Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 1): 130359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387643

RESUMO

Vanillin dehydrogenase (VDH) has recently come forward as an important enzyme for the commercial production of vanillic acid from vanillin in a one-step enzymatic process. However, VDH with high alkaline tolerance and efficiency is desirable to meet the biorefinery requirements. In this study, computationally guided site-directed mutagenesis was performed by increasing the positive and negative charges on the surface and near the active site of the VDH from the alkaliphilic marine bacterium Bacillus ligniniphilus L1, respectively. In total, 20 residues including 15 from surface amino acids and 5 near active sites were selected based on computational analysis and were subjected to site-directed mutations. The optimum pH of the two screened mutants including I132R, and T235E from surface residue and near active site mutant was shifted to 9, and 8.6, with a 2.82- and 2.95-fold increase in their activity compared to wild enzyme at pH 9, respectively. A double mutant containing both these mutations i.e., I132R/T235E was produced which showed a shift in optimum pH of VDH from 7.4 to 9, with an increase of 74.91 % in enzyme activity. Therefore, the double mutant of VDH from the L1 strain (I132R/T235E) produced in this study represents a potential candidate for industrial applications.


Assuntos
Aldeído Oxirredutases , Bacillus , Extremófilos , Mutagênese Sítio-Dirigida , Concentração de Íons de Hidrogênio
2.
Genes (Basel) ; 11(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260964

RESUMO

Pseudomonas sp. strain LLC-1 (NBRC 111237) is capable of degrading lignin-derived low-molecular-weight compounds (LLCs). The genes responsible for the catabolism of LLCs were characterized in this study using whole-genome sequencing. Despite the close phylogenetic relationship with Pseudomonas putida, strain LLC-1 lacked the genes usually found in the P. putida genome, which included fer, encoding an enzyme for ferulic acid catabolism, and vdh encoding an NAD+-dependent aldehyde dehydrogenase specific for its catabolic intermediate, vanillin. Cloning and expression of the 8.5 kb locus adjacent to the van operon involved in vanillic acid catabolism revealed the bzf gene cluster, which is involved in benzoylformic acid catabolism. One of the structural genes identified, bzfC, expresses the enzyme (BzfC) having the ability to transform vanillin and syringaldehyde to corresponding acids, indicating that BzfC is a multifunctional enzyme that initiates oxidization of LLCs in strain LLC-1. Benzoylformic acid is a catabolic intermediate of (R,S)-mandelic acid in P. putida. Strain LLC-1 did not possess the genes for mandelic acid racemization and oxidation, suggesting that the function of benzoylformic acid catabolic enzymes is different from that in P. putida. Genome-wide characterization identified the bzf gene responsible for benzoylformate and vanillin catabolism in strain LLC-1, exhibiting a unique mode of dissimilation for biomass-derived aromatic compounds by this strain.


Assuntos
Genes Bacterianos , Lignina/metabolismo , Metabolismo/genética , Pseudomonas/genética , Aldeídos/metabolismo , Benzaldeídos/metabolismo , Biotransformação/genética , Ácidos Carboxílicos/metabolismo , Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas , Glioxilatos/metabolismo , Japão , Cetonas/metabolismo , Ácidos Mandélicos/metabolismo , Peso Molecular , Filogenia , Pseudomonas/classificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo , Pseudomonas putida/genética , Ribotipagem , Microbiologia do Solo , Especificidade da Espécie , Sequenciamento Completo do Genoma
3.
BMC Microbiol ; 18(1): 154, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355315

RESUMO

BACKGROUND: Streptomyces sp. NL15-2K, previously isolated from the forest soil, features an extensive catabolic network for lignin-derived aromatic compounds, including pathways transforming ferulic acid to vanillin, vanillic acid, and protocatechuic acid. To successfully use Streptomyces sp. NL15-2K as a biocatalyst for vanillin production, it is necessary to characterize the vanillin dehydrogenase (VDH) that degrades the produced vanillin to vanillic acid, as well as the gene encoding this enzyme. Here, we cloned the VDH-encoding gene (vdh) from strain NL15-2K and comprehensively characterized its gene product. RESULTS: The vdh open reading frame contains 1488 bp and encodes a 496-amino-acid protein with a calculated molecular mass of 51,705 Da. Whereas the apparent native molecular mass of recombinant VDH was estimated to be 214 kDa by gel filtration analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a subunit molecular mass of ca. 56 kDa, indicating that VDH is a homotetramer. The recombinant enzyme showed optimal activity at 45 °C and pH 9.5. The VDH substrate specificity followed this order: vanillin (100%) > protocatechualdehyde (91%) > benzaldehyde (79%) > p-hydroxybenzaldehyde (56%) > isovanillin (49%) ≈ salicylaldehyde (48%) > anisaldehyde (15%) ≈ veratraldehyde (12%). Although peptide mass fingerprinting and BLAST searches indicated that this enzyme is a salicylaldehyde dehydrogenase (SALDH), the determined kinetic parameters clearly demonstrated that the enzyme is a vanillin dehydrogenase. Lastly, phylogenetic analysis revealed that VDH from Streptomyces sp. NL15-2K forms an independent branch in the phylogenetic tree and, hence, is evolutionarily distinct from other VDHs and SALDHs whose activities have been confirmed experimentally. CONCLUSIONS: Our findings not only enhance the understanding of the enzymatic properties of VDH and the characteristics of its amino acid sequence, but also contribute to the development of Streptomyces sp. NL15-2K into a biocatalyst for the biotransformation of ferulic acid to vanillin.


Assuntos
Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Benzaldeídos/metabolismo , Ácidos Cumáricos/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Biotransformação , Clonagem Molecular , Enzimas , Hidroxibenzoatos/metabolismo , Cinética , Fases de Leitura Aberta , Filogenia , Proteínas Recombinantes/metabolismo , Streptomyces/genética , Especificidade por Substrato , Ácido Vanílico/metabolismo
4.
Environ Technol ; 38(13-14): 1823-1834, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27734757

RESUMO

Owing to its flavoring, antimicrobial, antioxidant and anticarcinogenic nature, vanillin is widely used in foods, beverages, perfumes and pharmaceutical products. Ferulic acid (FA) is an important precursor of vanillin which is abundant in cereals like maize, rice and wheat and sugar beet. A major drawback of microbial vanillin production from FA is the degradation and biotransformation of toxic vanillin to other phenolic derivatives. The present study is undertaken to explore microbial vanillin production from FA precursor rice bran by employing vanillin-resistant Pediococcus acidilactici BD16, a natural lactic acid bacteria isolate. Extracellular, intracellular and cellular vanillin dehydrogenase activity was found least, which was minimized vanillin degradation, and the strain resists more than 5 g L-1 vanillin in the medium. A metabolomics approach was followed for the detection of FA, vanillin and other metabolites generated during fermentation of rice bran medium. A metabolic pathway was also predicted for vanillin biosynthesis. Approximately 1.06 g L-1 of crude vanillin was recovered from rice-bran-containing medium and this further offers scope for the industrial utilization of the organism and its genetic manipulation to enhance production of biovanillin.


Assuntos
Benzaldeídos/metabolismo , Oryza , Pediococcus acidilactici/metabolismo , Agricultura , Ácidos Cumáricos/metabolismo , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA