Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.010
Filtrar
1.
Physiol Mol Biol Plants ; 30(5): 775-790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38846456

RESUMO

Leucojum aestivum L. is an Amaryllidaceae bulbous plant with two alkaloids that have remarkable medicinal potential: galanthamine and lycorine. Although the presence of galanthamine in L. aestivum has commercial value for the pharmaceutical industry and the effect of water stress (WS) applications on secondary metabolite enhancement is well established in a variety of plants, no studies have been carried out to reveal the effectiveness of WS on this beneficial medicinal plant. Objective of the study was to investigate the effects of eight different WS treatments [Control, waterlogging (WL) condition, and drought stress conditions (water deficiency generated by water deficit irrigation-WDI 25%, 50%, and 75%- and polyethylene glycol-PEG 6000 15%, 30%, and 45%-)] on growth parameters, alkaloid levels (galanthamine and lycorine), non-enzymatic antioxidant activities (total phenol-flavonoid content and free radical scavenging activity), and enzymatic antioxidant activities [superoxide dismutase (SOD) and catalase (CAT)] of L. aestivum in a pot experiment. Based on the findings, maximum increases in growth parameters were obtained with PEG-induced WS treatments. Moderate water deficiency (50% WDI) produced the highest levels of galanthamine and lycorine, total phenol-flavonoid content, and antioxidant capacity, along with moderately elevated CAT activity in the bulbs. All WS treatments resulted in increased CAT activity in the bulbs. It was observed that bulbs had higher SOD and CAT activities under WL conditions had lower fresh weights and were close to control in terms of alkaloid levels, total phenol-flavonoid content, and free radical scavenging activity. When all of the outcomes were taken into account, it can be concluded that moderate water-deficit stress (50% WDI) was regarded as the most effective treatment for increasing the pharmaceutical value of L. aestivum.

2.
Plant Methods ; 20(1): 69, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741140

RESUMO

BACKGROUND: Characterisation of the structure and water status of leaf tissues is essential to the understanding of leaf hydraulic functioning under optimal and stressed conditions. Magnetic Resonance Imaging is unique in its capacity to access this information in a spatially resolved, non-invasive and non-destructive way. The purpose of this study was to develop an original approach based on transverse relaxation mapping by Magnetic Resonance Imaging for the detection of changes in water status and distribution at cell and tissue levels in Brassica napus leaves during blade development and dehydration. RESULTS: By combining transverse relaxation maps with a classification scheme, we were able to distinguish specific zones of areoles and veins. The tissue heterogeneity observed in young leaves still occurred in mature and senescent leaves, but with different distributions of T2 values in accordance with the basipetal progression of leaf blade development, revealing changes in tissue structure. When subjected to severe water stress, all blade zones showed similar behaviours. CONCLUSION: This study demonstrates the great potential of Magnetic Resonance Imaging in assessing information on the structure and water status of leaves. The feasibility of in planta leaf measurements was demonstrated, opening up many opportunities for the investigation of leaf structure and hydraulic functioning during development and/or in response to abiotic stresses.

3.
Environ Sci Technol ; 58(20): 8696-8708, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717867

RESUMO

United Nations Sustainable Development Goal 6 tackles the long-neglected economic dimension of water utilization by monitoring nations' water use efficiency (WUE). However, it is imperative to emphasize the need for consistent spatial-temporal subnational WUE estimates, rather than relying solely on recent national trends, which can obscure crucial water use concerns and improvement opportunities. Here, a time series analysis of national, state, and sectoral (e.g., industrial, service, and agriculture) WUE from 1980 to 2015 was developed by compiling the most comprehensive and disaggregated water and economic data from 3243 US counties and 50 US states. The US total WUE increased by 181% from 16.2 (1985) to 45.6 USD/m3 (2015), driven by service sector WUE enhancements. The increased industry and service WUEs in most states were more strongly correlated with decreased per capita water withdrawal than with economic growth. Simultaneously, reductions in agriculture WUE were observed in 18 states potentially because of the complicated interaction of diverse factors specific to local communities. Expanding WUE gaps between affluent and less affluent states, and persisting WUE gaps between water-abundant andwater-scarce states highlight the need to advance policies to support under-resourced communities in effective water planning and water pricing for advancing equitable development.


Assuntos
Abastecimento de Água , Estados Unidos , Agricultura/economia , Água , Desenvolvimento Sustentável
4.
Sci Total Environ ; 938: 173615, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815830

RESUMO

The combined climate-change-evoked drought and nitrogen (N) deposition have severely affected plant carbon and water relations governed by stomata. However, the interplay between steady-state and dynamic stomatal behavior responses to light remains unclear regarding its impact on plant water and carbon relations. The objective here was to investigate whether light-induced stomatal dynamics could mitigate the adverse effects of steady-state gas exchange on water conservation or photosynthesis under drought and N addition conditions. We conducted a manipulative experiment to investigate the impacts of throughfall reduction, N addition, and their combination on light-induced stomatal and photosynthetic dynamics in a Moso bamboo (Phyllostachys edulis) forest. We determined the influence of stomal response rate on water loss and photosynthesis, and further assessed whether it mitigated the effects of steady-state gas exchange (gs). We found that Moso bamboo decreased gs under throughfall reduction, while accelerated stomatal opening and biochemical activation when irradiance increased, which reduced the lag in photosynthesis during the induction period. In contrast, under the combined throughfall reduction and N addition condition, Moso bamboo increased gs but showed faster stomatal closure, which decreased the percentage of transpiration following a decrease in light intensity. Our findings indicate that stomatal dynamic behavior may depend on the effects of steady-state gas exchange on water conservation and carbon uptake under different soil water and N conditions. These discoveries contribute to our understanding of the coupling mechanisms of plant water use and carbon uptake in the context of global changes.

5.
Plant Physiol Biochem ; 211: 108664, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703498

RESUMO

Water stress is a major cause of yield loss in peanut cultivation. Melatonin seed priming has been used to enhance stress tolerance in several crops, but not in peanut. We investigated the impact of seed priming with melatonin on the growth, development, and drought tolerance of two peanut cultivars, TUFRunner™ '511', a drought tolerant cultivar, and New Mexico Valencia A, a drought sensitive cultivar. Peanut seed priming tests using variable rates of melatonin (0-200 µM), indicated that 50 µM of melatonin resulted in more uniform seed germination and improved seedling growth in both cultivars under non stress conditions. Seed priming with melatonin also promoted vegetative growth, as evidenced by higher whole-plant transpiration, net CO2 assimilation, and root water uptake under both well-watered and water stress conditions in both cultivars. Higher antioxidant activity and protective osmolyte accumulation, lower reactive oxygen species accumulation and membrane damage were observed in primed compared with non-primed plants. Seed priming with melatonin induced a growth promoting effect that was more evident under well-watered conditions for TUFRunnner™ '511', whereas for New Mexico Valencia A, major differences in physiological responses were observed under water stress conditions. New Mexico Valencia A primed plants exhibited a more sensitized stress response, with faster down-regulation of photosynthesis and transpiration compared with non-primed plants. The results demonstrate that melatonin seed priming has significant potential to improve early establishment and promote growth of peanut under optimal conditions, while also improve stress tolerance during water stress.


Assuntos
Arachis , Desidratação , Melatonina , Sementes , Melatonina/farmacologia , Melatonina/metabolismo , Arachis/efeitos dos fármacos , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/fisiologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Água/metabolismo , Germinação/efeitos dos fármacos , Antioxidantes/metabolismo , Secas , Fotossíntese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
6.
Plant Cell Environ ; 47(7): 2614-2630, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38712467

RESUMO

The dynamics of the physiological adaptability of plants and the rhizosphere soil environment after waterlogging remain unclear. Here we investigated the mechanisms regulating plant condition and shaping of the rhizosphere microbiome in a pot experiment. In the experiment, we added melatonin to waterlogged plants, which promoted waterlogging relief. The treatment significantly enhanced photosynthesis and the antioxidant capacity of apple plants, and significantly promoted nitrogen (N) utilization efficiency by upregulating genes related to N transport and metabolism. Multiperiod soil microbiome analysis showed the dynamic effects of melatonin on the diversity of the microbial community during waterlogging recovery. Random forest and linear regression analyses were used to screen for potential beneficial bacteria (e.g., Azoarcus, Pseudomonas and Nocardioides) specifically regulated by melatonin and revealed a positive correlation with soil nutrient levels and plant growth. Furthermore, metagenomic analyses revealed the regulatory effects of melatonin on genes involved in N cycling in soil. Melatonin positively contributed to the accumulation of plant dry weight by upregulating the expression of nifD and nifK (N fixation). In summary, melatonin positively regulates physiological functions in plants and the structure and function of the microbial community; it promoted the recovery of apple plants after waterlogging stress.


Assuntos
Malus , Melatonina , Microbiota , Rizosfera , Melatonina/farmacologia , Melatonina/metabolismo , Malus/efeitos dos fármacos , Malus/genética , Malus/microbiologia , Malus/fisiologia , Malus/metabolismo , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genética , Bactérias/efeitos dos fármacos
7.
Plants (Basel) ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794365

RESUMO

Alterations in leaf architecture can be used as an indicator of the substrate toxicity level as well as the potential of a given plant species in the phytoremediation of polluted areas, e.g., mining sludge. In this work, we demonstrated, for the first time, the nature and scale of alterations in leaf architecture at the tissue and cellular levels occurring in Norway maple growing on mining sludge originating from a copper mine in Lubin (Poland). The substrate differs from other mine wastes, e.g., calamine or serpentine soils, due to an extremely high level of arsenic (As). Alterations in leaf anatomy predominantly included the following: (1) a significant increase in upper epidermis thickness; (2) a significant decrease in palisade parenchyma width; (3) more compact leaf tissue organization; (4) the occurrence of two to three cell layers in palisade parenchyma in contrast to one in the control; (5) a significantly smaller size of cells building palisade parenchyma. At the cellular level, the alterations included mainly the occurrence of local cell wall thickenings-predominantly in the upper and lower epidermis-and the symptoms of accelerated leaf senescence. Nevertheless, many chloroplasts showed almost intact chloroplast ultrastructure. Modifications in leaf anatomy could be a symptom of alterations in morphogenesis but may also be related to plant adaptation to water deficit stress. The occurrence of local cell wall thickenings can be considered as a symptom of a defence strategy involved in the enlargement of apoplast volume for toxic elements (TE) sequestration and the alleviation of oxidative stress. Importantly, the ultrastructure of leaf cells was not markedly disturbed. The results suggested that Norway maple may have good phytoremediation potential. However, the general shape of the plant, the significantly smaller size of leaves, and accelerated senescence indicated the high toxicity of the mining sludge used in this experiment. Hence, the phytoremediation of such a substrate, specifically including use of Norway maple, should be preceded by some amendments-which are highly recommended.

8.
Front Microbiol ; 15: 1376849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562476

RESUMO

In grape cultivation, incorrect water regulation will lead to significant water wastage, which in turn will change soil structure and disrupt soil nutrient cycling processes. This study aimed to investigate the effects of different water regulation treatments [by setting moderate water stress (W1), mild water stress (W2), and adequate water availability (CK)] on soil physical-chemical properties and enzyme activity in greenhouse grape during the growing season. The result showed that the W2 treatment had a negative impact on the build-up of dissolved organic carbon (DOC), nitrate nitrogen (NO3-N), and available phosphorus (AP). Throughout the reproductive period, the W1 and W2 treatments decreased the soil's microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) contents, and MBC was more vulnerable to water stress. During the growth period, the trends of urease, catalase, and sucrase activities in different soil depth were ranked as 10-20 cm > 0-10 cm > 20-40 cm. The urease activity in 0-10 cm soil was suppressed by both W1 and W2 treatments, while the invertase activity in various soil layers under W1 treatment differed substantially. The W1 treatment also reduced the catalase activity in the 20-40 cm soil layer in the grape growth season. These findings suggested that W2 treatment can conserve water and enhance microbial ecology of greenhouse grape soils. Therefore, W2 treatment was the most effective water regulation measure for local greenhouse grape cultivation.

9.
Front Plant Sci ; 15: 1323296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645391

RESUMO

The development of non-invasive methods and accessible tools for application to plant phenotyping is considered a breakthrough. This work presents the preliminary results using an electronic nose (E-Nose) and machine learning (ML) as affordable tools. An E-Nose is an electronic system used for smell global analysis, which emulates the human nose structure. The soybean (Glycine Max) was used to conduct this experiment under water stress. Commercial E-Nose was used, and a chamber was designed and built to conduct the measurement of the gas sample from the soybean. This experiment was conducted for 22 days, observing the stages of plant growth during this period. This chamber is embedded with relative humidity [RH (%)], temperature (°C), and CO2 concentration (ppm) sensors, as well as the natural light intensity, which was monitored. These systems allowed intermittent monitoring of each parameter to create a database. The soil used was the red-yellow dystrophic type and was covered to avoid evapotranspiration effects. The measurement with the electronic nose was done daily, during the morning and afternoon, and in two phenological situations of the plant (with the healthful soy irrigated with deionized water and underwater stress) until the growth V5 stage to obtain the plant gases emissions. Data mining techniques were used, through the software "Weka™" and the decision tree strategy. From the evaluation of the sensors database, a dynamic variation of plant respiration pattern was observed, with the two distinct behaviors observed in the morning (~9:30 am) and afternoon (3:30 pm). With the initial results obtained with the E-Nose signals and ML, it was possible to distinguish the two situations, i.e., the irrigated plant standard and underwater stress, the influence of the two periods of daylight, and influence of temporal variability of the weather. As a result of this investigation, a classifier was developed that, through a non-invasive analysis of gas samples, can accurately determine the absence of water in soybean plants with a rate of 94.4% accuracy. Future investigations should be carried out under controlled conditions that enable early detection of the stress level.

10.
Front Plant Sci ; 15: 1391963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660440

RESUMO

Grapevines are frequently subjected to heatwaves and limited water availability during ripening. These conditions can have consequences for the physiological health of the vines. Moreover, the situation is often exacerbated by intense solar radiation, resulting in reduced yield due to sunburn and a decline in quality. In light of these challenges, our study aimed to develop a fruit-zone cooling system designed to mitigate grape sunburn damage and improve the microclimate conditions within the vineyard. The system comprises a network of proximal sensors that collect microclimate data from the vineyard and an actuator that activates nebulizers when the temperature exceeds the threshold of 35°C. The research was conducted over two years (2022 and 2023) in Bologna (Italy) using potted Sangiovese and Montepulciano vines. These two vintages were characterized by high temperatures, with varying amounts of rainfall during the test period, significantly impacting the evaporative demand, which was notably higher in 2023. Starting from the veraison stage we compared three treatments: Irrigated control vines (WW); Control vines subjected to 50% water restriction during the month of August (WS); WS vines treated with nebulized water in the bunch area during the stress period (WS+FOG). The application of nebulized water effectively reduced the temperature of both the air around the clusters and the clusters themselves. As we expected, Montepulciano showed better single leaf assimilation rate and stomatal conductance under non-limiting water conditions than Sangiovese while their behavior was unaffected under water-scarce conditions. Importantly, for the first time, we demonstrated that nebulized water positively affected gas exchange in both grape varieties. In addition to this, the vines treated with the misting system exhibited higher productivity compared to WS vines without affecting technological maturity. In the 2023 vintage, the activation of the system prevented the ripening blockage that occurred in Montepulciano under water stress. Regarding the concentration of total anthocyanins, a significant increase in color was observed in WS+FOG treatment, suggesting a predominant role of microclimate on anthocyanin biosynthesis and reduction of oxidative phenomena. In conclusion, the fruit-zone cooling system proved to be an invaluable tool for mitigating the adverse effects of multiple summer stresses.

11.
Int J Phytoremediation ; : 1-17, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644591

RESUMO

Drought is a threat to food security and agricultural sustainability in arid and semi-arid countries. Using wasted silica nanoparticles could minimize water scarcity. A controlled study investigated wheat plant physiological and morphological growth under tap-water irrigation (80-100, 60-80, and 40-60% field capacity). The benefits of S1: 0%, S2: 5%, and S3: 10% nanoparticle silica soil additions were studied. Our research reveals that water stress damages the physiological and functional growth of wheat plants. Plant height decreased by 8.9%, grain yield by 5.4%, and biological yield by 19.2%. These effects were observed when plants were irrigated to 40-60% field capacity vs. control. In plants under substantial water stress (40-60% of field capacity), chlorophyll a (8.04 mg g-1), b (1.5 mg g-1), total chlorophyll (9.55 mg g-1), carotenoids (2.44 mg g-1), and relative water content (54%), Electrolyte leakage (59%), total soluble sugar (1.79 mg g-1 fw), and proline (80.3 mol g-1) were highest. Plants cultivated with silica nanoparticles exhibit better morphological and physiological growth than controls. The largest effect came from maximum silica nanoparticle loading. Silica nanoparticles may increase drought-stressed plant growth and production.


This study investigates the impact of silica nanoparticles on the development of wheat plants experiencing water stress. Silica nanoparticles are essential for stimulating biochemical defenses against water stress, although research is limited. In stressed wheat plants, silica nanoparticles as a soil supplement increased biological and grain yield. Wheat grown under drought conditions will benefit from this study.

12.
Sci Rep ; 14(1): 7655, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561412

RESUMO

Due to water scarcity challenges, efficient management of irrigation water is becoming crucial. Water use efficiency (WUE) involves increasing crop productivity without increasing water consumption. This study was carried out to study the effect of hydrogel, deficit irrigation and soil type on WUE, soil hydro-physical properties and lettuce productivity. For this purpose, four irrigation treatments (100%, 85%, 70% and 60% of full irrigation requirements), four hydrogel concentrations (0, 0.1, 0.2 and 0.3% w/w) and three soil textural classes (clay, loamy sand, and sandy-clay soil) were conducted in pot experiment at open field during two consecutive seasons. The results revealed that crop growth parameters and soil hydro-physical properties were significantly affected by hydrogel application rates. Hydrogel addition significantly enhanced head fresh and dry weights, chlorophyll content, number of leaves and WUE. Application of hydrogel at 0.3% and 85% of irrigation requirements achieved the highest WUE without significant yield reductions. Changes in the studied hydro-physical properties of soil were more dependent on soil texture and hydrogel application rate than on the amount of irrigation water. The significant decrease in soil saturated hydraulic conductivity and bulk density confirms that super absorbent hydrogels could be recommended to improve soil water retention and enhance water use efficiency under deficit irrigation conditions.

14.
Ann Bot ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687134

RESUMO

BACKGROUND AND AIMS: Hotter drought- and biotically-driven tree mortality are expected to increase with climate change in much of the western United States, and species persistence will depend upon ongoing establishment under novel conditions or migration to track ecological niche requirements. High-elevation tree species may be particularly vulnerable to increasing water stress as snowpack declines, increasing the potential for adult mortality and simultaneous regeneration failures. Seedling survival will be determined by ecophysiological limitations in response to changing water availability and temperature. METHODS: We exposed seedlings from populations of Pinus longaeva, Pinus flexilis, and Pinus albicaulis to severe drought and concurrent temperature stress in common gardens testing timing of drought onset under two different temperature regimes. We monitored seedling functional traits, physiological function, and survival. KEY RESULTS: The combined stressors of water limitation and extreme heat led to conservative water use strategies and declines in physiological function, with these joint stressors ultimately exceeding species' tolerances and leading to complete episodic mortality across all species. Growing conditions were the primary determinant of seedling trait expression, with seedlings exhibiting more drought-resistant traits such as lower specific leaf area in the hottest, driest treatment conditions. Water stress-induced stomatal closure was also widely apparent. Under adequate soil moisture, seedlings endured prolonged exposure to high air and surface temperatures, suggesting broad margins for survival. CONCLUSIONS: The critical interaction between soil moisture and temperature suggests that rising temperatures will exacerbate growing season moisture stress. Our results highlight the importance of local conditions over population- and species-level influences in shaping strategies for stress tolerance and resistance to desiccation at this early life stage. By quantifying some of the physiological consequences of drought and heat that lead to seedling mortality, we can better understand the future effects of global change on the composition and distribution of high-elevation conifer forests.

15.
Plants (Basel) ; 13(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674562

RESUMO

Solanum tuberosum is one of the most widely cropped plant species worldwide; unfortunately, drought is one of the major constraints on potato productivity because it affects the physiology, biochemical processes, and yield. The use of arbuscular mycorrhizal fungi (AMF) has exhibited beneficial effects on plants during drought. The objective of this study was to analyse the effect of AMF inoculation on two genotypes of potato plants exposed to water stress, and the photosynthetic traits, enzymatic antioxidant activity, and exudation of low-molecular-weight organic acids (LMWOAs) of potato plants inoculated with two strains of AMF, Claroideoglomus claroideum (CC) and Claroideoglomus lamellosum (HMC26), were evaluated. Stomatal conductance exhibited a similar trend in the CC and HMC26 treatments for both potato genotypes; moreover, the photosynthetic rate significantly increased by 577.9% between the 100% soil humidity (S0) and 40% soil humidity (S2) stress levels for the VR808 genotype under the CC treatment. The activities of the enzymes catalase (CAT) and ascorbate peroxidase (APX) showed similar trends. In this study, there were different responses among genotypes and treatments. Inoculation with CC under S2 stress levels is a promising potential approach for improving potato growth under drought conditions.

16.
Environ Sci Technol ; 58(16): 6964-6977, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602491

RESUMO

The rapid reduction in the cost of renewable energy has motivated the transition from carbon-intensive chemical manufacturing to renewable, electrified, and decarbonized technologies. Although electrified chemical manufacturing technologies differ greatly, the feasibility of each electrified approach is largely related to the energy efficiency and capital cost of the system. Here, we examine the feasibility of ammonia production systems driven by wind and photovoltaic energy. We identify the optimal regions where wind and photovoltaic electricity production may be able to meet the local demand for ammonia-based fertilizers and set technology targets for electrified ammonia production. To compete with the methane-fed Haber-Bosch process, electrified ammonia production must reach energy efficiencies of above 20% for high natural gas prices and 70% for low natural gas prices. To account for growing concerns regarding access to water, geospatial optimization considers water stress caused by new ammonia facilities, and recommendations ensure that the identified regions do not experience an increase in water stress. Reducing water stress by 99% increases costs by only 1.4%. Furthermore, a movement toward a more decentralized ammonia supply chain driven by wind and photovoltaic electricity can reduce the transportation distance for ammonia by up to 76% while increasing production costs by 18%.


Assuntos
Amônia , Energia Renovável , Fertilizantes , Eletricidade , Vento
17.
Methods Mol Biol ; 2790: 317-332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649578

RESUMO

Infrared thermography offers a rapid, noninvasive method for measuring plant temperature, which provides a proxy for stomatal conductance and plant water status and can therefore be used as an index for plant stress. Thermal imaging can provide an efficient method for high-throughput screening of large numbers of plants. This chapter provides guidelines for using thermal imaging equipment and illustrative methodologies, coupled with essential considerations, to access plant physiological processes.


Assuntos
Raios Infravermelhos , Fenótipo , Termografia , Termografia/métodos , Plantas , Ensaios de Triagem em Larga Escala/métodos , Fenômenos Fisiológicos Vegetais , Temperatura , Estômatos de Plantas/fisiologia
18.
J Agric Food Chem ; 72(18): 10247-10256, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683760

RESUMO

Some forage legumes synthesize phytoestrogens. We conducted a glasshouse study to investigate how water stress (drought and waterlogging) influences phytoestrogen accumulation in red clover and kura clover. Compared to the red clover control, the 20 day drought resulted in an over 100% increase in the phytoestrogens formononetin and biochanin A, which together accounted for 91-96% of the total phytoestrogens measured. Waterlogging resulted in elevated concentrations of daidzein, genistein, and prunetin but not formononetin or biochanin A. Concentrations of phytoestrogens in kura clover were low or undetectable, regardless of water stress treatment. Leaf water potential was the most explanatory single-predictor of the variation in concentrations of formononetin, biochanin A, and total phytoestrogens in red clover. These results suggest that drought-stressed red clover may have higher potential to lead to estrogenic effects in ruminant livestock and that kura clover is a promising alternative low- or no-phytoestrogen perennial forage legume.


Assuntos
Fitoestrógenos , Trifolium , Trifolium/metabolismo , Trifolium/química , Trifolium/crescimento & desenvolvimento , Fitoestrógenos/metabolismo , Fitoestrógenos/análise , Água/metabolismo , Água/análise , Isoflavonas/metabolismo , Isoflavonas/análise , Secas , Genisteína/análise , Genisteína/metabolismo
19.
J Environ Manage ; 359: 120901, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669880

RESUMO

Hydrogeological effects of climate change will continue to affect water reservoirs worldwide. Some regions are experiencing and will experience severe decline in their water resources due to prolonged periods of drought. Since emergency practices such as the provision of emergency drinking water and forest firefighting depend on regional surface and groundwater resources, the safety of the hydro geosphere's of a region is of fundamental importance, especially in times of crisis. The study uniquely addresses the integration of emergency water management within broader sustainable practices, particularly in the German context where such an analysis has not been previously consolidated. Using the example of emergency drinking water management, the paper elaborates the extent to which measures of emergency response are currently recognised as part of sustainable water management. In an analysis, 79 documents addressing emergency drinking water management of both water supply companies and crisis management authorities in Germany were analysed. The findings revealed a general lack of documents addressing the long-term dependencies between water resources and emergency measures currently applied. Furthermore, the documents do not elaborate on how to implement these measures in a sustainable way recognising the distinctive characteristics of a region. Since response measures can potentially intensify water stress in a region, emergency water management must be consequently included in a holistic water management process to protect landscapes and communities for the future. This paper provides a first comprehensive compilation of essential documents dealing with emergency drinking water management in Germany. It furthermore introduces a new approach to emergency water management and identifies necessary research that could serve as a baseline for future crisis decision making to strengthen national and international initiatives on water resource protection.


Assuntos
Água Potável , Abastecimento de Água , Mudança Climática , Alemanha , Água Subterrânea
20.
J Plant Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619624

RESUMO

Ecophysiological studies of lichens in tropical Asia are rare, and additional studies can increase the understanding of lichen life in this region. The main aim of this study was to observe the relationships between water availability and photosynthetic parameters, as well as hydration trait parameters, in macrolichens during the rainy and dry seasons in a tropical forest. A total of 11 lichen species growing in a lower montane rainforest in Thailand were collected and studied. The results clearly showed that the specific thallus mass (STM), net photosynthetic rate (Pn), the potential quantum yield of primary photochemistry (Fv/Fm), chlorophyll content, and carotenoid content of almost all lichens were lower in the dry season than in the rainy season. Field measurements in the dry season revealed that only the foliose chlorolichen Parmotrema tinctorum was metabolically active and exhibited slight carbon assimilation. In the rainy season, all lichens started their photosynthesis in the early morning, reached maximal values, declined, and ceased when the thalli desiccated. The photosynthetically active period of the lichens was approximately 2-3 h in the morning, and the activities of the cyanolichens ended approximately 30 min after the chlorolichens. The hydration trait parameters, including the STM, maximal water content (WCmax), and water holding capacity (WHC), were greater in the cyanolichens. In addition, the maximal Pn (Pnmax) and optimal water content (WCopt) for Pn were also greater in the cyanolichens, but the maximal Fv/Fm (Fv/Fmmax) was lower. The cyanolichens compensated for their inability to use humid air to restore photosynthesis by having higher water content and storage, higher photosynthetic rates, and longer photosynthetically active periods. This study provides additional insights into lichen ecophysiology in tropical forests that can be useful for lichen conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA