Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L341-L358, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39012058

RESUMO

Development of the respiratory system can be affected by the use of drugs during pregnancy, as the prenatal phase is highly sensitive to pharmacological interventions, resulting in long-term consequences. The deleterious effects of external cannabinoids during gestation may be related to negative interference in central nervous system formation, cardiorespiratory system function, and behavioral disorders. Nevertheless, the impact of external cannabinoids on cardiorespiratory network development, chemosensitivity, and its future consequences in adulthood is still unclear. We evaluated the effects of prenatal exposure to a synthetic cannabinoid (WIN 55,212-2, 0.5 mg·kg-1·day-1) on the cardiorespiratory control and panic-like behavior of male and female rats in adulthood. Exogenous cannabinoid exposure during pregnancy resulted in a sex-dependent difference in breathing control. Specifically, males showed increased chemosensitivity to CO2 and O2, whereas females exhibited decreased sensitivity. Altered cardiovascular control was evident, with prenatally treated males and females being more susceptible to hypertension and tachycardia under adverse environmental conditions. Moreover, WIN-treated males exhibited higher fragmentation of sleep episodes, whereas females displayed anxiolytic and panicolytic behavioral responses to CO2. However, no changes were observed in the mechanical component of the respiratory system, and there were no neuroanatomical alterations, such as changes in the expression of CB1 receptors in the brainstem or in the quantification of catecholaminergic and serotonergic neurons. These findings highlight that external interference in cannabinoid signaling during fetal development causes sex-specific, long-lasting effects for the cardiorespiratory system and behavioral responses in adulthood.NEW & NOTEWORTHY The surge in recreational cannabis use and cannabinoid-based medication prescription among pregnant women has been notable in recent years, fueled by the misconception that natural products are inherently safe. Significant gaps persist regarding the potential risks of maternal consumption of cannabinoids and the long-term effects on the cardiorespiratory system of their offspring, which may be determined by sex. Accordingly, this research aims to diminish this lack of information and raise a note of caution.


Assuntos
Canabinoides , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Canabinoides/farmacologia , Canabinoides/efeitos adversos , Ratos , Comportamento Animal/efeitos dos fármacos , Benzoxazinas/farmacologia , Benzoxazinas/efeitos adversos , Ratos Wistar , Naftalenos/farmacologia , Naftalenos/toxicidade , Naftalenos/efeitos adversos , Respiração/efeitos dos fármacos , Morfolinas/farmacologia
2.
Front Psychiatry ; 14: 1148993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304451

RESUMO

Background: Cannabis addiction is a chronically relapsing disorder lacking effective treatment. Regular cannabis consumption typically begins during adolescence, and this early cannabinoid exposure may increase the risk for drug addiction in adulthood. Objective: This study investigates the development of cannabis addiction-like behavior in adult mice after adolescent exposure to the main psychoactive component of cannabis, Δ9-tetrahydrocannabinol (THC). Methods: Adolescent male mice were exposed to 5 mg/kg of THC from postnatal days 37 to 57. Operant self-administration sessions of WIN 55,212-2 (12.5 µg/kg/infusion) were conducted for 10 days. Mice were tested for three addiction-like criteria (persistence of response, motivation, and compulsivity), two parameters related to craving (resistance to extinction and drug-seeking behavior), and two phenotypic vulnerability traits related to substance use disorders (impulsivity and reward sensitivity). Additionally, qPCR assays were performed to detect differentially expressed genes in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum, and hippocampus (HPC) of "addicted" and "non-addicted" mice. Results: Adolescent THC exposure did not modify WIN 55,212-2 reinforcement nor the development of cannabis addiction-like behavior. Inversely, THC pre-exposed mice displayed impulsive-like behavior in adulthood, which was more pronounced in mice that developed the addiction-like criteria. Moreover, downregulated drd2 and adora2a gene expression in NAc and HPC was revealed in THC pre-exposed mice, as well as a downregulation of drd2 expression in mPFC of vehicle pre-treated mice that developed addiction-like behaviors. Discussion: These findings suggest that adolescent THC exposure may promote impulsivity-like behavior in adulthood, associated with downregulated drd2 and adora2a expression in NAc and HPC.

3.
Vet Sci ; 10(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235393

RESUMO

The impacts of morphine and dexmedetomidine on the MAC of isoflurane were studied in rats constantly medicated with the cannabinoid WIN 55,212-2. METHODS: Prior to the administration of morphine, the MAC was measured in both untreated rats (MAC (ISO)) and those treated with a cannabinoid (MAC (ISO + CANN)). The effects of morphine (MAC (ISO + MOR)) and dexmedetomidine (MAC (ISO + DEX)) on untreated rats and rats treated for 21 days with the cannabinoids (MAC (ISO + CANN + MOR)) and (MAC (ISO + CANN + DEX) were also studied. RESULTS: MAC (ISO) was 1.32 ± 0.06, and MAC (ISO + CANN) was 1.69 ± 0.09. MAC (ISO + MOR) was 0.97 ± 0.02 (26% less than MAC (ISO)). MAC (ISO + CANN + MOR) was 1.55 ± 0.08 (8% less than MAC (ISO + CANN)), MAC (ISO + DEX) was 0.68 ± 0.10 (48% less than MAC (ISO)), and MAC (ISO + CANN + DEX) was 0.67 ± 0.08 (60% less than MAC (ISO + CANN)). CONCLUSIONS: Medication with a cannabinoid for 21 days augmented the MAC of isoflurane. The sparing effect of morphine on isoflurane is lower in rats constantly medicated with a cannabinoid. The sparing effect of dexmedetomidine on the minimum alveolar concentration of isoflurane is greater in rats repeatedly medicated with a cannabinoid.

4.
Front Pharmacol ; 14: 1143365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37050910

RESUMO

We have established for the first time a mouse model of cannabinoid addiction using WIN 55,212-2 intravenous self-administration (0.0125 mg/kg/infusion) in C57Bl/6J mice. This model allows to evaluate the addiction criteria by grouping them into 1) persistence of response during a period of non-availability of the drug, 2) motivation for WIN 55,212-2 with a progressive ratio, and 3) compulsivity when the reward is associated with a punishment such as an electric foot-shock, in agreement with the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5). This model also allows to measure two parameters that have been related with the DSM-5 diagnostic criteria of craving, resistance to extinction and reinstatement, and two phenotypic traits suggested as predisposing factors, impulsivity and sensitivity to reward. We found that 35.6% of mice developed the criteria of cannabinoid addiction, allowing to differentiate between resilient and vulnerable mice. Therefore, we have established a novel and reliable model to study the neurobiological correlates underlying the resilience or vulnerability to develop cannabinoid addiction. This model included the chemogenetic inhibition of neuronal activity in the medial prefrontal cortex to the nucleus accumbens pathway to assess the neurobiological substrate of cannabinoid addiction. This model will shed light on the neurobiological substrate underlying cannabinoid addiction.

5.
Front Immunol ; 14: 1147520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006243

RESUMO

Introduction: Chronic or uncontrolled activation of myeloid cells including monocytes, macrophages and dendritic cells (DCs) is a hallmark of immune-mediated inflammatory disorders. There is an urgent need for the development of novel drugs with the capacity to impair innate immune cell overactivation under inflammatory conditions. Compelling evidence pointed out cannabinoids as potential therapeutic tools with anti-inflammatory and immunomodulatory capacity. WIN55,212-2, a non-selective synthetic cannabinoid agonist, displays protective effects in several inflammatory conditions by mechanisms partially depending on the generation of tolerogenic DCs able to induce functional regulatory T cells (Tregs). However, its immunomodulatory capacity on other myeloid cells such as monocytes and macrophages remains incompletely understood. Methods: Human monocyte-derived DCs (hmoDCs) were differentiated in the absence (conventional hmoDCs) or presence of WIN55,212-2 (WIN-hmoDCs). Cells were stimulated with LPS, cocultured with naive T lymphocytes and their cytokine production and ability to induce T cell responses were analysed by ELISA or flow cytometry. To evaluate the effect of WIN55,212-2 in macrophage polarization, human and murine macrophages were activated with LPS or LPS/IFNγ, in the presence or absence of the cannabinoid. Cytokine, costimulatory molecules and inflammasome markers were assayed. Metabolic and chromatin immunoprecipitation assays were also performed. Finally, the protective capacity of WIN55,212-2 was studied in vivo in BALB/c mice after intraperitoneal injection with LPS. Results: We show for the first time that the differentiation of hmoDCs in the presence of WIN55,212-2 generates tolerogenic WIN-hmoDCs that are less responsive to LPS stimulation and able to prime Tregs. WIN55,212-2 also impairs the pro-inflammatory polarization of human macrophages by inhibiting cytokine production, inflammasome activation and rescuing macrophages from pyroptotic cell death. Mechanistically, WIN55,212-2 induced a metabolic and epigenetic shift in macrophages by decreasing LPS-induced mTORC1 signaling, commitment to glycolysis and active histone marks in pro-inflammatory cytokine promoters. We confirmed these data in ex vivo LPS-stimulated peritoneal macrophages (PMΦs), which were also supported by the in vivo anti-inflammatory capacity of WIN55,212-2 in a LPS-induced sepsis mouse model. Conclusion: Overall, we shed light into the molecular mechanisms by which cannabinoids exert anti-inflammatory properties in myeloid cells, which might well contribute to the future rational design of novel therapeutic strategies for inflammatory disorders.


Assuntos
Canabinoides , Monócitos , Humanos , Camundongos , Animais , Canabinoides/farmacologia , Lipopolissacarídeos/farmacologia , Inflamassomos/metabolismo , Macrófagos , Inflamação/metabolismo , Citocinas/metabolismo
6.
Epilepsy Res ; 192: 107135, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023553

RESUMO

The role of the hippocampus (Hp) in absence epileptic networks and the effect of endocannabinoid system on this network remain enigmatic. Here, using adapted nonlinear Granger causality, we compared the differences in network strength in four intervals (baseline or interictal, preictal, ictal and postictal) in two hours before (Epoch 1) and six hours (epochs 2, 3 and 4) after the administration of three different doses of the endocannabinoid agonist WIN55,212-2 (WIN) or solvent. Local field potentials were recorded for eight hours in 23 WAG/Rij rats in the Frontal (FC), Parietal PC), Occipital Cortex (OC) and in the hippocampus (Hp). The four intervals were visually marked by an expert neurophysiologist and the strength of couplings between electrode pairs were calculated in both directions. Ictally, a strong decrease in coupling strength was found between Hp and FC, as well as a large increase bidirectionally between PC and FC and unidirectionally from FC and PC to OC, and from FC to Hp over all epochs. The highest dose of WIN increased the couplings strength from FC to Hp and from OC to PC during 4 and 2 hr respectively in all intervals, and decreased the FC to PC coupling strength postictally in epoch 2. A single rat showed generalized convulsive seizures after the highest dose: this rat shared not only coupling changes with the other rats in the same condition, but showed many more. WIN reduced SWD number in epoch 2 and 3, their mean duration increased in epochs 3 and 4. Conclusions:during SWDs FC and PC are strongly coupled and drive OC, while at the same time the influence of Hp to FC is diminished. The first is in agreement with the cortical focus theory, the latter demonstrates an involvement of the hippocampus in SWD occurrence and that ictally the hippocampal control of the cortico-thalamo-cortical system is lost. WIN causes dramatic network changes which have major consequences for the decrease of SWDs, the occurrence of convulsive seizures, and the normal cortico-cortical and cortico-hippocampal interactions.


Assuntos
Agonistas de Receptores de Canabinoides , Epilepsia Tipo Ausência , Ratos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Eletroencefalografia , Endocanabinoides , Modelos Animais de Doenças , Epilepsia Tipo Ausência/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Hipocampo
7.
BMC Pharmacol Toxicol ; 24(1): 8, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750905

RESUMO

WIN55, 212-2 mesylate is a synthetic cannabinoid (SC) agonist of CB1 and CB2 receptors with much higher affinity to CB1 receptor than tetrahydrocannabinol and many potential therapeutic effects. Few studies have evaluated SCs effects on more complex animal behavior and sex differences in cannabinoids toxicology. The current study was undertaken for determination of behavioral (Open Field test), biochemical (liver and kidney function test plus GABA & Glutamate levels), histopathological and CB1 immunohistochemistry risks of sub-chronic administration of SC WIN55, 212-2 mesylate in male and female mice. A total of 40 healthy adult mice were randomly divided into four groups (5 mice each): a negative control group, a vehicle group, a low dose (0.05 mg/kg) group and a high dose group (0.1 mg/kg) for each gender.Open Field Test revealed dose and gender-dependent anxiogenic effect with reduced locomotor activity in both sexes especially the higher doses with female mice being less compromised. GABA and glutamate levels increased significantly in both dose groups compared to controls alongside female mice versus males. No significant biochemical alterations were found in all groups with minimal histopathological changes. The CB1 receptors immunohistochemistry revealed a significant increase in the number of CB1 positive neurons in both low and high dose groups against controls with higher expression in female brains.ConclusionsThere were sexual dimorphism effects induced by sub-chronic exposure to WIN55, 212-2 with lesser female mice affection and dose-dependent influences.


Assuntos
Canabinoides , Animais , Feminino , Masculino , Camundongos , Benzoxazinas/farmacologia , Dronabinol/farmacologia , Ácido gama-Aminobutírico , Glutamatos , Neurônios , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
8.
J Neural Transm (Vienna) ; 130(8): 1013-1027, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36853560

RESUMO

In recent years, there has been growing evidence that cannabinoids have promising medicinal and pharmacological effects. However, the growing interest in medical cannabis highlights the need to better understand brain alterations linking phytocannabinoids or synthetic cannabinoids to clinical and behavioral phenotypes. Therefore, the aim of this study was to investigate the effects of long-term WIN 55,212-2 treatment-with and without prolonged abstinence-on cerebral metabolism and memory function in healthy wildtype mice. Adult C57BI/6J mice were divided into two treatment groups to study the acute effects of WIN 55,212-2 treatment as well the effects of WIN 55,212-2 treatment after an extended washout phase. We could demonstrate that 3 mg/kg WIN 55,212-2 treatment in early adulthood leads to a hypometabolism in several brain regions including the hippocampus, cerebellum, amygdala and midbrain, even after prolonged abstinence. Furthermore, prolonged acute WIN 55,212-2 treatment in 6-months-old mice reduced the glucose metabolism in the hippocampus and midbrain. In addition, Win 55,212-2 treatment during adulthood lead to spatial memory and recognition memory deficits without affecting anxiety behavior. Overall we could demonstrate that treatment with the synthetic CB1/CB2 receptor aganist Win 55,212-2 during adulthood causes persistent memory deficits, especially when mice were treated in early adulthood. Our findings highlight the risks of prolonged WIN 55,212-2 use and provide new insights into the mechanisms underlying the effects of chronic cannabinoid exposure on the brain and behavior.


Assuntos
Canabinoides , Camundongos , Animais , Canabinoides/farmacologia , Memória , Benzoxazinas/farmacologia , Encéfalo , Transtornos da Memória , Receptor CB1 de Canabinoide
9.
Br J Pharmacol ; 180(13): 1766-1789, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36710256

RESUMO

BACKGROUND AND PURPOSE: Cannabis legalization has risen in many countries, and its use during pregnancy has increased. The endocannabinoid system is present in the CNS at early stages of embryonic development, and regulates functional brain maturation including areas responsible for respiratory control, data on the influence of external cannabinoids on the development of the respiratory system and possible consequences during postnatal life are limited. EXPERIMENTAL APPROACH: We evaluated the effects of prenatal exposure to synthetic cannabinoid (WIN 55,212-2 [WIN], 0.5 mg·kg-1 ·day-1 ) on the respiratory control system in neonatal (P0, P6-7 and P12-13) and juvenile (P27-28) male and female rats. KEY RESULTS: WIN administration to pregnant rats interfered sex-specifically with breathing regulation of offspring, promoting a greater sensitivity to CO2 at all ages in males (except P6-7) and in juvenile females. An altered hypoxic chemoreflex was observed in P0 (hyperventilation) and P6-7 (hypoventilation) males, which was absent in females. Along with breathing alterations, brainstem analysis showed an increase in the number of catecholaminergic neurons and cannabinoid receptor type 1 (CB1 ) and changes in tissue respiration in the early males. A reduction in pulmonary compliance was observed in juvenile male rats. Preexposure to WIN enhanced spontaneous apnoea and reduced the number of serotoninergic (5-HT) neurons in the raphe magnus nucleus of P0 females. CONCLUSIONS AND IMPLICATIONS: These data demonstrate that excess stimulation of the endocannabinoid system during gestation has prolonged and sex-specific consequences for the respiratory control system.


Assuntos
Canabinoides , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Ratos , Animais , Masculino , Feminino , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides , Benzoxazinas/farmacologia , Fatores Etários , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
10.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893735

RESUMO

Pharmacological synergism is a current strategy for the treatment of pain. However, few studies have been explored to provide evidence of the possible synergism between a non-steroidal anti-inflammatory drug (NSAID) and a cannabinoid agonist, in order to establish which combinations might be effective to manage pain. The aim of this study was to explore the synergism between ibuprofen (IBU) and the synthetic cannabinoid WIN 55,212-2 (WIN) to improve pain relief by analyzing the degree of participation of the CB1 and CB2 cannabinoid receptors in the possible antinociceptive synergism using an experimental model of pain in Wistar rats. First, the effective dose thirty (ED30) of IBU (10, 40, 80, and 160 mg/kg, subcutaneous) and WIN (3, 10, and 30 µg/p, intraplantar) were evaluated in the formalin test. Then, the constant ratio method was used to calculate the doses of IBU and WIN to be administered in combination (COMB) to determine the possible synergism using the isobolographic method. The participation of the CB1 and CB2 receptors was explored in the presence of the antagonists AM281 and AM630, respectively. The combination of these drugs produced a supra-additive response with an interaction index of 0.13. In addition, AM281 and AM630 antagonists reversed the synergistic effect in 45% and 76%, respectively, suggesting that both cannabinoid receptors are involved in this synergism, with peripheral receptors playing a relevant role. In conclusion, the combination of IBU + WIN synergism is mainly mediated by the participation of the CB2 receptor, which can be a good option for the better management of pain relief.

11.
Animals (Basel) ; 12(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35405842

RESUMO

The minimum alveolar concentration MAC of isoflurane was measured in rats chronically treated with WIN 55,212-2. METHODS: The MAC of isoflurane was determined in 24 male rats from expiratory samples at time of tail clamping under the following conditions: without treatment MAC(ISO), in rats treated for 21 days with WIN 55,212-2 MAC(ISO + WIN55), and in rats 8 days after stopping treatment with WIN 55,212-2 (MACISO + WIN55 + 8D). RESULTS: The MAC(ISO) was 1.32 ± 0.06. In the MAC(ISO + WIN55) group, the MAC increased to 1.69 ± 0.09 (28%, p-value ≤ (0.0001). Eight days after stopping treatment with WIN55, the MAC did not decrease significantly, 1.67 ± 0.07 (26%, p-value ≤ 0.0001). CONCLUSIONS: The administration of WIN 55,212-2 for 21 days increases the MAC of isoflurane in rats. This effect does not disappear 8 days after discontinuation of treatment with the synthetic cannabinoid.

12.
Neurosci Lett ; 779: 136634, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35429587

RESUMO

Methamphetamine (METH) has been reported to induce social and recognition memory impairment. Evidence suggests that the cannabinoid system has an important modulatory role in cognitive processing and social interaction. Nonetheless, no previous study has investigated the probable role of the cannabinoids system on METH-induced deficits of novel object recognition (NOR) memory and social interaction. Adult male rats were given a neurotoxic METH regimen (four injections of 6 mg/kg, s.c, at 2 h intervals). One week later, they were examined for either NOR or social interaction in different groups. The cannabinoid type 1 receptor (CB1R) antagonist rimonabant (1 or 3 mg/kg, i.p.) improved METH-induced impairment of the acquisition, consolidation, and retrieval, but not reconsolidation, of NOR and also METH-induced impairment of social behavior. Administration of the CB1R agonist WIN 55,212-2 (WIN; 3 or 5 mg/kg, i.p.) did not affect memory deficits or social behavior impairment induced by METH. Our findings may indicate that METH neurotoxicity impairs social and recognition memory. On the other hand, the CB1R antagonist rimonabant, but not the CB1R agonist WIN, prevented these negative effects of METH neurotoxicity. Thus, it seems that the CB1R can be targeted to prevent the adverse effects of METH on cognition and social behavior, at least at experimental levels.


Assuntos
Canabinoides , Metanfetamina , Síndromes Neurotóxicas , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Metanfetamina/toxicidade , Ratos , Receptor CB1 de Canabinoide , Rimonabanto
13.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328467

RESUMO

Cannabinoids exert anti-cancer actions; however, the underlying cytotoxic mechanisms and the cannabinoid receptors (CBRs) involved remain unclear. In this study, CBRs were characterized in several cancer cell lines. Radioligand binding screens surprisingly revealed specific binding only for the non-selective cannabinoid [3H]WIN-55,212-2, and not [3H]CP-55,940, indicating that the expressed CBRs exhibit atypical binding properties. Furthermore, [3H]WIN-55,212-2 bound to a single site in all cancer cells with high affinity and varying densities. CBR characteristics were next compared between human prostate cancer cell lines expressing low (PC-3) and high (DU-145) CBR density. Although mRNA for canonical CBRs was detected in both cell lines, only 5 out of 15 compounds with known high affinity for canonical CBRs displaced [3H]WIN-55,212-2 binding. Functional assays further established that CBRs in prostate cancer cells exhibit distinct signaling properties relative to canonical Gi/Go-coupled CBRs. Prostate cancer cells chronically exposed to both CBR agonists and antagonists/inverse agonists produced receptor downregulation, inconsistent with actions at canonical CBRs. Treatment of DU-145 cells with CBR ligands increased LDH-release, decreased ATP-dependent cell viability, and produced mitochondrial membrane potential depolarization. In summary, several cancer cell lines express CBRs with binding and signaling profiles dissimilar to canonical CBRs. Drugs selectively targeting these atypical CBRs might exhibit improved anti-cancer properties.


Assuntos
Canabinoides , Neoplasias da Próstata , Canabinoides/farmacologia , Morte Celular , Humanos , Masculino , Próstata/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais
14.
Psychopharmacology (Berl) ; 239(5): 1459-1473, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34741633

RESUMO

RATIONALE: In human beings and experimental animals, maladaptive impulsivity is manifested by the acute injection of psychostimulants, such as amphetamine. Cannabinoid CB1 receptors have been implicated in the regulation of stimulant-induced impulsive action, but the role of CB1 receptors in timing-related impulsive action by amphetamine remains unknown. METHODS: Male rats were used in evaluating the effects of CB1 receptor antagonist and agonist (SR141716A and WIN55,212-2, respectively) systemically administered individually and combined with d-amphetamine on a differential reinforcement of low-rate response (DRL) task, an operant behavioral test of timing and behavioral inhibition characterized as a type of timing impulsive action. RESULTS: A distinct pattern of DRL behavioral changes was produced by acute d-amphetamine (0, 0.5, 1.0, and 1.5 mg/kg) treatment in a dose-dependent fashion, whereas no significant dose effect was detected for acute SR141716A (0, 0.3, 1, and 3 mg/kg) or WIN55,212-2 (0, 0.5, 1, and 2 mg/kg) treatment. Furthermore, DRL behavior altered by 1.5 mg/kg d-amphetamine was reversed by a noneffective dose of SR141716A (3 mg/kg) pretreatment. The minimally influenced DRL behavior by 0.5 mg/kg d-amphetamine was affected by pretreatment with a noneffective dose of WIN55,212-2 (1 mg/kg). CONCLUSION: These findings reveal that the activation and blockade of CB1 receptors can differentially modulate the timing impulsive action of DRL behavior induced by acute amphetamine treatment. Characterizing how CB1 receptors modulate impulsive behavior will deepen our understanding of the cannabinoid psychopharmacology of impulsivity and may be helpful in developing an optimal pharmacotherapy for reducing maladaptive impulsivity in patients with some psychiatric disorders.


Assuntos
Canabinoides , Estimulantes do Sistema Nervoso Central , Anfetamina/farmacologia , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Dextroanfetamina/farmacologia , Humanos , Comportamento Impulsivo , Masculino , Ratos , Receptor CB1 de Canabinoide , Rimonabanto/farmacologia
15.
Psychopharmacology (Berl) ; 239(5): 1337-1347, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34291308

RESUMO

Drugs of abuse including cannabis and inhalants impair risk/reward decision making. Cannabis use is often concurrent with inhalant intoxication; yet, preclinical studies investigating the role of endocannabinoids in inhalant misuse are limited. To address this gap in the literature, we used the well-validated probabilistic discounting task to assess risk/reward decision making in rodents following combinations of toluene vapor (a common inhalant) and manipulations of cannabinoid receptor type 1 (CB1R) signaling. As reported previously, acute exposure to toluene vapor disrupted behavioral flexibility during probabilistic discounting. Systemic administration of the CB1R inverse agonist AM281 did not prevent toluene-induced alterations in risky choices, but did independently reduce win-stay behavior, increase choice latency, and increase omissions. Toluene-induced deficits in probabilistic discounting are thought to involve impaired medial prefrontal cortex (mPFC) activity. As we previously reported that some of toluene's inhibitory effects on glutamatergic signaling in the mPFC are endocannabinoid-dependent, we tested the hypothesis that mPFC CB1R activity mediates toluene-induced deficits in discounting. However, bilateral injection of the CB1R inverse agonist AM251 prior to toluene vapor exposure had no effect on toluene-induced changes in risk behavior. In a final set of experiments, we injected the CB1R inverse agonist AM251 (5 and 50 ng), the CB1R agonist WIN55,212-2 (50 ng and 500 ng), or vehicle into the mPFC prior to testing. While mPFC CB1R stimulation did not affect any of the measures tested, the CB1R inverse agonist caused a dose-dependent reduction in win-stay behavior without altering any other measures. Together, these studies indicate that toluene-induced deficits in probabilistic discounting are largely distinct from CB1R-dependent effects that include decreased effectiveness of positive reinforcement (mPFC CB1Rs), decision making speed, and task engagement (non-mPFC CB1Rs).


Assuntos
Antagonistas de Receptores de Canabinoides , Tolueno , Agonistas de Receptores de Canabinoides/farmacologia , Tomada de Decisões , Endocanabinoides , Receptor CB1 de Canabinoide , Receptores de Canabinoides , Recompensa
16.
PeerJ ; 9: e12262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707939

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that lead to damage to the heart tissue. Since one of the hallmarks of severe COVID-19 is the "cytokine storm", strategies to control inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids are known to have anti-inflammatory properties by negatively modulating the release of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other hand, WIN reduced the levels of interleukins six, eight, 18 and tumor necrosis factor-alpha (TNF-α) released by infected cells, and attenuated cytotoxic damage measured by the release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids should be further explored as a complementary therapeutic tool for reducing inflammation in COVID-19 patients.

17.
Life Sci ; 285: 119993, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592231

RESUMO

AIMS: Characterizing cannabinoid receptors (CBRs) expressed in Ewing sarcoma (EWS) cell lines as potential targets for anti-cancer drug development. MAIN METHODS: CBR affinity and function were examined by competitive binding and G-protein activation, respectively. Cannabinoid-mediated cytotoxicity and cell viability were evaluated by LDH, and trypan blue assays, respectively. KEY FINDINGS: qRT-PCR detected CB1 (CB1R) and CB2 receptor (CB2R) mRNA in TC-71 cells. However, binding screens revealed that CBRs expressed exhibit atypical properties relative to canonical receptors, because specific binding in TC-71 could only be demonstrated by the established non-selective CB1/CB2R radioligand [3H]WIN-55,212-2, but not CB1/CB2R radioligand [3H]CP-55,940. Homologous receptor binding demonstrated that [3H]WIN-55,212-2 binds to a single site with nanomolar affinity, expressed at high density. Further support for non-canonical CBRs expression is provided by subsequent binding screens, revealing that only 9 out of 28 well-characterized cannabinoids with high affinity for canonical CB1 and/or CB2Rs were able to displace [3H]WIN-55,212-2, whereas two ligands enhanced [3H]WIN-55,212-2 binding. Five cannabinoids producing the greatest [3H]WIN-55,212-2 displacement exhibited high nanomolar affinity (Ki) for expressed receptors. G-protein modulation and adenylyl cyclase assays further indicate that these CBRs exhibit distinct signaling/functional profiles compared to canonical CBRs. Importantly, cannabinoids with the highest affinity for non-canonical CBRs reduced TC-71 viability and induced cytotoxicity in a time-dependent manner. Studies in a second EWS cell line (A-673) showed similar atypical binding properties of expressed CBRs, and cannabinoid treatment produced cytotoxicity. SIGNIFICANCE: Cannabinoids induce cytotoxicity in EWS cell lines via non-canonical CBRs, which might be a potential therapeutic target to treat EWS.


Assuntos
Antineoplásicos/farmacologia , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Sarcoma de Ewing/metabolismo , Ligação Competitiva , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Desenvolvimento de Medicamentos , Humanos , Ligantes , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas
18.
Biomedicines ; 9(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34572456

RESUMO

Neurotransmission and cognitive dysfunctions have been linked to old age disorders including Alzheimer's disease (AD). Aluminium is a known neurotoxic metal, whereas d-galactose (d-gal) has been established as a senescence agent. WIN55,212-2 (WIN), is a potent cannabinoid agonist which partially restores neurogenesis in aged rats. The current study aimed to explore the therapeutic potentials of WIN on Aluminium chloride (AlCl3) and d-gal-induced rat models with cognitive dysfunction. Healthy male albino Wistar rats weighing between 200-250 g were injected with d-gal 60 mg/kg intra peritoneally (i.p), while AlCl3 (200 mg/kg) was orally administered once daily for 10 consecutive weeks. Subsequently, from weeks 8-11 rats were co-administered with WIN (0.5, 1 and 2 mg/kg/day) and donepezil 1 mg/kg. The cognitive functions of the rats were assessed with a Morris water maze (MWM). Furthermore, oxidative stress biomarkers; malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and neurogenesis markers: Nestin and glial fibrillary acidic protein (GFAP) were also evaluated, as well as the histology of the hippocampus. The results revealed that rats exposed to AlCl3 and d-gal alone showed cognitive impairments and marked neuronal loss (p < 0.05) in their hippocampal conus ammonis 1 (CA1). Additionally, a significant decrease in the expressions of GFAP and Nestin was also observed, including increased levels of MDA and decreased levels of SOD and GSH. However, administration of WIN irrespective of the doses given reversed the cognitive impairments and the associated biochemical derangements. As there were increases in the levels SOD, GSH, Nestin and GFAP (p < 0.05), while a significant decrease in the levels of MDA was observed, besides attenuation of the aberrant cytoarchitecture of the rat's hippocampi. The biochemical profiles of the WIN-treated rats were normal. Thus, these findings offer possible scientific evidence of WIN being an effective candidate in the treatment of AD-related cognitive deficits.

19.
Eur J Pharmacol ; 909: 174433, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416240

RESUMO

Cannabidiol is increasingly considered for treatment of a wide range of medical conditions. Binding studies suggest that cannabidiol binds to CB1 receptors. In the rat isolated vas deferens bioassay, a single electrical pulse causes a biphasic contraction from nerve-released ATP and noradrenaline. WIN 55,212-2 acts on prejunctional CB1 receptors to inhibit release of these transmitters. In this bioassay, we tested whether cannabidiol and SR141716 were acting as competitive antagonists of this receptor. Monophasic contractions mediated by ATP or noradrenaline in the presence of prazosin or NF449 (P2X1 inhibitor), respectively, were measured to a single electrical pulse delivered every 30 min. Following treatment with cannabidiol (10-100 µM) or SR141716 (0.003-10 µM), cumulative concentrations of WIN 55,212-2 (0.001-30 µM) were applied followed by a single electrical pulse. The WIN 55,212-2 concentration-contraction curve EC50 values were applied to global regression analysis to determine the pKB. The antagonist potency of cannabidiol at the CB1 receptor in the rat vas deferens bioassay matched the reported receptor binding affinity. Cannabidiol was a competitive antagonist of WIN 55,212-2 with pKB values of 5.90 when ATP was the effector transmitter and 5.29 when it was noradrenaline. Similarly, SR141716 was a competitive antagonist with pKB values of 8.39 for ATP and 7.67 for noradrenaline as the active transmitter. Cannabidiol's low micromolar CB1 antagonist pKB values suggest that at clinical blood levels (1-3 µM) it may act as a CB1 antagonist at prejunctional neuronal sites with more potency when ATP is the effector than for noradrenaline.


Assuntos
Canabidiol/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Contração Muscular/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Ducto Deferente/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Bioensaio , Masculino , Norepinefrina/metabolismo , Ratos , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto/farmacologia , Ducto Deferente/metabolismo
20.
Pharmacol Res ; 172: 105847, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34438062

RESUMO

The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.


Assuntos
Aciltransferases/fisiologia , Comportamento Alimentar , Grelina/fisiologia , Animais , Bulimia , Ingestão de Alimentos , Humanos , Motivação , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA