Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Viruses ; 16(3)2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543814

RESUMO

Seasonal coronaviruses (HCoVs) are known to contribute to cross-reactive antibody (Ab) responses against SARS-CoV-2. While these responses are predictable due to the high homology between SARS-CoV-2 and other CoVs, the impact of these responses on susceptibility to SARS-CoV-2 infection in cancer patients is unclear. To investigate the influence of prior HCoV infection on anti-SARS-CoV-2 Ab responses among COVID-19 asymptomatic individuals with cancer and controls without cancers, we utilized the VirScan technology in which phage immunoprecipitation and sequencing (PhIP-seq) of longitudinal plasma samples was performed to investigate high-resolution (i.e., epitope level) humoral CoV responses. Despite testing positive for anti-SARS-CoV-2 Ab in the plasma, a majority of the participants were asymptomatic for COVID-19 with no prior history of COVID-19 diagnosis. Although the magnitudes of the anti-SARS-CoV-2 Ab responses were lower in individuals with Kaposi sarcoma (KS) compared to non-KS cancer individuals and those without cancer, the HCoV Ab repertoire was similar between individuals with and without cancer independent of age, sex, HIV status, and chemotherapy. The magnitudes of the anti-spike HCoV responses showed a strong positive association with those of the anti-SARS-CoV-2 spike in cancer patients, and only a weak association in non-cancer patients, suggesting that prior infection with HCoVs might play a role in limiting SARS-CoV-2 infection and COVID-19 disease severity.


Assuntos
COVID-19 , Neoplasias , Sarcoma de Kaposi , Humanos , SARS-CoV-2 , Formação de Anticorpos , Teste para COVID-19 , Estações do Ano , Anticorpos Antivirais , Epitopos , Glicoproteína da Espícula de Coronavírus
2.
Front Public Health ; 11: 1212018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808979

RESUMO

Introduction: Bats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats' importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats. Methods: Here, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome. Results: Using VirScan, we identified past exposures to 57 viral genera-including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses-in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics. Discussion: Overall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements.


Assuntos
Quirópteros , Reservatórios de Doenças , Animais , Humanos , Ecossistema , Estudos Soroepidemiológicos , Zoonoses
3.
Front Immunol ; 14: 1075774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781366

RESUMO

Bacteriolytic enzymes are promising antibacterial agents, but they can cause a typical immune response in vivo. In this study, we used a targeted modification method for two antibacterial endolysins, Pal and Cpl-1. We identified the key immunogenic amino acids, and designed and tested new, bacteriolytic variants with altered immunogenicity. One new variant of Pal (257-259 MKS → TFG) demonstrated decreased immunogenicity while a similar mutant (257-259 MKS → TFK) demonstrated increased immunogenicity. A third variant (280-282 DKP → GGA) demonstrated significantly increased antibacterial activity and it was not cross-neutralized by antibodies induced by the wild-type enzyme. We propose this variant as a new engineered endolysin with increased antibacterial activity that is capable of escaping cross-neutralization by antibodies induced by wild-type Pal. We show that efficient antibacterial enzymes that avoid cross-neutralization by IgG can be developed by epitope scanning, in silico design, and substitutions of identified key amino acids with a high rate of success. Importantly, this universal approach can be applied to many proteins beyond endolysins and has the potential for design of numerous biological drugs.


Assuntos
Antibacterianos , Formação de Anticorpos , Epitopos , Antibacterianos/farmacologia , Proteínas , Aminoácidos
4.
Front Immunol ; 14: 1142634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483601

RESUMO

Introduction: The majority of studies on oxidative phosphorylation in immune cells have been performed in mouse models, necessitating human translation. To understand the impact of oxidative phosphorylation (OXPHOS) deficiency on human immunity, we studied children with primary mitochondrial disease (MtD). Methods: scRNAseq analysis of peripheral blood mononuclear cells was performed on matched children with MtD (N = 4) and controls (N = 4). To define B cell function we performed phage display immunoprecipitation sequencing on a cohort of children with MtD (N = 19) and controls (N = 16). Results: Via scRNAseq, we found marked reductions in select populations involved in the humoral immune response, especially antigen presenting cells, B cell and plasma populations, with sparing of T cell populations. MTRNR2L8, a marker of bioenergetic stress, was significantly elevated in populations that were most depleted. mir4485, a miRNA contained in the intron of MTRNR2L8, was co-expressed. Knockdown studies of mir4485 demonstrated its role in promoting survival by modulating apoptosis. To determine the functional consequences of our findings on humoral immunity, we studied the antiviral antibody repertoire in children with MtD and controls using phage display and immunoprecipitation sequencing. Despite similar viral exposomes, MtD displayed antiviral antibodies with less robust fold changes and limited polyclonality. Discussion: Overall, we show that children with MtD display perturbations in the B cell repertoire which may impact humoral immunity and the ability to clear viral infections.


Assuntos
Leucócitos Mononucleares , Fosforilação Oxidativa , Camundongos , Animais , Criança , Humanos , Imunidade Humoral , Linfócitos B , Antivirais
5.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108460

RESUMO

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted healthcare, the workforce, and worldwide socioeconomics. Multi-dose mono- or bivalent mRNA vaccine regimens have shown high efficacy in protection against SARS-CoV-2 and its emerging variants with varying degrees of efficacy. Amino acid changes, primarily in the receptor-binding domain (RBD), result in selection for viral infectivity, disease severity, and immune evasion. Therefore, many studies have centered around neutralizing antibodies that target the RBD and their generation achieved through infection or vaccination. Here, we conducted a unique longitudinal study, analyzing the effects of a three-dose mRNA vaccine regimen exclusively using the monovalent BNT162b2 (Pfizer/BioNTech) vaccine, systematically administered to nine previously uninfected (naïve) individuals. We compare changes in humoral antibody responses across the entire SARS-CoV-2 spike glycoprotein (S) using a high-throughput phage display technique (VirScan). Our data demonstrate that two doses of vaccination alone can achieve the broadest and highest magnitudes of anti-S response. Moreover, we present evidence of novel highly boosted non-RBD epitopes that strongly correlate with neutralization and recapitulate independent findings. These vaccine-boosted epitopes could facilitate multi-valent vaccine development and drug discovery.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Formação de Anticorpos , Vacina BNT162 , Estudos Longitudinais , Pandemias , Vacinação , Anticorpos Neutralizantes , Epitopos , Anticorpos Antivirais
6.
Cell Rep ; 41(12): 111754, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543141

RESUMO

Anelloviruses represent a major constituent of the commensal human virome; however, little is known about their immunobiology. Here, we present "AnelloScan," a T7 phage library representing the open reading frame 1 (ORF1), ORF2, ORF3, and torque teno virus (TTV)-derived apoptosis-inducing protein (TAIP) sequences of more than 800 human anelloviruses and profile the antibody reactivities of serum samples from a cross-sectional cohort of 156 subjects by using phage-immunoprecipitation sequencing (PhIP-Seq). A majority of anellovirus peptides are not reactive in any of the subjects tested (n = ∼28,000; ∼85% of the library). Antibody-reactive peptides are largely restricted to the C-terminal region of the capsid protein ORF1. Moreover, using a longitudinal cohort of matched blood-transfusion donors and recipients, we find that most transmitted anelloviruses do not elicit a detectable antibody reactivity in the recipient and that the remainder elicit delayed responses appearing ∼100-150 days after transfusion.


Assuntos
Anelloviridae , Torque teno virus , Humanos , Formação de Anticorpos , Estudos Transversais , Torque teno virus/metabolismo , Proteínas do Capsídeo/metabolismo
7.
Clin Transl Med ; 12(11): e1100, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36336785

RESUMO

BACKGROUND: Viral infection is a major cause of morbidity in children with mitochondrial disease (MtD). As a result, families with children with MtD are highly adherent to risk mitigation behaviours (RMBs) advised by the Centers for Disease Control and Prevention during the COVID-19 pandemic that can modulate infection risk. METHODS: Deep serologic phenotyping of viral infections was performed via home-based sampling by combining SARS-CoV-2 serologic testing and phage display immunoprecipitation and sequencing. Samples were collected approximately 1 year apart (October 2020 to April 2021 and October 2021 to March 2022) on households containing a child with MtD. RESULTS: In contrast to our first collection in 2020-2021, SARS-CoV-2 antibody profiles for all participants in 2021-2022 were marked by greater isotype diversity and the appearance of neutralizing antibodies. Besides SARS-CoV-2, households (N = 15) were exposed to >38 different respiratory and gastrointestinal viruses during the study, averaging five viral infections per child with MtD. Regarding clinical outcomes, children with MtD (N = 17) experienced 34 episodes of illness resulting in 6 hospitalizations, with some children experiencing multiple episodes. Neurologic events following illness were recorded in five patients. Infections were identified via clinical testing in only seven cases. Viral exposome profiles were consistent with clinical testing and even identified infections not captured by clinical testing. CONCLUSIONS: Despite reported adherence to RMBs during the COVID-19 pandemic by families with a child with MtD, viral infection was pervasive. Not all infections resulted in illness in the child with MtD, suggesting that some were subclinical or asymptomatic. However, selected children with MtD did experience neurologic events. Our studies emphasize that viral infections are inexorable, emphasizing the need for further understanding of host-pathogen interactions through broad serologic surveillance.


Assuntos
COVID-19 , Expossoma , Doenças Mitocondriais , Viroses , Estados Unidos , Criança , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias
8.
Microorganisms ; 10(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36296201

RESUMO

Human pegivirus (HPgV) is best known for persistent, presumably non-pathogenic, infection and a propensity to co-infect with human immunodeficiency virus or hepatitis C virus. However, unique attributes, such as the increased risk of malignancy or immune modulation, have been recently recognized for HPgV. We have identified a unique case of a woman with high levels HPgV infection in two pregnancies, which occurred 4 years apart and without evidence of human immunodeficiency virus or hepatitis C virus infection. The second pregnancy was complicated by congenital heart disease. A high level of HPgV infection was detected in the maternal blood from different trimesters by RT-PCR and identified as HPgV type 1 genotype 2 in both pregnancies. In the second pregnancy, the decidua and intervillous tissue of the placenta were positive for HPgV by PCR but not the chorion or cord blood (from both pregnancies), suggesting no vertical transmission despite high levels of viremia. The HPgV genome sequence was remarkably conserved over the 4 years. Using VirScan, sera antibodies for HPgV were detected in the first trimester of both pregnancies. We observed the same anti-HPgV antibodies against the non-structural NS5 protein in both pregnancies, suggesting a similar non-E2 protein humoral immune response over time. To the best of our knowledge, this is the first report of persistent HPgV infection involving placental tissues with no clear indication of vertical transmission. Our results reveal a more elaborate viral-host interaction than previously reported, expand our knowledge about tropism, and opens avenues for exploring the replication sites of this virus.

9.
Bio Protoc ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35937932

RESUMO

Profiling the specificities of antibodies can reveal a wealth of information about humoral immune responses and the antigens they target. Here, we present a protocol for VirScan, an application of the phage immunoprecipitation sequencing (PhIP-Seq) method for profiling the specificities of human antiviral antibodies. Accompanying this protocol is a video of the experimental procedure. VirScan and, more generally, PhIP-Seq are techniques that enable high-throughput antibody profiling by combining high-throughput DNA oligo synthesis and bacteriophage display with next-generation sequencing. In the VirScan method, human sera samples are screened against a library of peptides spanning the entire human viral proteome. Bound phage are immunoprecipitated and sequenced, identifying the viral peptides recognized by the antibodies. VirScan Is a powerful tool for uncovering individual viral exposure histories, mapping the epitope landscape of viruses of interest, and studying fundamental mechanisms of viral immunity. Graphical abstract.

10.
Pathogens ; 11(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631089

RESUMO

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a high throughput serological technology that is revolutionizing the manner in which we track antibody profiles. In this review, we mainly focus on its application to viral infectious diseases. Through the pull-down of patient antibodies using peptide-tile-expressing T7 bacteriophages and detection using next-generation sequencing (NGS), PhIP-Seq allows the determination of antibody repertoires against peptide targets from hundreds of proteins and pathogens. It differs from conventional serological techniques in that PhIP-Seq does not require protein expression and purification. It also allows for the testing of many samples against the whole virome. PhIP-Seq has been successfully applied in many infectious disease investigations concerning seroprevalence, risk factors, time trends, etiology of disease, vaccinology, and emerging pathogens. Despite the inherent limitations of this technology, we foresee the future expansion of PhIP-Seq in both investigative studies and tracking of current, emerging, and novel viruses. Following the review of PhIP-Seq technology, its limitations, and applications, we recommend that PhIP-Seq be integrated into national surveillance programs and be used in conjunction with molecular techniques to support both One Health and pandemic preparedness efforts.

11.
Allergy ; 77(8): 2415-2430, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35364615

RESUMO

BACKGROUND: Several autoimmune features occur during coronavirus disease 2019 (COVID-19), with possible implications for disease course, immunity, and autoimmune pathology. In this study, we longitudinally screened for clinically relevant systemic autoantibodies to assess their prevalence, temporal trajectory, and association with immunity, comorbidities, and severity of COVID-19. METHODS: We performed highly sensitive indirect immunofluorescence assays to detect antinuclear antibodies (ANA) and antineutrophil cytoplasmic antibodies (ANCA), along with serum proteomics and virome-wide serological profiling in a multicentric cohort of 175 COVID-19 patients followed up to 1 year after infection, eleven vaccinated individuals, and 41 unexposed controls. RESULTS: Compared with healthy controls, similar prevalence and patterns of ANA were present in patients during acute COVID-19 and recovery. However, the paired analysis revealed a subgroup of patients with transient presence of certain ANA patterns during acute COVID-19. Furthermore, patients with severe COVID-19 exhibited a high prevalence of ANCA during acute disease. These autoantibodies were quantitatively associated with higher SARS-CoV-2-specific antibody titers in COVID-19 patients and in vaccinated individuals, thus linking autoantibody production to increased antigen-specific humoral responses. Notably, the qualitative breadth of antibodies cross-reactive with other coronaviruses was comparable in ANA-positive and ANA-negative individuals during acute COVID-19. In autoantibody-positive patients, multiparametric characterization demonstrated an inflammatory signature during acute COVID-19 and alterations of the B-cell compartment after recovery. CONCLUSION: Highly sensitive indirect immunofluorescence assays revealed transient autoantibody production during acute SARS-CoV-2 infection, while the presence of autoantibodies in COVID-19 patients correlated with increased antiviral humoral immune responses and inflammatory immune signatures.


Assuntos
Autoanticorpos , COVID-19 , Anticorpos Anticitoplasma de Neutrófilos , Anticorpos Antinucleares , Antivirais , Humanos , Imunidade Humoral , SARS-CoV-2
12.
Immunity ; 55(1): 174-184.e5, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021055

RESUMO

Human immune responses to viral infections are highly variable, but the genetic factors that contribute to this variability are not well characterized. We used VirScan, a high-throughput epitope scanning technology, to analyze pan-viral antibody reactivity profiles of twins and SNP-genotyped individuals. Using these data, we determined the heritability and genomic loci associated with antibody epitope selection, response breadth, and control of Epstein-Barr virus (EBV) viral load. 107 EBV peptide reactivities were heritable and at least two Epstein-Barr nuclear antigen 2 (EBNA-2) reactivities were associated with variants in the MHC class II locus. We identified an EBV serosignature that predicted viral load in peripheral blood mononuclear cells and was associated with variants in the MHC class I locus. Our study illustrates the utility of epitope profiling to investigate the genetics of pathogen immunity, reports heritable features of the antibody response to viruses, and identifies specific HLA loci important for EBV epitope selection.


Assuntos
Anticorpos Antivirais/metabolismo , Epitopos/metabolismo , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Genótipo , Herpesvirus Humano 4/fisiologia , Epitopos Imunodominantes/metabolismo , Proteínas Virais/metabolismo , Adolescente , Adulto , Idoso , Estudos de Coortes , Mapeamento de Epitopos , Epitopos/genética , Infecções por Vírus Epstein-Barr/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Feminino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Imunidade Humoral , Epitopos Imunodominantes/genética , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Estudos Soroepidemiológicos , Carga Viral , Proteínas Virais/genética , Adulto Jovem
13.
EBioMedicine ; 75: 103747, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34922324

RESUMO

BACKGROUND: Comprehensive characterization of exposures and immune responses to viral infections is critical to a basic understanding of human health and disease. We previously developed the VirScan system, a programmable phage-display technology for profiling antibody binding to a library of peptides designed to span the human virome. Previous VirScan analytical approaches did not carefully account for antibody cross-reactivity among sequences shared by related viruses or for the disproportionate representation of individual viruses in the library. METHODS: Here we present the AntiViral Antibody Response Deconvolution Algorithm (AVARDA), a multi-module software package for analyzing VirScan datasets. AVARDA provides a probabilistic assessment of infection with species-level resolution by considering sequence alignment of all library peptides to each other and to all human viruses. We employed AVARDA to analyze VirScan data from a cohort of encephalitis patients with either known viral infections or undiagnosed etiologies. We further assessed AVARDA's utility in associating viral infection with type 1 diabetes and lupus. FINDINGS: By comparing acute and convalescent sera, AVARDA successfully confirmed or detected encephalitis-associated responses to human herpesviruses 1, 3, 4, 5, and 6, improving the rate of diagnosing viral encephalitis in this cohort by 44%. AVARDA analyses of VirScan data from the type 1 diabetes and lupus cohorts implicated enterovirus and herpesvirus infections, respectively. INTERPRETATION: AVARDA, in combination with VirScan and other pan-pathogen serological techniques, is likely to find broad utility in the epidemiology and diagnosis of infectious diseases. FUNDING: This work was made possible by support from the National Institutes of Health (NIH), the US Army Research Office, the Singapore Infectious Diseases Initiative (SIDI), the Singapore Ministry of Health's National Medical Research Council (NMRC) and the Singapore National Research Foundation (NRF).


Assuntos
Viroma , Viroses , Anticorpos Antivirais , Antígenos Virais , Epitopos , Humanos , Estados Unidos , Viroses/diagnóstico
14.
Front Immunol ; 12: 740395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512672

RESUMO

Introduction: Low HIV viral load is associated with delayed disease progression and reduced HIV transmission. HIV controllers suppress viral load to low levels in the absence of antiretroviral treatment (ART). We used an antibody profiling system, VirScan, to compare antibody reactivity and specificity in HIV controllers, non-controllers with treatment-induced viral suppression, and viremic non-controllers. Methods: The VirScan library contains 3,384 phage-displayed peptides spanning the HIV proteome. Antibody reactivity to these peptides was measured in plasma from a Discovery Cohort that included 13 elite controllers, 27 viremic controllers, 12 viremic non-controllers, and 21 non-controllers who were virally suppressed on ART. Antibody reactivity to selected peptides was also assessed in an independent cohort of 29 elite controllers and 37 non-controllers who were virally suppressed on ART (Validation Cohort) and in a longitudinal cohort of non-controllers. Results: In the Discovery Cohort, 62 peptides were preferentially targeted in HIV controllers compared to non-controllers who were virally suppressed on ART. These specificities were not significantly different when comparing controllers versus viremic non-controllers. Aggregate reactivity to these peptides was also high in elite controllers from the independent Validation Cohort. The 62 peptides formed seven clusters of homologous epitopes in env, gag, integrase, and vpu. Reactivity to one of these clusters located in gag p17 was inversely correlated with viral load set point in an independent cohort of non-controllers. Conclusions: Antibody reactivity was low in non-controllers suppressed on ART, but remained high in viremic controllers despite viral suppression. Antibodies in controllers and viremic non-controllers were directed against epitopes in diverse HIV proteins; higher reactivity against p17 peptides was associated with lower viral load set point. Further studies are needed to determine if these antibodies play a role in regulation of HIV viral load.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Paciente HIV Positivo não Progressor , HIV-1/fisiologia , Adulto , Antirretrovirais/uso terapêutico , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Feminino , Antígenos HIV/genética , Antígenos HIV/imunologia , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Biblioteca de Peptídeos , Carga Viral , Adulto Jovem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
15.
Future Virol ; 14(1): 39-49, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31933674

RESUMO

Viruses represent one of the major environmental agents that cause human illness and disease. However, the ability to diagnose viral infections is limited by detection capability and scope. Here we describe several emerging technologies that provide rapid and/or high-quality viral diagnostic information. Two technologies, novel CRISPR-based diagnostics and a portable DNA sequencing instrument, are uniquely suited to increase the number of viral agents analyzed, even in point of care settings. We also discuss a phage-based method for generating comprehensive viral profiles of previous exposure/infection and a fluid-phase immunoassay that yields highly quantitative viral antibody analyses. Future applications of these approaches will accelerate on-site clinical diagnosis of viral infections and provide insights into the role viruses play in complex diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA