Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.707
Filtrar
1.
Cureus ; 16(8): e66164, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39233947

RESUMO

There are no effective treatment options for patients with poor performance status and limited liver reserve, classified as Child-Pugh Grade B and C. A 61-year-old man with a prior medical history of hepatitis C virus infection was admitted to the hospital with abdominal distension and significant abdominal ascites. He was diagnosed with stage IVB hepatocellular carcinoma (HCC), characterized by multiple metastases to lymph nodes, lungs, and bones. After receiving combined immune therapy, including dendritic cell therapy targeting WT1 and α-Galactosylceramide, natural killer cells, and Nivolumab, the patient showed significant improvement in HCC and liver reserve function and followed standard treatment. Combined immune therapy is potentially an important option for patients with advanced hepatocellular carcinoma and poor liver reserve function, especially for relatively young patients.

2.
Obstet Gynecol Sci ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231489

RESUMO

Immunohistochemistry (IHC) has become an indispensable tool in routine gynecological pathology, particularly with the advancements in molecular understanding and histological classification of gynecological cancers. This evolution has led to new immunostainings for diagnostic and classification purposes. This review describes the diagnostic utility of IHC in gynecological neoplasms, drawing insights from literature reviews, personal experiences, and research findings. It delves into the application of IHC in resolving morphologically equivocal cases, emphasizing its role in achieving an accurate diagnosis. The selection of appropriate immunomarkers for common scenarios encountered in gynecological pathology aids pathologists in navigating complex cases. Specifically, we focus on cervical and endometrial malignancies, elucidating the molecular rationale behind the use of specific immunohistochemical markers. An updated overview of essential immunohistochemical markers provides knowledge for precise diagnosis and classification of gynecological cancers. This review serves as a valuable resource for clinicians and researchers involved in the management and study of gynecological malignancies, facilitating improved patient care and outcomes.

3.
J Magn Reson Imaging ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239775

RESUMO

BACKGROUND: Multiple sclerosis (MS) paramagnetic rim lesions (PRLs) are markers of chronic active biology and exhibit complex iron and myelin changes that may complicate quantification when using conventional MRI approaches. PURPOSE: To conduct a multiparametric MRI analysis of PRLs. STUDY TYPE: Retrospective/longitudinal. SUBJECTS: Ninety-five progressive MS subjects with at least one persistent PRL who were enrolled in the CONSONANCE trial. FIELD STRENGTH/SEQUENCE: 3-T/Susceptibility-weighted, T1-weighted, T2-weighted, and fluid-attenuated inversion recovery. ASSESSMENT: Acute/chronic PRLs and non-PRLs were measured at screening, 24, 48, and 96 weeks using quantitative magnetic susceptibility (QS), R2*, and standardized T1w/T2w ratio (sT1w/T2w). PRL analyses were performed for whole lesion, core, and rim. The correlations between PRL core and rim sT1w/T2w, QS, and R2* were assessed. STATISTICAL TESTS: Linear mixed models. A P-value <0.05 was considered significant. RESULTS: There was a significant decrease in sT1w/T2w (-0.24 ± -5.3 × 10-3) and R2* (-3.6 ± 2.2 Hz) but a significant increase in QS (+21 ± 1.3 ppb) using whole-lesion analysis of chronic PRLs compared to non-PRLs at screening. Tissue damage accumulated at the 96-week time point was more evident in acute/chronic PRLs compared to acute/chronic non-PRLs (ΔsT1w/T2w = -0.21/-0.24 ± 0.033/0.0053; ΔR2* = -4.4/-3.6 ± 1.4/2.2 Hz). New, acute PRL sT1w/T2w significantly increased in lesion core (+4.3 × 10-3 ± 1.2 × 10-4) and rim (+5.6 × 10-3 ± 1.2 × 10-4) 24 weeks post lesion inception, suggestive of partial recovery. Chronic PRLs, contrastingly, showed significant decreases in sT1w/T2w over the initial 24 weeks for both core (-2.1 × 10-4 ± 2.0 × 10-5) and rim (-2.4 × 10-4 ± 2.0 × 10-5), indicative of irreversible tissue damage. Significant positive correlations between PRL core and rim sT1w/T2w (R2 = 0.53), R2* (R2 = 0.69) and QS (R2 = 0.52) were observed. DATA CONCLUSION: Multiparametric assessment of PRLs has the potential to be a valuable tool for assessing complex iron and myelin changes in chronic active PRLs of progressive MS patients. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.

4.
Exp Cell Res ; 442(2): 114238, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251057

RESUMO

Diabetic nephropathy (DN), an eminent etiology of renal disease in patients with diabetes, involves intricate molecular mechanisms. Recent investigations have elucidated microRNA-193a (miR-193a) as a pivotal modulator in DN, although its precise function in podocyte impairment remains obscure. The present study investigated the role of miR-193a in podocyte injury via the WT1/EZH2/ß-catenin/NLRP3 pathway. This study employed a comprehensive experimental approach involving both in vitro and in vivo analyses. We utilized human podocyte cell lines and renal biopsy samples from pediatric patients with DN. The miR-193a expression levels in podocytes and glomeruli were quantified via qRT‒PCR. Western blotting and immunofluorescence were used to assess the expression of WT1, EZH2, ß-catenin, and NLRP3 inflammasome components. Additionally, the study used luciferase reporter assays to confirm the interaction between miR-193a and WT1. The impact of miR-193a manipulation was observed by overexpressing WT1 and inhibiting miR-193a in podocytes, followed by analysis of downstream pathway activation and inflammatory markers. We found upregulated miR-193a in podocytes and glomeruli, which directly targeted and suppressed WT1, a crucial podocyte transcription factor. WT1 suppression, in turn, activated the EZH2/ß-catenin/NLRP3 pathway, leading to inflammasome assembly and proinflammatory cytokine production. Overexpression of WT1 or inhibition of miR-193a attenuated these effects, protecting podocytes from injury. This study identified a novel mechanism by which miR-193a-mediated WT1 suppression triggers podocyte injury in DN via the EZH2/ß-catenin/NLRP3 pathway. Targeting this pathway or inhibiting miR-193a may be potential therapeutic strategies for DN.

5.
Sci Rep ; 14(1): 18997, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152206

RESUMO

Researchers are increasingly focusing on renewable energy due to its high reliability, energy independence, efficiency, and environmental benefits. This paper introduces a novel multi-objective framework for the short-term scheduling of microgrids (MGs), which addresses the conflicting objectives of minimizing operating expenses and reducing pollution emissions. The core contribution is the development of the Chaotic Self-Adaptive Sine Cosine Algorithm (CSASCA). This algorithm generates Pareto optimal solutions simultaneously, effectively balancing cost reduction and emission mitigation. The problem is formulated as a complex multi-objective optimization task with goals of cost reduction and environmental protection. To enhance decision-making within the algorithm, fuzzy logic is incorporated. The performance of CSASCA is evaluated across three scenarios: (1) PV and wind units operating at full power, (2) all units operating within specified limits with unrestricted utility power exchange, and (3) microgrid operation using only non-zero-emission energy sources. This third scenario highlights the algorithm's efficacy in a challenging context not covered in prior research. Simulation results from these scenarios are compared with traditional Sine Cosine Algorithm (SCA) and other recent optimization methods using three test examples. The innovation of CSASCA lies in its chaotic self-adaptive mechanisms, which significantly enhance optimization performance. The integration of these mechanisms results in superior solutions for operation cost, emissions, and execution time. Specifically, CSASCA achieves optimal values of 590.45 €ct for cost and 337.28 kg for emissions in the first scenario, 98.203 €ct for cost and 406.204 kg for emissions in the second scenario, and 95.38 €ct for cost and 982.173 kg for emissions in the third scenario. Overall, CSASCA outperforms traditional SCA by offering enhanced exploration, improved convergence, effective constraint handling, and reduced parameter sensitivity, making it a powerful tool for solving multi-objective optimization problems like microgrid scheduling.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39207267

RESUMO

Background: Adult acute leukemia most commonly manifests as acute myeloid leukemia (AML), a highly heterogeneous malignant tumor of the blood system. The application of genetic diagnostic technology is currently prevalent in numerous clinical sectors. According to recent research, the presence of specific gene mutations or rearrangements in leukemia cells is the primary cause of the disease. As different types of leukemia are caused by atypical mutated genes, testing for these mutations or rearrangements can help diagnose leukemia and identify the disease's molecular targets for treatment. Methods: Using the search fields "WT1," "DNMT3A," "Acute myeloid leukemia," and "survival," the CBM, Cochrane Library, Scopus, EMBASE, and PUBMED databases were separately reviewed. The methodology for evaluating the risk of bias developed by the Cochrane Collaboration was used in conjunction with a methodical evaluation of pertinent literature. Excluded studies with the following characteristics: (1) incomplete and repetitive publications, (2) unable to retrieve or convert data, (3) non-English or Chinese articles. Results: This analysis included 13 studies covering a total of 3478 subjects. The frequency of Wilms' Tumor 1 (WT1) mutations is 6.7%-35.73%, and the frequency of DNMT3A mutations is 12.06%-51.1%. The remission rate of patients with WT1 mutations was less than that of patients without WT1 mutations (OR = 0.22; 95% confidence interval [CI]: 0.14, 0.36; p < 0.00001; I2 = 55%). The DNMT3A mutation has no statistical significance for the prognosis of AML (OR = 1.21; 95% CI: 0.93, 1.58; p = 0.16; I2 = 80%). After removing one study, the heterogeneity of the indicator (mitigation rate) among other studies of DNMT3A mutation was dramatically reduced (OR = 0.63; 95% CI: 0.43, 0.93; p = 0.02; I2 = 0%). Conclusions: Our meta-analysis shows that WT1 mutations hurt the remission rate of AML. Moreover, the impact of DNMT3A mutations on AML needs to be treated with caution. Gene diagnosis is critical for the prognosis and clinical management of AML.

7.
Biomedicines ; 12(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200362

RESUMO

Idiopathic normal-pressure hydrocephalus (iNPH) is a clinic-radiological neurological syndrome presenting with cognitive deficits, gait disturbances and urinary incontinence. It often coexists with Alzheimer's disease (AD). Due to the reversible nature of iNPH when promptly treated, a lot of studies have focused on possible biomarkers, among which are cerebrospinal fluid (CSF) biomarkers. The aim of the present study was to determine the rate of beta-amyloid pathology and AD co-pathology by measuring AD CSF biomarkers, namely, amyloid beta with 42 and 40 amino acids (Aß42), the Aß42/Aß40 ratio, total Tau protein (t-Tau) and phosphorylated Tau protein at threonine 181 (p-Tau), in a cohort of iNPH patients, as well as to investigate the possible associations among CSF biomarkers and iNPH neuropsychological profiles. Fifty-three patients with iNPH were included in the present study. CSF Aß42, Aß40, t-Tau and p-Tau were measured in duplicate with double-sandwich ELISA assays. The neuropsychological evaluation consisted of the Mini-Mental State Examination, Frontal Assessment Battery, Five-Word Test and CLOX drawing tests 1 and 2. After statistical analysis, we found that amyloid pathology and AD co-pathology are rather common in iNPH patients and that higher values of t-Tau and p-Tau CSF levels, as well as the existence of the AD CSF profile, are associated with more severe memory impairment in the study patients. In conclusion, our study has confirmed that amyloid pathology and AD-co-pathology are rather common in iNPH patients and that CSF markers of AD pathology and t-Tau are associated with a worse memory decline in these patients.

8.
Br J Haematol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191510

RESUMO

Wilms' tumour 1 (WT1) can function as an oncogene or a tumour suppressor. Our previous clinical cohort studies showed that low WT1 expression at diagnosis independently predicted poor outcomes in acute myeloid leukaemia (AML) with RUNX1::RUNX1T1, whereas it had an opposite role in AML with non-favourable cytogenetic risk (RUNX1::RUNX1T1-deficient). The molecular mechanism by which RUNX1::RUNX1T1 affects the prognostic significance of WT1 in AML remains unknown. In the present study, first we validated the prognostic significance of WT1 expression in AML. Then by using the established transfected cell lines and xenograft tumour model, we found that WT1 suppresses proliferation and enhances effect of cytarabine in RUNX1::RUNX1T1(+) AML but has opposite functions in AML cells without RUNX1::RUNX1T1. Furthermore, as a transcription factor, WT1 physically interacts with RUNX1::RUNX1T1 and acts as a co-factor together with RUNX1::RUNX1T1 to activate the expression of its target gene DUSP6 to dampen extracellular signal-regulated kinase (ERK) activity. When RUNX1::RUNX1T1-deficient, WT1 can activate the mitogen-activated extracellular signal-regulated kinase/ERK axis but not through targeting DUSP6. These results provide a mechanism by which WT1 together with RUNX1::RUNX1T1 suppresses cell proliferation through WT1/DUSP6/ERK axis in AML. The current study provides an explanation for the controversial prognostic significance of WT1 expression in AML patients.

9.
J Pathol ; 264(2): 212-227, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39177649

RESUMO

WT1 encodes a podocyte transcription factor whose variants can cause an untreatable glomerular disease in early childhood. Although WT1 regulates many podocyte genes, it is poorly understood which of them are initiators in disease and how they subsequently influence other cell-types in the glomerulus. We hypothesised that this could be resolved using single-cell RNA sequencing (scRNA-seq) and ligand-receptor analysis to profile glomerular cell-cell communication during the early stages of disease in mice harbouring an orthologous human mutation in WT1 (Wt1R394W/+). Podocytes were the most dysregulated cell-type in the early stages of Wt1R394W/+ disease, with disrupted angiogenic signalling between podocytes and the endothelium, including the significant downregulation of transcripts for the vascular factors Vegfa and Nrp1. These signalling changes preceded glomerular endothelial cell loss in advancing disease, a feature also observed in biopsy samples from human WT1 glomerulopathies. Addition of conditioned medium from murine Wt1R394W/+ primary podocytes to wild-type glomerular endothelial cells resulted in impaired endothelial looping and reduced vascular complexity. Despite the loss of key angiogenic molecules in Wt1R394W/+ podocytes, the pro-vascular molecule adrenomedullin was upregulated in Wt1R394W/+ podocytes and plasma and its further administration was able to rescue the impaired looping observed when glomerular endothelium was exposed to Wt1R394W/+ podocyte medium. In comparative analyses, adrenomedullin upregulation was part of a common injury signature across multiple murine and human glomerular disease datasets, whilst other gene changes were unique to WT1 disease. Collectively, our study describes a novel role for altered angiogenic signalling in the initiation of WT1 glomerulopathy. We also identify adrenomedullin as a proangiogenic factor, which despite being upregulated in early injury, offers an insufficient protective response due to the wider milieu of dampened vascular signalling that results in endothelial cell loss in later disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Glomérulos Renais , Podócitos , Transdução de Sinais , Análise de Célula Única , Transcriptoma , Proteínas WT1 , Animais , Podócitos/metabolismo , Podócitos/patologia , Proteínas WT1/metabolismo , Proteínas WT1/genética , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/irrigação sanguínea , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Modelos Animais de Doenças , Mutação , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Adrenomedulina/genética , Adrenomedulina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Comunicação Celular , Células Cultivadas
10.
Transplant Cell Ther ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39147137

RESUMO

Although various relapse prediction models based on pretransplant information have been reported, they cannot update the predictive probability considering post-transplant patient status. Therefore, these models are not appropriate for deciding on treatment adjustment and preemptive intervention during post-transplant follow-up. A dynamic prediction model can update the predictive probability by considering the information obtained during follow-up. This study aimed to develop and assess a dynamic relapse prediction model after allogeneic hematopoietic cell transplantation (allo-HCT) for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) using peripheral blood Wilms' tumor 1 messenger RNA (WT1mRNA). We retrospectively analyzed patients with AML or MDS who underwent allo-HCT at our institution. To develop dynamic models, we employed the landmarking supermodel approach, using age, refined disease risk index, conditioning intensity, and number of transplantations as pretransplant covariates and both pre- and post-transplant peripheral blood WT1mRNA levels as time-dependent covariates. Finally, we compared the predictive performances of the conventional and dynamic models by area under the time-dependent receiver operating characteristic curves. A total of 238 allo-HCT cases were included in this study. The dynamic model that considered all pretransplant WT1mRNA levels and their kinetics showed superior predictive performance compared to models that considered only pretransplant covariates or factored in both pretransplant covariates and post-transplant WT1mRNA levels without their kinetics; their time-dependent areas under the curve were 0.89, 0.73, and 0.87, respectively. The predictive probability of relapse increased gradually from approximately 90 days before relapse. Furthermore, we developed a web application to make our model user-friendly. This model facilitates real-time, highly accurate, and personalized relapse prediction at any time point after allo-HCT. This will aid decision-making during post-transplant follow-up by offering objective relapse forecasts for physicians.

11.
Cancer Med ; 13(13): e7394, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38970307

RESUMO

BACKGROUND: Germline mutations have been identified in a small number of hereditary cancers, but the genetic predisposition for many familial cancers remains to be elucidated. METHODS: This study identified a Chinese pedigree that presented different cancers (breast cancer, BRCA; adenocarcinoma of the esophagogastric junction, AEG; and B-cell acute lymphoblastic leukemia, B-ALL) in each of the three generations. Whole-genome sequencing and whole-exome sequencing were performed on peripheral blood or bone marrow and cancer biopsy samples. Whole-genome bisulfite sequencing was conducted on the monozygotic twin brothers, one of whom developed B-ALL. RESULTS: According to the ACMG guidelines, bioinformatic analysis of the genome sequencing revealed 20 germline mutations, particularly mutations in the DNAH11 (c.9463G > A) and CFH (c.2314G > A) genes that were documented in the COSMIC database and validated by Sanger sequencing. Forty-one common somatic mutated genes were identified in the cancer samples, displaying the same type of single nucleotide substitution Signature 5. Meanwhile, hypomethylation of PLEK2, MRAS, and RXRA as well as hypermethylation of CpG island associated with WT1 was shown in the twin with B-ALL. CONCLUSIONS: These findings reveal genomic alterations in a pedigree with multiple cancers. Mutations found in the DNAH11, CFH genes, and other genes predispose to malignancies in this family. Dysregulated methylation of WT1, PLEK2, MRAS, and RXRA in the twin with B-ALL increases cancer susceptibility. The similarity of the somatic genetic changes among the three cancers indicates a hereditary impact on the pedigree. These familial cancers with germline and somatic mutations, as well as epigenomic alterations, represent a common molecular basis for many multiple cancer pedigrees.


Assuntos
Metilação de DNA , Sequenciamento do Exoma , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Linhagem , Humanos , Masculino , Feminino , Sequenciamento Completo do Genoma , Pessoa de Meia-Idade , Genômica/métodos , Adulto , Epigênese Genética , Ilhas de CpG , Epigenômica/métodos , Dineínas do Axonema/genética
12.
Updates Surg ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014055

RESUMO

The intraoperative risk stratification during pancreatoduodenectomy is gaining increasing significance. The main pancreatic duct wall is of particular importance as it represents the element of anchor of the anastomotic stiches. This study aims to describe the safety, feasibility, and reproducibility of a novel intraductal ultrasonography of the main pancreatic (MPD)-Wirsung duct (IWU) during pancreatoduodenectomy (PD).A prospective series of 58 patients underwent PD with anastomosis between the MPD and the jejunum. Just before the reconstructive phase, the remaining pancreatic stump underwent complete IWU with definition of Wirsung thickness (WT) at the anastomotic site, using a radial ultrasound probe of 1.7 mm in diameter.No IWU-related complications were reported. The median WT of the MPD was 1.1 mm (SD 0.2). The rates of postoperative pancreatic fistula (POPF), major morbidity, and mortality were 17, 5, and 0%, respectively.The use of IWU during PD demonstrated safety and feasibility. IWU represents a new tool aimed at determining structural characteristics of the MPD that could impact on the surgical strategy of the pancreatic anastomosis. Further validation and comparative analysis with the current standard of care are warranted within a prospective controlled framework.

13.
Sci Total Environ ; 949: 174882, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047825

RESUMO

Thermal dynamics play a pivotal role in offshore ecosystems, influencing a multitude of ecological and biogeochemical processes. Assessing how water temperature (WT) responds to climate change is vital for the sustainable development of marine ecosystems. Despite the scarcity of long-term sea surface temperature (SST) data, this study reconstructs SSTs from 1973 to 2020 in China's coastal zones using the data-driven Air2water model. A probabilistic approach was applied to investigate the joint dependency structures between air temperature (AT) and WT at offshore oceanic stations in China, focusing on variations during periods of decelerated and accelerated warming. The results indicate that the Air2water model performs well in reconstructing SSTs of the coastal zone of China. Furthermore, the joint probability of AT-WT events, characterized by bimodal distributions, tends to increase during accelerated warming. This suggests intensified extreme SST events in the coastal zone of China due to global warming, with the significant warming primarily related with regional oscillations, atmospheric dynamics, and the complex temperature trends in the regional marine environment. These findings highlight the escalating impact of global warming on marine ecosystems in China's coastal regions, underscoring the urgency of developing adaptive strategies to mitigate these effects.

14.
Methods Mol Biol ; 2821: 217-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997492

RESUMO

Antibodies serve as crucial indicators of the immune system in clinical tests. In therapeutic cancer vaccines, IgG antibodies against target antigens are vital for immune monitoring. Additionally, assessing baseline antigen-specific immune responses before cancer vaccine administration is possible by measuring IgM and IgG antibodies against the target antigen. To this end, we have developed an enzyme-linked immunosorbent assay (ELISA) system that detects and quantifies serum levels of IgG and IgM antibodies against the WT1 cytotoxic T-lymphocyte epitope peptide. The assay immobilizes the epitope peptide in a microplate to capture antigen-specific antibodies. Here, this article presents the details of our ELISA system to detect and measure antibodies against a tumor-associated antigen-derived cytotoxic T-lymphocyte epitope with high reproducibility. Detecting these antibodies has novel significance in the context of emerging critical roles of B lineage-cells in tumor immunity.


Assuntos
Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T , Imunoglobulina G , Linfócitos T Citotóxicos , Humanos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos de Linfócito T/imunologia , Linfócitos T Citotóxicos/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/imunologia , Imunoglobulina M/sangue , Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Proteínas WT1/imunologia
15.
Clin Exp Nephrol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002031

RESUMO

The Wilms tumor 1 (WT1) gene was first identified in 1990 as a strong candidate for conferring a predisposition to Wilms tumor. The WT1 protein has four zinc finger structures (DNA binding domain) at the C-terminus, which bind to transcriptional regulatory sequences on DNA, and acts as a transcription factor. WT1 is expressed during kidney development and regulates differentiation, and is also expressed in glomerular epithelial cells after birth to maintain the structure of podocytes. WT1-related disorders are a group of conditions associated with an aberrant or absent copy of the WT1 gene. This group of conditions encompasses a wide phenotypic spectrum that includes Denys-Drash syndrome (DDS), Frasier syndrome (FS), Wilms-aniridia-genitourinary-mental retardation syndrome, and isolated manifestations of nephropathy or Wilms tumor. The genotype-phenotype correlation is becoming clearer: patients with missense variants in DNA binding sites including C2H2 sites manifest DDS and develop early-onset and rapidly developing end-stage kidney disease. A deeper understanding of the genotype-phenotype correlation has also been obtained in DDS, but no such correlation has been observed in FS. The incidence of Wilms tumor is higher in patients with DDS and exon-truncating variants than in those with non-truncating variants. Here, we briefly describe the genetic background of this highly complicated WT1-related disorders.

16.
Ann Hematol ; 103(8): 2827-2836, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969929

RESUMO

Wilms tumor 1 (WT1) gene mutations are infrequent in myelodysplastic syndrome (MDS), but MDS with WT1 mutations (WT1mut) is considered high risk for acute myeloid leukemia (AML) transformation. The influence of WT1 mutations in patients with MDS after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is unclear. We performed a retrospective analysis of 136 MDS with excess blasts 2 (MDS-EB2) patients with available WT1 status who underwent their first allo-HSCT between 2017 and 2022 in our center. There were 20 (20/136, 15%) cases in the WT1mut group and 116 (116/136, 85%) cases in the WT1 wild-type (WT1wt) group. WT1mut patients had a higher 2-year cumulative incidence of relapse (CIR) than WT1wt cases (26.2% vs. 9.4%, p = 0.037) after allo-HSCT. Multivariate analysis of relapse showed that WT1 mutations (HR, 6.0; p = 0.002), TP53 mutations (HR, 4.2; p = 0.021), and ≥ 5% blasts in bone marrow (BM) at transplantation (HR, 6.6; p = 0.004) were independent risk factors for relapse. Patients were stratified into three groups according to the risk factors. Two-year CIR differed significantly in high-, intermediate-, and low-risk groups (31.8%, 11.6%, and 0%, respectively). Hence, WT1 mutations may be related to post-transplant relapse in patients with MDS-EB2, which warrants further study.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mutação , Síndromes Mielodisplásicas , Proteínas WT1 , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Aloenxertos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/etiologia , Recidiva , Estudos Retrospectivos , Proteínas WT1/genética
17.
Case Rep Oncol ; 17(1): 681-685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015640

RESUMO

Introduction: Capicua transcriptional repressor (CIC)-DUX4 rearranged sarcoma is a subtype of CIC-rearranged sarcomas composed of undifferentiated Wilms' tumor 1 (WT1)+, CD99+ round cells with recurrent CIC gene rearrangement. The diagnosis of CIC-rearranged sarcoma remains challenging, and the prognosis of CIC-rearranged sarcomas is poor. Case Presentation: In this report, we described a case of CIC-DUX4 rearranged sarcoma presenting in the skin, expressing WT1 and CD99 in a dot-like pattern. In addition, the assessment of genomic alterations using genome panel testing was useful to confirm the accurate diagnosis. Conclusion: Our present case suggests that widespread use of genomic panel testing in the future may lead to early treatment and improve the prognosis of CIC-rearranged sarcomas.

18.
BMC Pediatr ; 24(1): 483, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068406

RESUMO

During the treatment of 89 pediatric patients with Acute Myeloid Leukemia (AML) at the Hematology Department of Kunming Medical University's Children's Hospital from 2020 to 2023, three patients were identified to co-express the NUP98-NSD1, FLT3-ITD, and WT1 gene mutations. The bone marrow of these three patients was screened for high-risk genetic mutations using NGS and qPCR at the time of diagnosis. The treatment was administered following the China Children's Leukemia Group (CCLG)-AML-2019 protocol. All three patients exhibited a fusion of the NUP98 exon 12 with the NSD1 exon 6 and co-expressed the FLT3-ITD and WT1 mutations; two of the patients displayed normal karyotypes, while one presented chromosomal abnormalities. During the induction phase of the CCLG-AML-2019 treatment protocol, the DAH (Daunorubicin, Cytarabine, and Homoharringtonine) and IAH (Idarubicin, Cytarabine, and Homoharringtonine) regimens, in conjunction with targeted drug therapy, did not achieve remission. Subsequently, the patients were shifted to the relapsed/refractory chemotherapy regimen C + HAG (Cladribine, Homoharringtonine, Cytarabine, and G-CSF) for two cycles, which also failed to induce remission. One patient underwent Haploidentical Hematopoietic Stem Cell Transplantation (Haplo-HSCT) and achieved complete molecular remission during a 12-month follow-up period. Regrettably, the other two patients, who did not receive transplantation, passed away. The therapeutic conclusion is that pediatric AML patients with the aforementioned co-expression do not respond to chemotherapy. Non-remission transplantation, supplemented with tailor-made pre- and post-transplant strategies, may enhance treatment outcomes.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Proteínas WT1 , Tirosina Quinase 3 Semelhante a fms , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Tirosina Quinase 3 Semelhante a fms/genética , Masculino , Feminino , Criança , Proteínas de Fusão Oncogênica/genética , Proteínas WT1/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pré-Escolar , Citarabina/uso terapêutico , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Transplante de Células-Tronco Hematopoéticas , Mepesuccinato de Omacetaxina/uso terapêutico , Lactente
19.
Environ Res ; 258: 119395, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909944

RESUMO

In this study, we report the development of a novel CuOx(3 wt%)/CoFe2O4 nanocubes (NCs) photocatalyst through simple co-precipitation and wet impregnation methods for the efficient photocatalytic degradation of triclosan (TCS) pollutants. Initially, rod-shaped bare CoFe2O4 was synthesized using a simple co-precipitation technique. Subsequently, CuOx was loaded in various percentages (1, 2, and 3 wt%) onto the surface of bare CoFe2O4 nanorods (NRs) via the wet impregnation method. The synthesized materials were systematically characterized to evaluate their composition, structural and electrical characteristics. The CuOx(3 wt%)/CoFe2O4 NCs photocatalyst exhibited superior photocatalytic degradation efficiency of TCS (89.9%) compared to bare CoFe2O4 NRs (62.1 %), CuOx(1 wt%)/CoFe2O4 (80.1 %), CuOx(2 wt%)/CoFe2O4 (87.0 %) under visible light (VL) irradiation (λ ≥ 420 nm), respectively. This enhanced performance was attributed to the improved separation effectiveness of photogenerated electron (e-) and hole (h+) in CuOx(3 wt%)/CoFe2O4 NCs. Furthermore, the optimized CuOx(3 wt%)/CoFe2O4 NCs exhibited strong stability and reusability in TCS degradation, as demonstrated by three successive cycles. Genetic screening on Caenorhabditis elegans showed that CuOx(3 wt%)/CoFe2O4 NCs reduced ROS-induced oxidative stress during TCS photocatalytic degradation. ROS levels decreased at 30, 60, and 120-min intervals during TCS degradation, accompanied by improved egg hatching rates. Additionally, expression levels of stress-responsible antioxidant proteins like SOD-3GFP and HSP-16.2GFP were significantly normalized. This study demonstrates the efficiency of CuOx(3 wt%)/CoFe2O4 NCs in degrading TCS pollutants, offers insights into toxicity dynamics, and recommends its use for future environmental remediation.


Assuntos
Cobalto , Cobre , Triclosan , Triclosan/química , Triclosan/toxicidade , Animais , Cobre/química , Catálise , Cobalto/química , Compostos Férricos/química , Compostos Férricos/toxicidade , Luz , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/efeitos da radiação , Fotólise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
20.
Br J Haematol ; 205(1): 207-219, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867543

RESUMO

Upregulation of the Wilms' tumour 1 (WT1) gene is common in acute myeloid leukaemia (AML) and is associated with poor prognosis. WT1 generates 12 primary transcripts through different translation initiation sites and alternative splicing. The short WT1 transcripts express abundantly in primary leukaemia samples. We observed that overexpression of short WT1 transcripts lacking exon 5 with and without the KTS motif (sWT1+/- and sWT1-/-) led to reduced cell growth. However, only sWT1+/- overexpression resulted in decreased CD71 expression, G1 arrest, and cytarabine resistance. Primary AML patient cells with low CD71 expression exhibit resistance to cytarabine, suggesting that CD71 may serve as a potential biomarker for chemotherapy. RNAseq differential expressed gene analysis identified two transcription factors, HOXA3 and GATA2, that are specifically upregulated in sWT1+/- cells, whereas CDKN1A is upregulated in sWT1-/- cells. Overexpression of either HOXA3 or GATA2 reproduced the effects of sWT1+/-, including decreased cell growth, G1 arrest, reduced CD71 expression and cytarabine resistance. HOXA3 expression correlates with chemotherapy response and overall survival in NPM1 mutation-negative leukaemia specimens. Overexpression of HOXA3 leads to drug resistance against a broad spectrum of chemotherapeutic agents. Our results suggest that WT1 regulates cell proliferation and drug sensitivity in an isoform-specific manner.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Regulação para Cima , Proteínas WT1 , Humanos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD/biossíntese , Linhagem Celular Tumoral , Citarabina/farmacologia , Citarabina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Nucleofosmina , Isoformas de Proteínas , Receptores da Transferrina , Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas WT1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA