Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922182

RESUMO

Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-ß controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.

2.
SLAS Discov ; 22(5): 484-493, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346106

RESUMO

Despite key advances in cancer therapies, malignant tumors, such as melanoma, continue to be one of the leading causes of mortality. Recent debate on whether cancer can originate from a tumor-initiating subpopulation has permeated oncology and stem cell research. It has been well established that primary and immortalized tumor cells consist of heterogeneous cell populations. The profound effect of tumor heterogeneity on tumor growth and drug resistance remains elusive, but it is highly likely that subpopulations of cancer cells have different capabilities of self-renewal and drug resistance. Discrepancies between excellent in vitro potency and efficacy and poor patient response have been observed on multiple cancer therapeutics. Although this observation can be attributed to many factors, a better understanding of the contribution from subpopulations within a cancer will help bridge the gap between in vitro assay results and patient prognosis. To comprehend this impact, it is critical to isolate and characterize cancer subpopulations that possess higher growth and drug resistance properties so that novel therapeutics can be developed to eventually eradicate all cancer cells. In this article, we describe a method to enrich a subpopulation, CB4, from the melanoma cell line WM115. CB4 exhibited higher anchorage-independent growth, higher survival under serum starvation condition, and lower drug sensitivity to commonly used melanoma treatment compared with WM115. Details of functional properties and gene expression of CB4 compared with WM115 are reported. Our study demonstrates that it is feasible to isolate and enrich a subpopulation that exhibits higher growth capacity and treatment resistance from an immortalized tumor cell line.


Assuntos
Linhagem Celular Tumoral/citologia , Melanoma/patologia , Células-Tronco Neoplásicas/citologia , Proliferação de Células/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA