced embryos appears to be positively affected by UA supplementation, although differences between the bulls may have mitigated this effect. In conclusion, presented results further support previous findings indicating the potential therapeutic value of UA for addressing reproductive sub/infertility problems and improving ART outcomes. In addition, our results also reinforce the important bull effect on ART and that male sperm bioenergetic parameters should be used to predict spermatozoa functionality and developmental potential.

6.
Exp Gerontol ; 197: 112589, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39307249

RESUMO

Mitochondrial dysfunction with aging is associated with the development of age-related hearing loss. Mitophagy is a cardinal mechanism to maintain a healthy mitochondrial population through the turnover of damaged mitochondria. Declining mitophagy with age causes a buildup of damaged mitochondria, leading to sensory organ dysfunction. The effect of Urolithin A (UA), a mitophagy inducer, was investigated on age-related hearing loss in a mouse model. C57BL/6J mice were treated with UA from 6 to 10 months of age. UA attenuated an auditory brainstem responses (ABR) threshold shift at 8, 16, and 32 kHz frequencies, and improved mitochondrial DNA integrity and ATP production in the cochlea and auditory cortex. The mRNA levels of mitophagy-related genes and protein levels of PINK1, Parkin, BNIP3, and LC3B increased in the cochlea and auditory cortex. The expression of mitophagosomes and mitophagolysosomes in the cochlea, spiral ganglion, auditory cortex, and inferior colliculus increased, together with the expression of Parkin and BNIP3 in the cochlea, spiral ganglion, auditory cortex, and inferior colliculus. These results indicate that UA counteracted mitophagy decline in the auditory system and prevented age-related hearing loss. UA can be used as a potential agent to prevent age-related hearing loss.

7.
J Pers Med ; 14(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39338168

RESUMO

Increased activity of transforming growth factor-beta (TGF-ß) is a key factor mediating kidney impairment in diabetes. Glomerular podocytes, the crucial component of the renal filter, are a direct target of TGF-ß action, resulting in irreversible cell loss and progression of chronic kidney disease (CKD). Urolithin A (UA) is a member of the family of polyphenol metabolites produced by gut microbiota from ellagitannins and ellagic acid-rich foods. The broad spectrum of biological activities of UA makes it a promising candidate for the treatment of podocyte disorders. In this in vitro study, we investigated whether UA influences the changes exerted in podocytes by TGF-ß and high glucose. Following a 7-day incubation in normal (NG, 5.5 mM) or high (HG, 25 mM) glucose, the cells were treated with UA and/or TGF-ß1 for 24 h. HG and TGF-ß1, each independent and in concert reduced expression of nephrin, increased podocyte motility, and up-regulated expression of b3 integrin and fibronectin. These typical-for-epithelial-to-mesenchymal transition (EMT) effects were inhibited by UA in both HG and NG conditions. UA also reduced the typically elevated HG expression of TGF-ß receptors and activation of the TGF-ß signal transducer Smad2. Our results indicate that in podocytes cultured in conditions mimicking the diabetic milieu, UA inhibits and reverses changes underlying podocytopenia in diabetic kidneys. Hence, UA should be considered as a potential therapeutic agent in podocytopathies.

8.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125817

RESUMO

Recent studies confirmed that pyroptosis is involved in the progression of pulmonary hypertension (PH), which could promote pulmonary artery remodeling. Urolithin A (UA), an intestinal flora metabolite of ellagitannins (ETs) and ellagic acid (EA), has been proven to possess inhibitory effects on pyroptosis under various pathological conditions. However, its role on PH remained undetermined. To investigate the potential of UA in mitigating PH, mice were exposed to hypoxia (10% oxygen, 4 weeks) to induce PH, with or without UA treatment. Moreover, in vitro experiments were carried out to further uncover the underlying mechanisms. The in vivo treatment of UA suppressed the progression of PH via alleviating pulmonary remodeling. Pyroptosis-related genes were markedly upregulated in mice models of PH and reversed after the administration of UA. In accordance with that, UA treatment significantly inhibited hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) pyroptosis via the AMPK/NF-κB/NLRP3 pathway. Our results revealed that UA treatment effectively mitigated PH progression through inhibiting PASMC pyroptosis, which represents an innovative therapeutic approach for PH.


Assuntos
Proteínas Quinases Ativadas por AMP , Cumarínicos , Hipertensão Pulmonar , Hipóxia , Miócitos de Músculo Liso , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Artéria Pulmonar , Piroptose , Transdução de Sinais , Animais , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Piroptose/efeitos dos fármacos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/complicações , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
9.
J Biol Chem ; 300(9): 107669, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128717

RESUMO

Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cromo , Intestino Delgado , Proteína Fosfatase 2 , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Proteínas de Sinalização YAP/metabolismo , Cromo/toxicidade , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Intestino Delgado/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Via de Sinalização Hippo , Camundongos Knockout , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia
10.
Nutrients ; 16(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39064706

RESUMO

Circadian rhythm plays an important role in intestinal homeostasis and intestinal immune function. Circadian rhythm dysregulation was reported to induce intestinal microbiota dysbiosis, intestinal barrier disruption, and trigger intestinal inflammation. However, the relationship between intestinal microbiota metabolites and the circadian rhythm of the intestinal barrier was still unclear. Urolithin A (UA), a kind of intestinal microbial metabolite, was selected in this study. Results showed UA influenced on the expression rhythm of the clock genes BMAL1 and PER2 in intestinal epithelial cells. Furthermore, the study investigated the effects of UA on the expression rhythms of clock genes (BMAL1 and PER2) and tight junctions (OCLN, TJP1, and CLND1), all of which were dysregulated by inflammation. In addition, UA pre-treatment by oral administration to female C57BL/6 mice showed the improvement in the fecal IgA concentrations, tight junction expression (Clnd1 and Clnd4), and clock gene expression (Bmal1 and Per2) in a DSS-induced colitis model induced using DSS treatment. Finally, the Nrf2-SIRT1 signaling pathway was confirmed to be involved in UA's effect on the circadian rhythm of intestinal epithelial cells by antagonist treatment. This study also showed evidence that UA feeding showed an impact on the central clock, which are circadian rhythms in SCN. Therefore, this study highlighted the potential of UA in treating diseases like IBD with sleeping disorders by improving the dysregulated circadian rhythms in both the intestinal barrier and the SCN.


Assuntos
Ritmo Circadiano , Colite , Cumarínicos , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Animais , Ritmo Circadiano/efeitos dos fármacos , Feminino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Camundongos , Cumarínicos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Sulfato de Dextrana , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina A/metabolismo , Sirtuína 1
11.
Sci Rep ; 14(1): 15706, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977770

RESUMO

Maintaining the mucus layer is crucial for the innate immune system. Urolithin A (Uro A) is a gut microbiota-derived metabolite; however, its effect on mucin production as a physical barrier remains unclear. This study aimed to elucidate the protective effects of Uro A on mucin production in the colon. In vivo experiments employing wild-type mice, NF-E2-related factor 2 (Nrf2)-deficient mice, and wild-type mice treated with an aryl hydrocarbon receptor (AhR) antagonist were conducted to investigate the physiological role of Uro A. Additionally, in vitro assays using mucin-producing cells (LS174T) were conducted to assess mucus production following Uro A treatment. We found that Uro A thickened murine colonic mucus via enhanced mucin 2 expression facilitated by Nrf2 and AhR signaling without altering tight junctions. Uro A reduced mucosal permeability in fluorescein isothiocyanate-dextran experiments and alleviated dextran sulfate sodium-induced colitis. Uro A treatment increased short-chain fatty acid-producing bacteria and propionic acid concentration. LS174T cell studies confirmed that Uro A promotes mucus production through the AhR and Nrf2 pathways. In conclusion, the enhanced intestinal mucus secretion induced by Uro A is mediated through the actions of Nrf-2 and AhR, which help maintain intestinal barrier function.


Assuntos
Colite , Cumarínicos , Mucosa Intestinal , Fator 2 Relacionado a NF-E2 , Receptores de Hidrocarboneto Arílico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Cumarínicos/farmacologia , Colite/metabolismo , Colite/induzido quimicamente , Mucina-2/metabolismo , Mucina-2/genética , Humanos , Colo/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Masculino , Microbioma Gastrointestinal , Camundongos Knockout , Sulfato de Dextrana , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Função da Barreira Intestinal
12.
Cell Mol Gastroenterol Hepatol ; 18(4): 101379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39038605

RESUMO

BACKGROUND & AIMS: Cirrhotic portal hypertension (CPH) is the leading cause of mortality in patients with cirrhosis. Over 50% of patients with CPH treated with current clinical pharmacotherapy still present variceal bleeding or sometimes death owing to insufficient reduction in portal pressure. Elevated intrahepatic vascular resistance (IHVR) plays a fundamental role in increasing portal pressure. Because of its potent effect in reducing portal pressure and maintaining normal portal inflow to preserve liver function, lowering the IHVR is acknowledged as an optimal anti-CPH strategy but without clinical drugs. We aimed to investigate the protective effect of microbial-derived Urolithin A (UroA) in IHVR and CPH. METHODS: Carbon tetrachloride or bile duct ligation surgery was administered to mice to induce liver fibrosis and CPH. 16S rRNA gene sequencing was used for microbial analysis. Transcriptomics and metabolomics analyses were employed to study the host and cell responses. RESULTS: UroA was remarkably deficient in patients with CPH and was negatively correlated with disease severity. UroA deficiency was also confirmed in CPH mice and was associated with a reduced abundance of UroA-producing bacterial strain (Lactobacillus murinus, L. murinus). Glutaminolysis of hepatic stellate cells (HSCs) was identified as a previously unrecognized target of UroA. UroA inhibited the activity of glutaminase1 to suppress glutaminolysis, which counteracted fibrogenesis and contraction of HSCs and ameliorated CPH by relieving IHVR. Supplementation with UroA or L. murinus effectively ameliorated CPH in mice. CONCLUSIONS: We for the first time identify the deficiency of gut microbial metabolite UroA as an important cause of CPH. We demonstrate that UroA exerts an excellent anti-CPH effect by suppressing HSC glutaminolysis to lower the IHVR, which highlighted its great potential as a novel therapeutic agent for CPH.


Assuntos
Cumarínicos , Glutaminase , Hipertensão Portal , Cirrose Hepática , Animais , Camundongos , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/patologia , Cirrose Hepática/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Humanos , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Masculino , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Glutamina/metabolismo , Glutamina/farmacologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia
13.
Ageing Res Rev ; 100: 102406, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002645

RESUMO

Urolithin A (UA) is a gut metabolite derived from ellagic acid. This systematic review assesses the potential geroprotective effect of UA in humans. In five studies including 250 healthy individuals, UA (10-1000 mg/day) for a duration ranging from 28 days to 4 months, showed a dose-dependent anti-inflammatory effect and upregulated some mitochondrial genes, markers of autophagy, and fatty acid oxidation. It did not affect mitochondrial maximal adenosine triphosphate production, biogenesis, dynamics, or gut microbiota composition. UA increased muscle strength and endurance, however, had no effect on anthropometrics, cardiovascular outcomes, and physical function. Unrelated adverse events were mild or moderate. Further research across more physiological systems and longer intervention periods is required.


Assuntos
Envelhecimento , Cumarínicos , Senoterapia , Humanos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Cumarínicos/administração & dosagem , Cumarínicos/efeitos adversos , Senoterapia/administração & dosagem , Senoterapia/efeitos adversos
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1370-1381, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39051083

RESUMO

OBJECTIVE: To observe the therapeutic effects of urolithin A (UA) on respiratory syncytial virus (RSV)-induced lung infection in neonatal mice and explore the underlying mechanisms. METHODS: Babl/c mice (5-7 days old) were subjected to nasal instillation of RSV and received intraperitoneal injection of saline or 2.5, 5 and 10 mg/kg UA 2 h after the infection and then once daily for 2 weeks. Bronchoalveolar lavage fluid (BALF) was then collected for detection of inflammatory cells and mediators, and lung pathology was evaluated with HE staining. RSV-infected BEAS-2B cells were treated with 2.5, 5 or 10 µmol/ L UA. Inflammatory factors, cell viability, apoptosis and autophagy were analyzed using ELISA, CCK-8 assay, TUNEL staining, flow cytometry, Western blotting and immunofluorescence staining. The cellular expressions of miR-136 and Sirt1 mRNAs were detected using qRT-PCR. A dual-luciferase reporter system was used to verify the binding between miR-136 and Sirt1. RESULTS: In neonatal Babl/c mice, RSV infection caused obvious lung pathologies, promoted pulmonary cell apoptosis and LC3-Ⅱ/Ⅰ, Beclin-1 and miR-136 expressions, and increased the total cell number, inflammatory cells and factors in the BALF and decreased p62 and Sirt1 expressions. All these changes were alleviated dose-dependently by UA. In BEAS-2B cells, RSV infection significantly increased cell apoptosis, LC3B-positive cells and miR-136 expression and reduced Sirt1 expression (P<0.01), which were dose-dependently attenuated by UA. Dual-luciferase reporter assay confirmed the binding between miR-136 and Sirt1. In RSV-infected BEAS-2B cells with UA treatment, overexpression of miR-136 and Ex527 treatment both significantly increased the inflammatory factors and cell apoptosis but decreased LC3B expression, and these changes were further enhanced by their combined treatment. CONCLUSION: UA ameliorates RSV-induced lung infection in neonatal mice by activating miR-136-mediated Sirt1 signaling pathway.


Assuntos
Animais Recém-Nascidos , Apoptose , Camundongos Endogâmicos BALB C , MicroRNAs , Infecções por Vírus Respiratório Sincicial , Vírus Sinciciais Respiratórios , Transdução de Sinais , Sirtuína 1 , Animais , Camundongos , Sirtuína 1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Líquido da Lavagem Broncoalveolar , Autofagia/efeitos dos fármacos , Humanos
15.
Mol Neurodegener ; 19(1): 49, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890703

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS: A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS: UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS: Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.


Assuntos
Cumarínicos , Animais , Camundongos , Cumarínicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Retina/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Proteína Sequestossoma-1/metabolismo , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Iodatos/toxicidade
16.
Geroscience ; 46(5): 5075-5083, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38935229

RESUMO

Healthy Longevity Medicine aims to optimize health by targeting aging processes across the lifespan. Addressing accelerated aging involves adaptation of lifestyle and the use of geroprotective drugs and supplements, including nutritional supplements and bioactive compounds. The Food and Drug Administration, under the Dietary Supplement Health and Education Act, categorizes bioactive compounds and medicinal products as dietary supplements. While numerous companies sell ingredients that can be deemed geroprotectors, there's limited oversight in their quality control. Governmental safety authorities only verify the presence of prohibited compounds, not the accuracy of ingredients listed on labels.Here, Nicotinamide mononucleotide and Urolithin A supplements, easily accessible online or in pharmacies, were tested for their active ingredient content. Results showed a significant deviation from the labeled amounts, ranging from + 28.6% to -100%. This indicates a considerable disparity in the quality of geroprotective supplements.To address this variability, collaboration between and within societies representing healthcare professionals, industry and regulatory bodies is imperative to ensure the quality of geroprotective supplements.


Assuntos
Cumarínicos , Suplementos Nutricionais , Mononucleotídeo de Nicotinamida , Humanos , Estados Unidos , Rotulagem de Medicamentos , Longevidade
17.
Gut Microbes ; 16(1): 2367342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889450

RESUMO

Alcohol-related liver disease (ALD) is recognized as a global health crisis, contributing to approximately 20% of liver cancer-associated fatalities. Dysbiosis of the gut microbiome is associated with the development of ALD, with the gut microbial metabolite urolithin A (UA) exhibiting a potential for alleviating liver symptoms. However, the protective efficacy of UA against ALD and its underlying mechanism mediated by microbiota remain elusive. In this study, we provide evidence demonstrating that UA effectively ameliorates alcohol-induced metabolic disorders and hepatic endoplasmic reticulum (ER) stress through a specific gut-microbiota-liver axis mediated by major urinary protein 1 (MUP1). Moreover, UA exhibited the potential to restore alcohol-induced dysbiosis of the intestinal microbiota by enriching the abundance of Bacteroides sartorii (B. sartorii), Parabacteroides distasonis (P. distasonis), and Akkermansia muciniphila (A. muciniphila), along with their derived metabolite propionic acid. Partial attenuation of the hepatoprotective effects exerted by UA was observed upon depletion of gut microbiota using antibiotics. Subsequently, a fecal microbiota transplantation (FMT) experiment was conducted to evaluate the microbiota-dependent effects of UA in ALD. FMT derived from mice treated with UA exhibited comparable efficacy to direct UA treatment, as it effectively attenuated ER stress through modulation of MUP1. It was noteworthy that strong associations were observed among the hepatic MUP1, gut microbiome, and metabolome profiles affected by UA. Intriguingly, oral administration of UA-enriched B. sartorii, P. distasonis, and A. muciniphila can enhance propionic acid production to effectively suppress ER stress via MUP1, mimicking UA treatment. Collectively, these findings elucidate the causal mechanism that UA alleviated ALD through the gut-microbiota-liver axis. This unique mechanism sheds light on developing novel microbiome-targeted therapeutic strategies against ALD.


Assuntos
Cumarínicos , Estresse do Retículo Endoplasmático , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Fígado , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Masculino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Disbiose/microbiologia , Humanos , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
18.
Int J Biol Macromol ; 273(Pt 2): 133045, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38942666

RESUMO

This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.


Assuntos
Microbioma Gastrointestinal , Lipossomos , Prebióticos , Microbioma Gastrointestinal/efeitos dos fármacos , Lipossomos/química , Polimerização , Cumarínicos/química , Cumarínicos/metabolismo , Fermentação
19.
Acta Pharmacol Sin ; 45(11): 2277-2289, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38886550

RESUMO

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.


Assuntos
Cumarínicos , Inflamação , Placa Aterosclerótica , Animais , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Cumarínicos/farmacologia , Humanos , Camundongos , Masculino , Inflamação/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Camundongos Endogâmicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Camundongos Knockout para ApoE , Dieta Hiperlipídica , Fator de Necrose Tumoral alfa/metabolismo
20.
Alzheimers Dement ; 20(6): 4212-4233, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38753870

RESUMO

BACKGROUND: Compromised autophagy, including impaired mitophagy and lysosomal function, plays pivotal roles in Alzheimer's disease (AD). Urolithin A (UA) is a gut microbial metabolite of ellagic acid that stimulates mitophagy. The effects of UA's long-term treatment of AD and mechanisms of action are unknown. METHODS: We addressed these questions in three mouse models of AD with behavioral, electrophysiological, biochemical, and bioinformatic approaches. RESULTS: Long-term UA treatment significantly improved learning, memory, and olfactory function in different AD transgenic mice. UA also reduced amyloid beta (Aß) and tau pathologies and enhanced long-term potentiation. UA induced mitophagy via increasing lysosomal functions. UA improved cellular lysosomal function and normalized lysosomal cathepsins, primarily cathepsin Z, to restore lysosomal function in AD, indicating the critical role of cathepsins in UA-induced therapeutic effects on AD. CONCLUSIONS: Our study highlights the importance of lysosomal dysfunction in AD etiology and points to the high translational potential of UA. HIGHLIGHTS: Long-term urolithin A (UA) treatment improved learning, memory, and olfactory function in Alzheimer's disease (AD) mice. UA restored lysosomal functions in part by regulating cathepsin Z (Ctsz) protein. UA modulates immune responses and AD-specific pathophysiological pathways.


Assuntos
Doença de Alzheimer , Cumarínicos , Modelos Animais de Doenças , Lisossomos , Camundongos Transgênicos , Mitofagia , Doença de Alzheimer/tratamento farmacológico , Animais , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Mitofagia/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Cognição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA