Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
Plant Methods ; 20(1): 139, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252004

RESUMO

BACKGROUND: Verticilium dahliae is the most important wilt pathogen of olive trees with a broad host range causing devastating diseases currently without any effective chemical control. Traditional detection methodologies are based on symptoms-observation or lab-detection using time consuming culturing or molecular techniques. Therefore, there is an increasing need for portable tools that can detect rapidly V. dahliae in the field. RESULTS: In this work, we report the development of a novel method for the rapid, reliable and on-site detection of V. dahliae using a newly designed isothermal LAMP assay and crude extracts of olive wood. For the detection of the fungus, LAMP primers were designed targeting the internal transcribed spacer (ITS) region of the rRNA gene. The above assay was combined with a purpose-built prototype portable device which allowed real time quantitative colorimetric detection of V. dahliae in 35 min. The limit of detection of our assay was found to be 0.8 fg/µl reaction and the specificity 100% as indicated by zero cross-reactivity to common pathogens found in olive trees. Moreover, detection of V. dahliae in purified DNA gave a sensitivity of 100% (Ct < 30) and 80% (Ct > 30) while the detection of the fungus in unpurified crude wood extracts showed a sensitivity of 80% when multisampling was implemented. The superiority of the LAMP methodology regarding robustness and sensitivity was demonstrated when only LAMP was able to detect V. dahliae in crude samples from naturally infected trees with very low infection levels, while nested PCR and SYBR qPCR failed to detect the pathogen in an unpurified form. CONCLUSIONS: This study describes the development of a new real time LAMP assay, targeting the ITS region of the rRNA gene of V. dahliae in olive trees combined with a 3D-printed portable device for field testing using a tablet. The assay is characterized by high sensitivity and specificity as well as ability to operate using directly crude samples such as woody tissue or petioles. The reported methodology is setting the basis for the development of an on-site detection methodology for V. dahliae in olive trees, but also for other plant pathogens.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125127, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39284240

RESUMO

Verticillium wilt (VW) is a soil-borne vascular disease that affects upland cotton and is caused by Verticillium dahliae Kleb. A rapid and user-friendly early diagnostic technique is essential for the preventing and controlling VW disease. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) technology was used to detect VW infection in cotton leaves. About 1800 FTIR spectra were obtained from 348 cotton leaves. The cotton leaves were collected from three categories: VW group, infected group and control group (non-infected). The vibrational peak of chitins at 1558 cm-1 was identified through mean and differential analysis of FTIR spectra as a criterion to differentiate the VW or infected group from the control group. Classification models were constructed using various machine learning algorithms. The support vector machines (SVM) model exhibited the highest predictive accuracy (>96 %) in each group and a total accuracy (>97 %) for the three groups. These results provide a new approach for detecting Verticillium infection in cotton leaves and shows a promising potential for the future applications of the method in plant science.

3.
Plant Physiol ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276362

RESUMO

Verticillium wilt (VW) caused by Verticillium dahliae (V. dahliae) is one of the most destructive diseases in cotton (Gossypium spp.). Histone acetylation plays critical roles in plant development and adaptive responses to biotic and abiotic stresses. However, the relevance of histone acetylation in cotton VW resistance remains largely unclear. Here, we identified Histone Deacetylase 5 (GhHDA5) from upland cotton (Gossypium hirsutum L.), as a negative regulator of VW resistance. GhHDA5 expression was responsive to V. dahliae infection. Silencing GhHDA5 in upland cotton led to improved resistance to V. dahliae, while heterologous expression of GhHDA5 in Arabidopsis (Arabidopsis thaliana) compromised V. dahliae tolerance. GhHDA5 repressed the expression of several lignin biosynthesis-related genes, such as 4-coumarate: CoA ligase gene Gh4CL3 and ferulate 5-hydroxylase gene GhF5H, through reducing the acetylation level of Histone H3 Lysine 9 and 14 (H3K9K14ac) at their promoter regions, thereby resulting in an increased deposition of lignin, especially S monomers, in the GhHDA5-silenced cotton plants. The silencing of GhF5H impaired cotton VW tolerance. Additionally, the silencing of GhHDA5 also promoted the production of reactive oxygen species (ROS), elevated the expression of several pathogenesis-related genes (PRs), and altered the content and signaling of the phytohormones salicylic acid (SA), jasmonic acid (JA) and strigolactones (SLs) after V. dahliae infection. Taken together, our findings suggest that GhHDA5 negatively regulates cotton VW resistance through modulating disease-induced lignification and the ROS- and phytohormone-mediated defense response.

4.
Plant Cell Environ ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39286958

RESUMO

Verticillium wilt (VW) caused by the soil-borne fungal pathogen Verticillium dahliae reduces cotton productivity and quality. Numerous studies have explored the genetic and molecular mechanisms regulating VW resistance in cotton, but the role and mechanism of strigolactone (SL) is still elusive. We investigated the function of SL in cotton's immune response to V. dahliae infection by exogenously applying SL analog, blocking or enhancing biosynthesis of endogenous SLs in combination with comparative transcriptome analysis and by exploring cross-talk between SL and other phytohormones. Silencing GhDWARF27 and applying the SL analog GR24 or overexpressing GhDWARF27 decreased and enhanced V. dahliae resistance, respectively. Transcriptome analysis revealed SL-mediated activation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signaling pathways. Enhanced ABA biosynthesis and signaling led to increased activity of antioxidant enzymes and reduced buildup of excess reactive oxygen species. Enhanced JA biosynthesis and signaling facilitated transcription of JA-dependent disease resistance genes. One of the components of the SL signal transduction pathway, GhD53, was found to interact with GhNCED5 and GhLOX2, the key enzymes of ABA and JA biosynthesis, respectively. We revealed the molecular mechanism underlying SL-enabled V. dahliae resistance and provided potential solutions for improving VW resistance in cotton.

5.
Front Microbiol ; 15: 1396044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257618

RESUMO

Potato Verticillium wilt (PVW) caused by Verticillium dahliae is a vascular disease, that seriously affects potato (Solanum tuberosum L.) yield and quality worldwide. V. dahliae occupies the vascular bundle and therefore it cannot efficiently be treated with fungicides. Further, the application of these pesticides causes serious environmental problems. Therefore, it is of great importance to find environmentally friendly biological control methods. In this study, bacterial strains were isolated from agricultural lands on which potato had been cultured for 5 years. Five strains with a broad-spectrum antagonistic activity were selected. Among these five strains, Bacillus velezensis XS142 showed the highest antagonistic activity. To study the mechanism of XS142, by which this strain might confer tolerance to V. dahliae in potato, the genome of strain XS142 was sequenced. This showed that its genome has a high level of sequence identity with the model strain B. velezensis FZB42 as the OrthoANI (Average Nucleotide Identity by Orthology) value is 98%. The fungal suppressing mechanisms of this model strain are well studied. Based on the genome comparison it can be predicted that XS142 has the potential to suppress the growth of V. dahliae by production of bacillomycin D, fengycin, and chitinase. Further, the transcriptomes of potatoes treated with XS142 were analyzed and this showed that XS142 does not induce ISR, but the expression of genes encoding peptides with antifungal activity. Here we showed that XS142 is an endophyte. Further, it is isolated from a field where potato had been cultured for several years. These properties give it a high potential to be used, in the future, as a biocontrol agent of PVW in agriculture.

6.
Front Plant Sci ; 15: 1436982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258297

RESUMO

Verticillium stripe, caused by Verticillium longisporum, presents an emerging threat to Canadian canola (Brassica napus). Initially detected in Manitoba in 2014, the presence of this pathogen has since been confirmed across western Canada. Infections by V. longisporum can result in yield losses of up to 50%, which is a cause for concern given the susceptibility of most commercial Canadian canola cultivars. The objective of this study was to screen a collection of 211 Brassica genotypes for their reactions to V. longisporum, and to use genome-wide association study (GWAS) to identify single nucleotide polymorphism (SNP) markers for resistance. The plant material consisted of 110 rutabaga (B. napus ssp. napobrassica), 35 canola, 40 Brassica rapa, and 15 Brassica oleracea accessions or cultivars, alongside 11 hosts of the European Clubroot Differential (ECD) set. These materials were screened for resistance under greenhouse conditions and were genotyped using a 19K Brassica SNP array. Three general linear models (GLM), four mixed linear models (MLM), and three GWAS methods were employed to evaluate the markers. Eleven non-commercial Brassica accessions and 9 out of 35 commercial canola cultivars displayed a low normalized area under the disease progress curve (AUDPCnorm.). The non-commercial accessions could prove valuable as potential sources of resistance against V. longisporum. Forty-five SNP markers were identified to be significantly associated with V. longisporum resistance using single-SNP based GWAS analysis. In comparison, haplotype-based GWAS analyses identified 10 to 25 haplotype blocks to be significantly associated with V. longisporum resistance. Between 20% and 56% of QTLs identified by the more conventional single-SNP based GWAS analysis were also detected by the haplotype-based GWAS analysis. The overlapping genomic regions identified by the two GWAS methods present promising hotspots for marker-assisted selection in the future development of Verticillium stripe-resistant canola.

7.
Plants (Basel) ; 13(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273983

RESUMO

The olive tree is crucial to the Mediterranean agricultural economy but faces significant threats from climate change and soil-borne pathogens like Verticillium dahliae. This study assesses the dual role of an onion extract formulation, rich in organosulfur compounds, as both biostimulant and antifungal agent. Research was conducted across three settings: a controlled climatic chamber with non-stressed olive trees; an experimental farm with olive trees under abiotic stress; and two commercial olive orchards affected by V. dahliae. Results showed that in the climatic chamber, onion extract significantly reduced MDA levels in olive leaves, with a more pronounced reduction observed when the extract was applied by irrigation compared to foliar spray. The treatment also increased root length by up to 37.1% compared to controls. In field trials, irrigation with onion extract increased the number of new shoots by 148% and the length of shoots by 53.5%. In commercial orchards, treated trees exhibited reduced MDA levels, lower V. dahliae density, and a 26.7% increase in fruit fat content. These findings suggest that the onion extract effectively reduces oxidative stress and pathogen colonization, while enhancing plant development and fruit fat content. This supports the use of the onion extract formulation as a promising, sustainable alternative to chemical treatments for improving olive crop resilience.

8.
J Fungi (Basel) ; 10(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39330403

RESUMO

Verticillium dahliae is a soil-borne fungal pathogen that can cause severe vascular wilt in many plant species. Kelch repeat proteins are essential for fungal growth, resistance, and virulence. However, the function of the Kelch repeat protein family in V. dahliae is unclear. In this study, a Kelch repeat domain-containing protein DK185_4252 (VdLs.17 VDAG_08647) included in the conserved VdPKS9 gene cluster was identified and named VdKeR1. Phylogenetic analysis demonstrated a high degree of evolutionary conservation of VdKeR1 and its homologs among fungi. The experimental results showed that the absence of VdKeR1 impaired vegetative growth, microsclerotia development, and pathogenicity of V. dahliae. Osmotic and cell wall stress analyses suggested that VdKeR1-deleted mutants were more tolerant to NaCl, sorbitol, CR, and CFW, while more sensitive to H2O2 and SDS. In addition, analyses of the relative expression level of sqe and the content of squalene and ergosterol showed that VdKeR1 mediates the synthesis of squalene and ergosterol by positively regulating the activity of squalene epoxidase. In conclusion, these results indicated that VdKeR1 was involved in the growth, stress resistance, pathogenicity, and ergosterol metabolism of V. dahliae. Investigating VdKeR1 provided theoretical and experimental foundations for subsequent control of Verticillium wilt.

9.
Plant Physiol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324621

RESUMO

Verticillium dahliae is a widespread and destructive soilborne fungus that can cause vascular wilt disease and substantially reduce cotton (Gossypium hirsutum) yield and quality. Scopoletin, a natural coumarin, exhibits antifungal activity against V. dahliae; however, the mechanisms of action remain unclear. In this study, we reveal the regulatory activities of feruloyl-CoA 6'-hydroxylase 1 (GhF6'H1) in enhancing V. dahliae resistance by modulating scopoletin accumulation. Silencing GhF6'H1, encoding the pivotal enzyme in scopoletin biosynthesis, through virus-induced silencing resulted in increased susceptibility to V. dahliae and decreased scopoletin accumulation. In transgenic cotton plants expressing GhF6'H1 under the CaMV 35S promoter, GhF6'H1 modulated scopoletin accumulation, affecting cotton resistance to V. dahliae, with increased resistance associated with increased scopoletin accumulation. GhF6'H1 has been identified as a direct target of the transcription factor GhWRKY33-like, indicating that GhWRKY33-like can bind to and activate the GhF6'H1 promoter. Moreover, GhWRKY33-like overexpression in cotton enhanced resistance to V. dahliae through scopoletin accumulation, phenylpropanoid pathway activation, and upregulation of defense response genes. Ectopic expression of GhF6'H1 resulted in effective catalysis of scopoletin synthesis in enzyme assays using substrates like feruloyl coenzyme A, while molecular docking analysis revealed specific amino acid residues playing crucial roles in establishing salt-bridge interactions with the substrate. These findings suggest that GhF6`H1, regulated by GhWRKY33-like, plays a crucial role in enhancing cotton resistance to V. dahliae by modulating scopoletin accumulation.

10.
Microorganisms ; 12(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39338603

RESUMO

The utilization of agroindustrial residues, such as avocado peel, as a source of bioactive compounds with antioxidant properties has garnered significant attention. In this study, we investigated the antioxidant potential using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity) methods, along with the antimicrobial activity of phenolic compounds extracted from Hass avocado peel. These soluble polyphenols were quantified and identified using high-performance liquid chromatography (HPLC). The research focused on their effects against three fungal pathogens, Verticillium theobromae, Colletotrichum musae, and Aspergillus niger, which significantly impact banana crops, an essential agricultural commodity in Ecuador. The results have revealed that the application of 80% ethanol as an organic solvent led to increased soluble polyphenol content compared to 96% ethanol. Extraction time significantly influenced the phenolic content, with the highest values obtained at 90 min. Interestingly, despite substantial mycelial growth observed across all extract concentrations, the antifungal effect varied among the pathogens. Specifically, V. theobromae exhibited the highest sensitivity, while C. musae and A. niger were less affected. These results underscore the importance of considering both antioxidant and antimicrobial properties when evaluating natural extracts for potential applications in plant disease management.

11.
Plants (Basel) ; 13(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339557

RESUMO

Sunflower (Helianthus annuus) is a globally significant field crop, and disease resistance is crucial for ensuring yield stability and crop quality. Verticillium dahliae is a notorious soilborne pathogen that causes Verticillium Wilt (VW) and threatens sunflower production worldwide. In this study, we conducted a comprehensive assessment of sunflower resistance to V. dahliae across 231 sunflower cultivar lines, from the Sunflower Association Mapping (SAM) population. We employed EMMAX and ridge regression best linear unbiased prediction (rrBLUP) and identified 148 quantitative trait loci (QTLs) and 23 putative genes associated with V. dahliae resistance, including receptor like kinases, cell wall modification, transcriptional regulation, plant stress signalling and defense regulation genes. Our enrichment and quantitative real-time PCR validation results highlight the importance of membrane vesicle trafficking in the sunflower immune system for efficient signaling and defense upon activation by V. dahliae. This study also reveals the polygenic architecture of V. dahliae resistance in sunflowers and provides insights for breeding sunflower cultivars resistant to VW. This research contributes to ongoing efforts to enhance crop resilience and reduce yield losses due to VW, ultimately benefiting sunflower growers and the agricultural sector.

12.
Plant Cell Environ ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327679

RESUMO

Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb., is a destructive plant disease that instigates severe losses in many crops. Improving plant resistance to Verticillium wilt has been a challenge in most crops. In this study, a V. dahliae secreted protein VdSP8 was identified and shown to activate hyper-sensitive response (HR) and systemic acquired resistance (SAR) to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Botrytis cinerea in tobacco plants. We identified a ß-glucosidase named GhBGLU46 as a cotton plant target of VdSP8. VdSP8 interacts with GhBGLU46 both in vivo and in vitro and promotes the ß-glucosidase activity of GhBGLU46. Silencing of GhBGLU46 reduced the expression of genes involved in lignin biosynthesis, such as GhCCR4, GhCCoAOMT2, GhCAD3 and GhCAD6, thus decreasing lignin deposition and increasing Verticillium wilt susceptibility. We have shown that GhBGLU46 is indispensable for the function of VdSP8 in plant resistance. These results suggest that plants have also evolved a strategy to exploit the invading effector protein VdSP8 to enhance plant resistance.

13.
Plants (Basel) ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124165

RESUMO

Cotton is one of the world's most important economic crops. Verticillium wilt is a devastating cotton disease caused by Verticillium dahliae, significantly impacting cotton yield and quality. E3 ubiquitin ligases are essential components of the ubiquitin-mediated 26S proteasome system, responsible for recognizing ubiquitinated target proteins and promoting their degradation, which play a crucial regulatory role in plant immune responses. In this study, on the basis of the confirmation of differential expression of GhDIRP1, a RING-type E3 ubiquitin ligase encoding gene, in two cotton varieties resistant (Zhongzhimian 2) or susceptible (Jimian 11) to V. dahliae, we demonstrated that GhDIRP1 is a negative regulator of V. dahliae resistance because silencing GhDIRP1 in cotton and heterogeneously overexpressing the gene in Arabidopsis enhanced and compromised resistance to V. dahliae, respectively. The GhDIRP1-mediated immune response seemed to be realized through multiple physiological pathways, including hormone signaling, reactive oxygen species, and lignin biosynthesis. Based on the sequences of GhDIRP1 isolated from Zhongzhimian 2 and Jimian 11, we found that GhDIRP1 had identical coding but different promoter sequences in the two varieties, with the promoter of Zhongzhimian 2 being more active than that of Jimian 11 because the former drove a stronger expression of GUS and LUC reporter genes. The results link the ubiquitination pathway to multiple physiological pathways acting in the cotton immune response and provide a candidate gene for breeding cotton varieties resistant to V. dahliae.

14.
Front Microbiol ; 15: 1428780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104581

RESUMO

Introduction: Verticillium dahliae causes a devastating Verticillium wilt disease on hundreds of plant species worldwide, including cotton. Understanding the interaction mechanism between V. dahliae and its hosts is the prerequisite for developing effective strategies for disease prevention. Methods: Here, based on the previous observation of an xylosidase-encoding gene (VdxyL3) in V. dahliae being obviously up-regulated after sensing root exudates from a cotton variety susceptible to this pathogen, we investigated the function of VdxyL3 in the growth and pathogenesis of V. dahliae by generating its deletion-mutant strains (ΔVdxyL3). Results: Deleting VdxyL3 led to increased colony expansion rate, conidial production, mycelial growth, carbon and nitrogen utilization capacities, and enhanced stress tolerance and pathogenicity of V. dahliae. VdxyL3 is a secretory protein; however, VdxyL3 failed to induce cell death in N. benthamiana based on transient expression experiment. Transcriptomic analysis identified 1300 genes differentially expressed (DEGs) between wild-type (Vd952) and ΔVdxyL3 during infection, including 348 DEGs encoding secretory proteins, among which contained 122 classical secreted proteins and 226 non-classical secreted proteins. It was notable that of the 122 classical secretory proteins, 50 were carbohydrate-active enzymes (CAZymes) and 58 were small cysteine rich proteins (SCRPs), which were required for the pathogenicity of V. dahliae. Conclusion: The RNA-seq data thus potentially connected the genes encoding these proteins to the pathogenesis of V. dahliae. This study provides an experimental basis for further studies on the interaction between V. dahliae and cotton and the pathogenic mechanism of the fungus.

15.
mSphere ; 9(9): e0040924, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39189776

RESUMO

Verticillium dahliae causes Verticillium wilt in more than 200 plant species worldwide. As a soilborne fungus, it forms melanized microsclerotia and colonizes the xylem of host plants. Our previous study revealed a subfamily of C2H2-homeobox transcription factors in V. dahliae, but their biological roles remain unknown. In this study, we systematically characterized the functions of seven C2H2-homeobox transcription factors in V. dahliae. Deletion of VdChtf3 and VdChtf6 significantly decreased the production of melanized microsclerotia, and knockout of VdChtf1 and VdChtf4 enhanced virulence. Loss of VdChtf2 and VdChtf6 increased conidium production, whereas loss of VdChtf5 and VdChtf7 did not affect growth, conidiation, microsclerotial formation, or virulence. Further research showed that VdChtf3 activated the expression of genes encoding pectic enzymes to participate in microsclerotial formation. In addition, VdChtf4 reduced the expression of VdSOD1 to disturb the scavenging of superoxide radicals but induced the expression of genes related to cell wall synthesis to maintain cell wall integrity. These findings highlight the diverse roles of different members of the C2H2-homeobox gene family in V. dahliae. IMPORTANCE: Verticillium dahliae is a soilborne fungus that causes plant wilt and can infect a variety of economic crops and woody trees. The molecular basis of microsclerotial formation and infection by this fungus remains to be further studied. In this study, we analyzed the functions of seven C2H2-homobox transcription factors. Notably, VdChtf3 and VdChtf4 exhibited the most severe defects, affecting phenotypes associated with critical developmental stages in the V. dahliae disease cycle. Our results indicate that VdChtf3 is a potential specific regulator of microsclerotial formation, modulating the expression of pectinase-encoding genes. This finding could contribute to a better understanding of microsclerotial development in V. dahliae. Moreover, VdChtf4 was associated with cell wall integrity, reactive oxygen species (ROS) stress resistance, and increased virulence. These discoveries shed light on the biological significance of C2H2-homeobox transcription factors in V. dahliae's adaptation to the environment and infection of host plants.


Assuntos
Ascomicetos , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Verticillium/genética , Verticillium/patogenicidade
16.
Front Plant Sci ; 15: 1416401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011309

RESUMO

The study explores anaerobic soil disinfection as an alternative to soil fumigants for controlling Verticillium wilt in strawberry crops. For this purpose, two agrowastes close to the strawberry-growing areas of Huelva province were tested as potential amendments for the control of Verticillium wilt: rice bran and residual strawberry extrudate. Furthermore, two application rates were evaluated: 13.50 and 20.00 t/ha for the rice bran and 16.89 and 25.02 t/ha for residual strawberry extrudate. Amended and anaerobically disinfested soils were compared with a non-amended soil under anaerobic conditions, a soil treated with the chemical fungicide metam sodium and an untreated soil. One week before the start of disinfection treatment, these soils were artificially inoculated with 250 microsclerotia/g dry soil of Verticillium dahliae. After disinfestation treatments, pathogens were quantified, and strawberry plants were cropped in a growth chamber to further evaluate Verticillium wilt severity, which was measured with a symptom scale in the same potting soils. Measurements of the anaerobic condition, pH and microbial population densities were performed, and the results showed significant differences between the different amendments. In addition, the treatment with rice bran at 20 t/ha recorded the lowest population density of V. dahliae. Likewise, it was possible to achieve a reduction in foliar disease severity in all amended treatments in similar percentage to those obtained by chemical treatment. These results suggest potential application of this technique for the control of Verticillium wilt in the strawberry-growing area of Huelva, reducing the use of chemical fumigants.

17.
Microbiol Res ; 287: 127836, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018831

RESUMO

Verticillium dahliae is a destructive, soil-borne pathogen that causes significant losses on numerous important dicots. Recently, beneficial microbes inhabiting the rhizosphere have been exploited and used to control plant diseases. In the present study, Burkholderia gladioli KRS027 demonstrated excellent inhibitory effects against Verticillium wilt in cotton seedlings. Plant growth and development was promoted by affecting the biosynthesis and signaling pathways of brassinosteroids (BRs), gibberellins (GAs), and auxins, consequently promoting stem elongation, shoot apical meristem, and root apical tissue division in cotton. Furthermore, based on the host transcriptional response to V. dahliae infection, it was found that KRS027 modulates the plants to maintain cell homeostasis and respond to other pathogen stress. Moreover, KRS027 induced disruption of V. dahliae cellular structures, as evidenced by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. Based on the comparative transcriptomic analysis between KRS027 treated and control group of V. dahliae, KRS027 induced substantial alterations in the transcriptome, particularly affecting genes encoding secreted proteins, small cysteine-rich proteins (SCRPs), and protein kinases. In addition, KRS027 suppressed the growth of different clonal lineages of V. dahliae strains through metabolites, and volatile organic compounds (VOCs) released by KRS027 inhibited melanin biosynthesis and microsclerotia development. These findings provide valuable insights into an alternative biocontrol strategy for Verticillium wilt, demonstrating that the antagonistic bacterium KRS027 holds promise as a biocontrol agent for promoting plant growth and managing disease occurrence.


Assuntos
Ascomicetos , Burkholderia gladioli , Doenças das Plantas , Transcriptoma , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Burkholderia gladioli/crescimento & desenvolvimento , Burkholderia gladioli/genética , Burkholderia gladioli/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Gossypium/microbiologia , Gossypium/crescimento & desenvolvimento , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Agentes de Controle Biológico , Ácidos Indolacéticos/metabolismo , Giberelinas/metabolismo , Verticillium
18.
Data Brief ; 55: 110639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39022698

RESUMO

Pseudomonas nitroreducens L4 was isolated from the interior of cotton plants, which showed strong biocontrol activity against Verticillium dahlia and other fungal pathogens. To elucidate the biocontrol mechanism, the genome sequence of L4 was sequenced using the Illumina and Nanopore sequencing platform. The assembled genome of L4 consisted of a single circular chromosome was 6,229,472 bp, with an average GC content of 64.95 %, 5,629 protein-coding genes, 72 tRNA, 16 rRNA and 1 tm RNA. Six secondary metabolite biosynthetic gene clusters are identified in the genome. The genome sequence provided a theoretical basis for analyzing the biocontrol mechanism of this strain.

19.
Pathogens ; 13(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39057752

RESUMO

Verticillium wilt, caused by the pathogenic fungus Verticillium dahliae, has emerged as a severe threat to cotton globally. However, little is known about the genetic diversity of this pathogen in an infected single cotton plant. In this study, we isolated three new V. dahliae strains from the disease stems of Gossypium hirsutum from the cotton field in Western China and assessed their pathogenicity to the cotton cultivar Xinnongmian-1 and its two transgenic lines, as well as two laboratory strains, VD592 and VD991. These three new V. dahliae strains were identified using DNA barcodes of tryptophan synthase (TS), actin (ACT), elongation factor 1-α (EF), and glyceraldehyde-3-phosphate dehydrogenase (GPD). Moreover, the haplotype analysis revealed that the three new races had distinct haplotypes at the TS locus. Furthermore, the results of culture features and genetic diversity of ISSR (inter-simple sequence repeat) revealed that there were separate V. dahliae strains, which were strong defoliating pathotypes belonging to race 2 type, as determined by particular DNA marker recognition. The identified strains demonstrated varied levels of pathogenicity by leaf disc and entire plant inoculation methods. Conservatively, these strains showed some pathogenicity on cotton lines, but were less pathogenic than the reference strains. The findings revealed that several strong defoliating V. dahliae pathotypes coexist on the same cotton plant. It indicats the importance of regular monitoring as an early warning system, as well as the detection and reporting of virulent pathogen strains and their effects on crop response.

20.
Microbiol Res ; 287: 127834, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059096

RESUMO

Verticillium dahliae is among the most devastating fungal pathogens, causing significant economic harm to agriculture and forestry. To address this problem, researchers have focused on eliciting systemic resistance in host plants through utilizing volatile organic compounds (VOCs) produced by biological control agents. Herein, we meticulously measured the quantity of V. dahliae pathogens in plants via RTqPCR, as well as the levels of defensive enzymes and pathogenesis-related (PR) proteins within plants. Finally, the efficacy of VOCs in controlling Verticillium wilt in cotton was evaluated. Following treatment with Pseudomonas aurantiaca ST-TJ4, the expression of specific VdEF1-α genes in cotton decreased significantly. The incidence and disease indices also decreased following VOC treatment. In cotton, the salicylic acid (SA) signal was strongly activated 24 h posttreatment; then, hydrogen peroxide (H2O2) levels increased at 48 h, and peroxidase (POD) and catalase (CAT) activities increased to varying degrees at different time points. The malondialdehyde (MDA) content and electrolyte leakage in cotton treated with VOCs were lower than those in the control group, and the expression levels of chitinase (CHI) and PR genes (PR10 and PR17), increased at various time points under the ST-TJ4 treatment. The activity of phenylalanine ammonia lyase (PAL) enzymes in cotton treated with VOCs was approximately 1.26 times greater than that in control plants at 24 h,while the contents of phenols and flavonoids increased significantly in the later stage. Additionally, 2-undecanone and 1-nonanol can induce a response in plants that enhances disease resistance. Collectively, these findings strongly suggest that VOCs from ST-TJ4 act as elicitors of plant defence and are valuable natural products for controlling Verticillium wilt.


Assuntos
Ascomicetos , Resistência à Doença , Gossypium , Doenças das Plantas , Proteínas de Plantas , Pseudomonas , Ácido Salicílico , Compostos Orgânicos Voláteis , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos Orgânicos Voláteis/metabolismo , Pseudomonas/genética , Resistência à Doença/genética , Gossypium/microbiologia , Gossypium/genética , Gossypium/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Catalase/metabolismo , Catalase/genética , Peroxidase/metabolismo , Peroxidase/genética , Quitinases/metabolismo , Quitinases/genética , Malondialdeído/metabolismo , Agentes de Controle Biológico , Verticillium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA