Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
J Adv Nurs ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39362795

RESUMO

AIM(S): To observe and compare the environmental impacts of different types of infant feeding, considering the use of formula, infant feeding accessories, potentially increased maternal dietary intake during breastfeeding (BF) and food consumption habits. DESIGN: An observational cross-sectional multicentre study conducted in the Barcelona Metropolitan Area of the Catalan Institute of Health. METHODS: Data were collected from 419 postpartum women on infant feeding type (formula milk and accessories), maternal dietary intake (24-h register) and food consumption habits from November 2022 to April 2023. The environmental impacts (climate change (CC), water consumption and water scarcity) of the infant feeding types and maternal diet were calculated using the IPCC, ReCiPE and AWARE indicators, respectively. The differences in impacts were calculated by Kruskal-Wallis test. RESULTS: Significant differences for the three environmental impacts were observed. The CC impact of formula milk and feeding accessories was 0.01 kg CO2eq for exclusive BF, 1.55 kg CO2eq for mixed feeding and 4.98 kg CO2eq for formula feeding. While BF mothers consumed an extra 238 kcal, no significant differences were found related to maternal diet across feeding types. CONCLUSION: Exclusive BF was the most sustainable type of infant feeding, considering formula and infant feeding accessories. In our study, the difference between the impacts of BF and non-BF mothers' diet was insignificant. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE: Offer informative and educational support for midwives and other healthcare professionals on BF and a healthy, sustainable diet to transfer this knowledge to the general public. IMPACT: Raise the general public's awareness about BF and a healthy, sustainable diet. To reduce environmental impacts through behavioural changes. REPORTING METHOD: STROBE. PATIENT OR PUBLIC CONTRIBUTION: Patients of the Catalan Health Service reviewed the content of the data collection tools. TRIAL REGISTRATION: (for the whole GREEN MOTHER project): NCT05729581 (https://clinicaltrials.gov).

2.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1833-1842, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233412

RESUMO

The mechanism for water-saving and high-yield of wide-range precision sowing technology remains unclear. We investigated the impact of wide-range precision sowing on the physiological characteristics of root system, water consumption, and grain yield of wheat 'Jimai 22' during the growing seasons of 2017-2019. We set up two planting modes: wide precision sowing and conventional strip sowing, and three row spacings of 20 cm, 25 cm, and 30 cm under water-saving cultivation with supplemental irrigation to examine the effects of planting modes on root biomass and senescence characteristics of wheat, water utilization characteristics, interplant evaporation, grain yield, and water utilization efficiency. The results showed that the 25 cm treatment (K25) led to an increase in root weight density, root soluble protein content, and root activity by 7.2%-23.9%, 8.7%-25.1%, 10.7%-29.9%, and 7.3%-27.6%, 8.0%-38.5%, 15.2%-32.7%, respectively, compared to the other treatments. At the same row spacing, the wide-range precision sowing treatment showed a significantly higher soil water storage consumption and proportion to total water consumption compared to the conventional strip-tillage treatment. Additionally, irrigation and interplant evaporation were lower in the wide-range precision sowing treatment. The K25 treatment exhibited significantly higher water consumption and modal coefficient of water consumption from flowering to ripening than other treatments. Furthermore, it had significantly higher seed yield, water utilization efficiency, and irrigation utilization efficiency than the other treatments. We found that a 25 cm spacing in the lower rows and density of 180-270 plants·m-2 was the water-saving and high-yielding planting pattern of wide-range precision sowing wheat in Huang-Huai-Hai region.


Assuntos
Biomassa , Grão Comestível , Triticum , Água , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Água/metabolismo , Água/análise , Grão Comestível/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Agricultura/métodos , Produção Agrícola/métodos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
3.
Sensors (Basel) ; 24(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275758

RESUMO

This study presents a comparative analysis of various Machine Learning (ML) techniques for predicting water consumption using a comprehensive dataset from Kocaeli Province, Turkey. Accurate prediction of water consumption is crucial for effective water resource management and planning, especially considering the significant impact of the COVID-19 pandemic on water usage patterns. A total of four ML models, Artificial Neural Networks (ANN), Random Forest (RF), Support Vector Machines (SVM), and Gradient Boosting Machines (GBM), were evaluated. Additionally, optimization techniques such as Particle Swarm Optimization (PSO) and the Second-Order Optimization (SOO) Levenberg-Marquardt (LM) algorithm were employed to enhance the performance of the ML models. These models incorporate historical data from previous months to enhance model accuracy and generalizability, allowing for robust predictions that account for both short-term fluctuations and long-term trends. The performance of each model was assessed using cross-validation. The R2 and correlation values obtained in this study for the best-performing models are highlighted in the results section. For instance, the GBM model achieved an R2 value of 0.881, indicating a strong capability in capturing the underlying patterns in the data. This study is one of the first to conduct a comprehensive analysis of water consumption prediction using machine learning algorithms on a large-scale dataset of 5000 subscribers, including the unique conditions imposed by the COVID-19 pandemic. The results highlight the strengths and limitations of each technique, providing insights into their applicability for water consumption prediction. This study aims to enhance the understanding of ML applications in water management and offers practical recommendations for future research and implementation.

4.
Chemosphere ; 363: 142998, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39097110

RESUMO

Mass cultivation of high-value aromatic herbs such as Vietnamese coriander and Persicaria odorata required specific soil, nutrients, and irrigation, mostly found in the limited natural wetland. This study aimed to evaluate the capacity of P. odorata at different densities in nutrient removal and the growth performance of African catfish, Clarias gariepinus in aquaponic systems. P. odorata was cultivated for 40 d with less than 10% water exchange. The effects of increasing crop densities, from zero plants for the control, 0.035 ± 0.003 kg/m2 in Treatment 1, 0.029 ± 0.002 kg/m2 in Treatment 2, and 0.021 ± 0.003 kg/m2 in Treatment 3, were tested on the growth performance of C. gariepinus with an initial density of 3.00 ± 0.50 kg/m3. The specific growth rate (SGR), daily growth rate of fish (DGRf), and survival rate (SR) of the C. gariepinus were monitored. Nutrient removal, daily growth rate of plant (DGRp), relative growth rate (RGR), and the sum of leaf number (Æ©n) of the P. odorata plant were also recorded. It was found that nutrient removal percentage significantly increased with the presence of P. odorata at different densities. The growth performance of C. gariepinus was also affected by P. odorata density in each treatment. However, no significant difference was observed in the DGRp and RGR of the P. odorata (p>0.05), except for Æ©n values. Treatment 1 had the highest Æ©n number compared to Treatment 2 and Treatment 3, showing a significant difference (p<0.05). This study demonstrates that the presence of P. odorata significantly contributes to lower nutrient concentrations, supporting the fundamental idea that plants improve water quality in aquaponic systems.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/crescimento & desenvolvimento , Vietnã , Áreas Alagadas , Aquicultura/métodos , Coriandrum , Paspalum/crescimento & desenvolvimento , Nutrientes
5.
BMC Res Notes ; 17(1): 221, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123190

RESUMO

OBJECTIVE: This study delves into the impact of urban meteorological elements-specifically, air temperature, relative humidity, and atmospheric pressure-on water consumption in Kamyaran city. Data on urban water consumption, temperature (in Celsius), air pressure (in hectopascals), and relative humidity (in percent) were used for the statistical period 2017-2023. Various models, including the correlation coefficient, generalized additive models (GAM), generalized linear models (GLM), and support vector machines (SVM), were employed to scrutinize the data. RESULTS: Water consumption increases due to the influence of relative humidity and air pressure when the temperature variable is controlled. Under specific air temperature conditions, elevated air pressure coupled with high relative humidity intensifies the response of water consumption to variations in these elements. Water consumption exhibits heightened sensitivity to high relative humidity and air pressure compared to low levels of these factors. During winter, when a western low-pressure air mass arrives and disrupts normal conditions, causing a decrease in pressure and temperature, urban water consumption also diminishes. The output from the models employed in this study holds significance for enhancing the prediction and management of water resource consumption.


Assuntos
Cidades , Umidade , Aprendizado de Máquina , Temperatura , Humanos , Conceitos Meteorológicos , Pressão Atmosférica , Estações do Ano , Abastecimento de Água , Água
6.
Sci Total Environ ; 949: 175217, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097028

RESUMO

The research aimed to determine the spatiotemporal distribution patterns of radon activity concentrations in tap water of Yerevan city and assess radon-associated hazards using both deterministic and probabilistic approaches. This was accomplished by integrating one-year monitoring data of radon in water with water consumption habits among adult population clusters, which were identified through food frequency questionnaire in Yerevan. The study findings indicated variations in radon activity levels across administrative districts. The highest average activity concentrations were detected in Davtashen (7.07 Bq/L), while the lowest average was observed in Kanaker-Zeytun (1.57 Bq/L). The overall pattern of spatiotemporal variation during monitoring period revealed higher prevalence of radon in water in the northern and western parts of the city compared to the east and south, indicating different sources of drinking water. The radon-associated hazard assessment from water, using a deterministic approach (e.g., inhalation, ingestion, radon dissolution in blood, total effective dose), revealed values below the individual dose criterion (IDC) of 0.1 mSv/y. Monte Carlo simulation revealed a probability of exceeding IDC in specific water consumption-based groups. Residents of Yerevan who drink more than 3 L water daily with the highest observed activity concentration of 11.4 Bq/L, have an 86.26 % chance of exceeding IDC. Residents consuming 2.1 L water daily have a 7.02 % chance of exceeding IDC. The study highlights the importance of applied principles and methodologies for radon monitoring, particularly considering actual water consumption data and different risk assessment approaches. Considering the worst-case scenario results, it is recommended to keep tap water consumption up to 3 L per day, keeping the tap open longer to reduce radon levels. It also emphasizes the need for continued monitoring, given the variations in radon activity. The study provides valuable insights into radon exposure assessment, mitigation, and action plans in terms of water safety and public health.


Assuntos
Água Potável , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Radônio/análise , Água Potável/química , Água Potável/análise , Poluentes Radioativos da Água/análise , Monitoramento de Radiação/métodos , Humanos , Medição de Risco
7.
Heliyon ; 10(15): e35105, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170329

RESUMO

The use of solar greenhouses in China is increasing because they permit environmental conditions to be controlled. Studies of the heat transfer processes in the leaves of plants cultivated within solar greenhouses are needed. Here, we studied heat transfer processes in 'Shine Muscat' grapevine leaves under moderate deficit irrigation (MDI), severe deficit irrigation (SDI), and full irrigation (FI) treatments under varying weather conditions. The stomatal conductance, leaf temperature, and transpiration rate of both shade and sun grapevine leaves were measured, and the effects of ambient temperature and relative humidity on these variables were determined. A thermal physics model of the leaves was established to explore the heat dissipation process. On sunny days, the transpiration heat transfer of sun leaves in the MDI, SDI, and FI treatments was 2.62 MJ m-2·day-1, 2.44 MJ m-2·day-1, and 3.86 MJ m-2·day-1and 0.818 MJ m-2·day-1, 0.782 MJ m-2·day-1, and 1.185 MJ m-2·day-1 on rainy days, respectively. There was a significant difference in transpiration heat transfer under fully irrigated and deficit irrigation conditions under different weather conditions. Furthermore, transpiration heat transfer accounted for 41.49 % and 25.03 % of the total heat transfer of sun leaves in the FI treatment and 33.94 % and 29.43 % of the total heat transfer of shade leaves on rainy days, respectively, indicating that relative humidity plays a key role in determining transpiration heat transfer and leaf temperature and that its effect was greater on sun leaves than on shade leaves.

8.
Alcohol ; 121: 9-18, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069212

RESUMO

The alcohol hangover is a combination of negative mental and physical symptoms which can be experienced after a single episode of alcohol consumption, starting when blood alcohol concentration (BAC) approaches zero. A popular theory suggests that dehydration is the primary cause of alcohol hangover and that the consumption of water could alleviate hangover symptoms. Here, the current evidence on the relationship between hangover severity, thirst, and water consumption is summarized. The positive correlations of the amount of water consumed with both hangover severity and thirst suggest that both dehydration and the hangover are co-occurring after-effects of alcohol consumption. While hangovers were typically relatively enduring, dehydration effects were usually mild and short-lasting. Survey data revealed that water consumption during or directly after alcohol consumption had only a modest effect in preventing next-day hangover. Also, the amount of water consumed during hangover was not related to changes of hangover severity and thirst. Thus, water consumption was not effective to alleviate the alcohol hangover. Taken together, these data suggests that alcohol hangover and dehydration are two co-occurring but independent consequences of alcohol consumption.

9.
Water Res ; 262: 122085, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39042968

RESUMO

Sustainable urban water management is crucial for meeting the growing demands of urban populations. This study presents a novel approach that combines time series clustering, seasonal analysis, and entropy analysis to uncover residential water consumption patterns and their drivers. Using a three-year dataset from the SmartH2o project, encompassing 374 households, we identify nine distinct water consumption patterns through time series clustering, leveraging Dynamic Time Warping (DTW) as the optimal similarity measure. Multiple linear regression reveals key household characteristics influencing water usage behaviors, such as the number of bathrooms and appliance efficiency ratings. Seasonal analysis uncovers temporal dynamics, highlighting shifts towards lower consumption during summer months and increased variability in transitional seasons. Entropy analysis quantifies the diversity and complexity of water consumption at both cluster and household levels, informing targeted interventions. This comprehensive, granular approach enables the development of personalized water conservation strategies and policies, empowering water utilities to optimize resource management and contribute to sustainable urban water practices.


Assuntos
Entropia , Análise por Conglomerados , Abastecimento de Água , Humanos , População Urbana , Estações do Ano , Características da Família , Conservação dos Recursos Hídricos , Cidades
10.
Plants (Basel) ; 13(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065454

RESUMO

As one of the most important food crops, the potato is widely planted in the oasis agricultural region of Northwest China. To ascertain the impact of regulated deficit irrigation (RDI) on various facets including dry matter accumulation, tuber yield, quality and water use efficiency (WUE) of potato plants, a two-growth season field experiment under mulched drip irrigation was conducted in the desert oasis region of Northwest China. Water deficits, applied at the seedling, tuber formation, tuber expansion and starch accumulation stages, encompassed two distinctive levels: mild (55-65% of field capacity, FC) and moderate (45-55% FC) deficit, with full irrigation (65-75% FC) throughout the growing season as the control (CK). The results showed that water deficit significantly reduced (p < 0.05) above-ground dry matter, water consumption and tuber yield compared to CK, and the reduction increased with the increasing water deficit. A mild water deficit at the tuber formation stage, without significantly reducing (p > 0.05) yield, could significantly increase WUE and irrigation water use efficiency (IWUE), with two-year average increases of 25.55% and 32.33%, respectively, compared to CK. Water deficit at the tuber formation stage increased starch content, whereas water deficit at tuber expansion stage significantly reduced starch, protein and reducing sugar content. Additionally, a comprehensive evaluation showed that a mild water deficit at the tuber formation stage is the optimal RDI strategy for potato production, providing a good balance between yield, quality and WUE. The results of this study can provide theoretical support for efficient and sustainable potato production in the desert oasis regions of Northwest China.

11.
Sci Total Environ ; 946: 174407, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38964416

RESUMO

Shale gas extraction in China often faces inadequate reservoir stimulation after initial fracturing of the wells, leading to production challenges despite abundant residual gas. Refracturing is an effective approach to enhance gas recovery; however, its impact on water consumption remains understudied. This study analyzes two refracturing techniques employed in China's largest shale production field, Fuling: temporary plugging and diverting refracturing (TPD) and wellbore reconstruction refracturing (WR), focusing on fracturing efficiency and water consumption. The results demonstrate that WR refracturing exhibits superior fracturing performance but consumes 1.3 times more water than initial fracturing. Considering 315 wells that required refracturing from 2013 to 2017, this study reveals, for the first time, that the lifecycle water consumption for shale gas production with refracturing is more than twice that without refracturing. The estimated total water consumption for the Fuling shale gas field over the next decade, incorporating refracturing, is approximately 7594.53 × 104 m3. By including the water consumption of refracturing, this study provides a more comprehensive evaluation of water usage throughout the entire lifecycle of shale gas development. The findings offer new insights for assessing water consumption in global shale gas development and highlight the importance of considering refracturing when evaluating the environmental impacts and resource management strategies associated with shale gas extraction.

12.
Sci Bull (Beijing) ; 69(16): 2632-2646, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38879416

RESUMO

Given that it was a once-in-a-century emergency event, the confinement measures related to the coronavirus disease 2019 (COVID-19) pandemic caused diverse disruptions and changes in life and work patterns. These changes significantly affected water consumption both during and after the pandemic, with direct and indirect consequences on biodiversity. However, there has been a lack of holistic evaluation of these responses. Here, we propose a novel framework to study the impacts of this unique global emergency event by embedding an environmentally extended supply-constrained global multi-regional input-output model (MRIO) into the drivers-pressure-state-impact-response (DPSIR) framework. This framework allowed us to develop scenarios related to COVID-19 confinement measures to quantify country-sector-specific changes in freshwater consumption and the associated changes in biodiversity for the period of 2020-2025. The results suggest progressively diminishing impacts due to the implementation of COVID-19 vaccines and the socio-economic system's self-adjustment to the new normal. In 2020, the confinement measures were estimated to decrease global water consumption by about 5.7% on average across all scenarios when compared with the baseline level with no confinement measures. Further, such a decrease is estimated to lead to a reduction of around 5% in the related pressure on biodiversity. Given the interdependencies and interactions across global supply chains, even those countries and sectors that were not directly affected by the COVID-19 shocks experienced significant impacts: Our results indicate that the supply chain propagations contributed to 79% of the total estimated decrease in water consumption and 84% of the reduction in biodiversity loss on average. Our study demonstrates that the MRIO-enhanced DSPIR framework can help quantify resource pressures and the resultant environmental impacts across supply chains when facing a global emergency event. Further, we recommend the development of more locally based water conservation measures-to mitigate the effects of trade disruptions-and the explicit inclusion of water resources in post-pandemic recovery schemes. In addition, innovations that help conserve natural resources are essential for maintaining environmental gains in the post-pandemic world.


Assuntos
Biodiversidade , COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias , Abastecimento de Água , SARS-CoV-2 , Água Doce
13.
Clin Kidney J ; 17(6): sfae144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887470

RESUMO

The health-care system and particularly renal replacement therapy has a significant carbon footprint adding to global warming and extreme weather conditions. Improving sustainability has become the focus of national and international working groups. Many reviews underline the need for improvement of sustainability in nephrology, in particular dialysis, and provide recommendations on how to reduce waste, energy, and water consumption. However, how to implement these recommendations, and where to start, is not always clear. This paper summarizes discussions within the 'working group on sustainable nephrology' of the Swiss Society of Nephrology. We do not provide a detailed review of the topic but instead present a practical 10-point action plan to help health-care workers in nephrology make a start and improve the carbon footprint of their dialysis centres. We emphasize the importance of ongoing research, cooperation, and dialogue, and welcome additional ideas from the wider renal community.

14.
Materials (Basel) ; 17(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38730951

RESUMO

During the compaction process of HMA pavement, it is common to spray cold water on the wheel of a road roller to prevent the mixture from sticking to the wheel, which might deteriorate the bonding strength between the asphalt binder and aggregate, and consequently lead to surface polishing of the pavement. This paper aims to demonstrate whether the water used during the compaction process affects the surface performance of HMA pavement. In this study, the black pixel ratio and mass loss ratio were used to evaluate the water effect on the surface performance of asphalt pavement, considering the water consumption, molding temperature and long-term ageing process. The test results indicated that the water used during the compaction process would increase the risk of surface polishing of HMA pavement. This adverse effect became more significant if the HMA samples were prepared using greater water consumption, a greater molding temperature and a long-term ageing process. Moreover, there exists a certain correlation between the black pixel ratio and mass loss ratio, and their relationships were demonstrated by the experimental results in this study. It is recommended that further research concentrates on the influencing mechanism and the treatment strategy for the adverse effect caused by the water used during the compaction process. The use of more types of asphalt binders, aggregate and methodologies is also recommended in further studies.

15.
Heliyon ; 10(7): e28190, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596033

RESUMO

Food security is closely related to the development of human society, and the root of food production lies in cultivated land, with water conservancy as its lifeline. This study estimates the ecological water consumption of located in the arid region of Northwest China (the Karamay region and Muzat River basin) from 1990 to 2020 based on the optimized Land Surface Energy Balance Algorithm. The verification accuracy of SEBAL energy balance model is greatly improved after optimization. It was showed an increasing trend in the Karamay region and Muzat River basin, increasing at the rates of 2.84 mm/year and 2.86 mm/year respectively. The suitability of cultivated land was evaluated by combining four periods of 30 m spatial resolution land use/land cover data from 1990, 2000, 2010, and 2020, as well as the Hydrological Statistical Yearbook and Xinjiang Statistical Yearbook. Through the analysis of spatial optimization for cultivated land, it can be inferred that the primary limiting factors affecting cultivated land suitability in the Karamay region are irrigation guarantee rate (54.03%) and soil salinity (11.98%). Muzat River region are irrigation guarantee rate (32.19%) and soil salinity (18.62%). By comparing the scenarios of setting ecological priority and cultivated land priority, it is concluded that under the conditions of water resource constraints and 50%, 75% and 90% design irrigation assurance rates, Karamay still has cultivated land expansion potential, which can be used as the main preparatory reclamation area. In addition to the traditional agriculture irrigation area, the Muzat River basin still has development potential under the condition of ecological priority and no more than 75% irrigation design assurance rate. The study on the cultivated land suitability under the condition of water resource constraints can provide new ideas for food security.

16.
Ann Nutr Metab ; 80(3): 136-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437808

RESUMO

INTRODUCTION: The prevalence of overweight and obesity in children has increased in recent years, associated with substituting plain water intake with sugar-sweetened beverages. The aim of the study was to evaluate the impact of a school-based intervention that aimed to replace sugar-sweetened beverages with water on Mexican scholars. METHODS: We included 314 children aged 9-11 from three public schools of the State of Hidalgo, Mexico, randomized to intervention (two schools from the municipality of Apan; six classes with 146 participants) or control group (one school from the municipality of Emiliano Zapata; six classes with 168 participants) and followed for 6 months. The intervention consisted of placing drinking fountains at schools and classrooms with nutritional education lessons to increase water consumption and decrease sugar-sweetened beverages. Mixed models for repeated measures were used to assess the impact of the intervention. RESULTS: At the end of the study, water consumption was higher (200 mL/day, p = 0.005), and flavored milk consumption was lower (94 mL/day, p = 0.044) in the intervention group compared with the control group. There was also a statistically significant reduction in energy (p = 0.016) and sugar intake (p = 0.007). CONCLUSIONS: The school-based intervention favorably modified the consumption pattern of sugar-sweetened beverages and water in Mexican students.


Assuntos
Instituições Acadêmicas , Bebidas Adoçadas com Açúcar , Humanos , México , Criança , Masculino , Feminino , Ingestão de Líquidos , Serviços de Saúde Escolar , Obesidade Infantil/prevenção & controle , Obesidade Infantil/epidemiologia , Água Potável , Bebidas
17.
Environ Health Insights ; 18: 11786302241238940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525297

RESUMO

Several studies have been conducted on household water use and microbial water quality globally. However, studies that considered seasonal variability of household water use and microbial water quality were limited. Therefore, this study investigated the seasonal variability of household water use, microbiological water quality, and challenges to the provision of adequate water in the peri-urban and informal settlements of Hosanna town, Southern Ethiopia. A longitudinal study was conducted on 288 households. The data was gathered using a pretested structured questionnaire, laboratory-analysis, interviews, storage-container inventories, focus group discussions, key-informant interviews, and an observational checklist. The data was analyzed using stepwise-multiple linear regression, bivariate and multivariable logistic regression, thematic-analysis, t-tests, and non-parametric-tests. Households were visited for 7 consecutive days during the dry and rainy seasons to account for changes in daily and seasonal variation of water use. 440 stored water and 12 source samples were analyzed for E. coli presence during dry and rainy seasons. The prevalence of stored water contamination with E. coli was 43.2% and 34.5% during the dry and rainy seasons, respectively. The per capita water consumption was 19.4 and 20.3 l during the dry and rainy seasons, respectively. Piped water on-premises, small family size, volume, and number of water storage containers were significant predictors of per capita water consumption in both seasons. Piped water off-premises, storing water for more than 3 days, uncovered, and wide-mouthed water storage containers were significantly associated with the presence of E. coli in water in both seasons. Seasonal variability of household water use and microbiological water quality was statistically significant, which is a significant public health concern and needs intervention to enhance water quantity and quality to mitigate the risk of waterborne diseases. Findings also suggest seasonal monitoring of the safety of drinking water to ensure that the water is safe and healthy.

18.
J Environ Manage ; 353: 120198, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308989

RESUMO

The Aral Sea Basin in Central Asia faces significant challenges in improving water utilization and treatment because of frequent transboundary river water disputes and shortages of water resources. However, the traditional water resource utilization efficiency (WRUE) assessment models generally have the defect of over-validating evaluation results. To solve this problem, this study used the Coefficient of Variation method to constrain the self-contained weights in the traditional Data Envelopment Analysis (DEA) to construct an improved CV-DEA model, and assessed the WRUE of the Aral Sea Basin countries during 2000-2018 and compared the WRUE with that of the countries in the Mekong River Basin and Northeast Asia, then explored the factors influencing water utilization. The conclusions were drawn: since 1960, the runoff from the upper Amu Darya and Syr Darya rivers increased significantly, while the runoff from the lower Amu Darya River into the Aral Sea declined. Meanwhile, the water area of the Aral Sea shrank from 2.56 × 104 km2 to 0.70 × 104 km2 in 2000-2018, with the Northern Aral Sea remaining stable while the southern part shrinking sharply. The WRUE of the Aral Sea Basin (0.599, on average) was higher than that of the Mekong River Basin (0.547) and lower than that of Northeast Asia (0.885). Kazakhstan and Uzbekistan had the highest WRUE of 0.819 and 0.685 respectively, and the WRUE in both two countries improved from 2000 to 2018. Tajikistan (0.495) and Turkmenistan (0.402) experienced decreases in WRUEs. The high input redundancy of agricultural water consumption was the main driving force affecting WRUE in the basin.


Assuntos
Água Doce , Recursos Hídricos , Cazaquistão , Uzbequistão , Rios , Água
19.
J Environ Manage ; 353: 120225, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38330837

RESUMO

China's growing demand for bulk chemicals and concerns regarding energy security are scaling up coal-to-olefins (CTO) production. Three generations of independent dimethyl ether/methanol-to-olefins technologies have been successively launched with greatly improved production efficiencies. However, to date, widespread concerns regarding the intensive environmental impacts and potential economic risks have not been addressed in the context of this industrialization. Here we show that, through the technological progress from the first to the third generation, life cycle energy consumption, water consumption, and carbon emissions can be reduced to 119.5 GJ/t, 27.6 t/t, and 9.1 t CO2-eq/t, respectively, and human health damage, ecosystem quality damage, and resource scarcity impacts can be decreased by 40.5 %, 50.1 %, and 16.4 %, respectively. This is accompanied by an excellent performance in terms of production cost, net present value, and internal return rate at 792.5 USD/t, 173.4 USD/t, and 19.4 %, respectively. Substantial environmental and economic benefits can be gained by coupling renewables in the form of using green hydrogen from solar and wind power to synthesize methanol. Particularly, life cycle carbon emissions and resource scarcity impacts are reduced by 23.4 % and 22.4 %, respectively, exceeding the reduction in technological progress. However, coupling renewables increases the life cycle energy consumption to 154.5 GJ/t, counteracting the benefits of technological progress. Our results highlight the importance of technological progress and coupled renewables for enhancing the sustainability of the CTO industry.


Assuntos
Alcenos , Carvão Mineral , Humanos , Ecossistema , Metanol , Desenvolvimento Econômico , Carbono/análise , Dióxido de Carbono/análise , China
20.
BMC Nutr ; 10(1): 27, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317176

RESUMO

BACKGROUND: To assess whether changes in breakfast and water consumption during the first full school year after the emergence of the COVID-19 pandemic varied based on sex/gender, race/ethnicity, and socioeconomic status among Canadian adolescents. METHODS: Prospective annual survey data collected pre- (October 2019-March 2020) and post-COVID-19 onset (November 2020-June 2021) the Cannabis, Obesity, Mental health, Physical activity, Alcohol, Smoking, and Sedentary behaviour (COMPASS) study. The sample consisted of 8,128 students; mean (SD) age = 14.2 (1.3) years from a convenience sample of 41 Canadian secondary schools. At both timepoints self-reported breakfast and water consumption were dichotomized as daily or not. Multivariable logistic generalized estimating equations with school clustering were used to estimate differences in maintenance/adoption of daily consumption post-COVID-19 based on demographic factors, while controlling for pre-COVID-19 behaviour. RESULTS: Adjusted odds ratios (AOR) with 95% confidence intervals are reported. Females (AOR = 0.71 [0.63, 0.79]) and lower socioeconomic status individuals (AORLowest:Highest=0.41 [0.16, 1.00]) were less likely to maintain/adopt daily breakfast consumption than male and higher socioeconomic status peers in the 2020-2021 school year. Black identifying individuals were less likely than all other racial/ethnic identities to maintain/adopt plain water consumption every day of the week (AOR = 0.33 [0.15, 0.75], p < 0.001). No significant interaction effects were detected. CONCLUSIONS: Results support the hypothesis that changes in nutritional behaviours were not equal across demographic groups. Female, lower socioeconomic status, and Black adolescents reported greater declines in healthy nutritional behaviours. Public health interventions to improve adherence to daily breakfast and water consumption should target these segments of the population. TRIAL REGISTRATION: Not a trial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA