Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ann Bot ; 125(2): 291-300, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31120520

RESUMO

BACKGROUND AND AIMS: Ecosystem-based flood defence including salt-marsh as a key component is increasingly applied worldwide due to its multifunctionality and cost-effectiveness. While numerous experiments have explored the wave-attenuation effects of salt-marsh plants critical to flood protection, little is known about the physiological and biochemical responses of these species to continuous wave exposure. METHODS: To address this knowledge gap, we developed a shallow-water wave simulator to expose individual Spartina alterniflora plants to waves in a greenhouse for 8 weeks. S. alterniflora individuals were partially submerged and experienced horizontal sinusoidal motion to mimic plant exposure to shallow water waves. A factorial experiment was used to test the effects of three wave heights (4.1 cm, 5.5 cm and a no-wave control) and two wave periods (2 s and 3 s) on the following key physiological and biochemical plant parameters: plant growth, antioxidant defence and photosynthetic capacity. KEY RESULTS: Comparison of wave treatment and control groups supported our hypotheses that wave exposure leads to oxidative stress in plants and suppresses plant photosynthetic capacity and thereby growth. In response, the wave-exposed plants exhibited activated antioxidant enzymes. Comparison between the different wave treatment groups suggested the wave effects to be generally correlated positively with wave height and negatively with wave period, i.e. waves with greater height and frequency imposed more stress on plants. In addition, wave-exposed plants tended to allocate more biomass to their roots. Such allocation is favourable because it enhances root anchorage against the wave impact. CONCLUSIONS: Simulated wave exposure systems such as the one used here are an effective tool for studying the response of salt-marsh plants to long-term wave exposure, and so help inform ecosystem-based flood defence projects in terms of plant selection, suitable transplantation locations and timing, etc. Given the projected variability of the global wave environment due to climate change, understanding plant response to long-term wave exposure has important implications for salt-marsh conservation and its central role in natural flood defence.


Assuntos
Ecossistema , Áreas Alagadas , Biomassa , Plantas , Poaceae
2.
J Exp Biol ; 222(Pt 4)2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30659085

RESUMO

Oxygen consumption rates were measured for coral reef fishes during swimming in a bidirectional, oscillatory pattern to simulate station-holding in wave-induced, shallow-water flows. For all species examined, increases in wave intensity, as simulated by increases in frequency and amplitude of oscillation, yielded increased metabolic rates and net costs of swimming (NCOS; swimming metabolic rate minus standard metabolic rate). Comparing species with different swimming modes, the caudal fin swimming Kuhlia spp. (Kuhliidae) and simultaneous pectoral-caudal fin swimming Amphiprion ocellaris (Pomacentridae) turned around to face the direction of swimming most of the time, whereas the median-paired fin (MPF) swimmers, the pectoral fin swimming Ctenochaetus strigosus (Acanthuridae) and dorsal-anal fin swimming Sufflamen bursa (Balistidae), more frequently swam in reverse for one half of the oscillation to avoid turning. Contrary to expectations, the body-caudal fin (BCF) swimming Kuhlia spp. had the lowest overall NCOS in the oscillatory swimming regime compared with the MPF swimmers. However, when examining the effect of increasing frequency of oscillation at similar average velocities, Kuhlia spp. showed a 24% increase in NCOS with a 50% increase in direction changes and accelerations. The two strict MPF swimmers had lower increases on average, suggestive of reduced added costs with increasing frequency of direction changes with this swimming mode. Further studies are needed on the costs of unsteady swimming to determine whether these differences can explain the observed prevalence of fishes using the MPF pectoral fin swimming mode in reef habitats exposed to high, wave-surge-induced water flows.


Assuntos
Metabolismo Energético , Consumo de Oxigênio , Perciformes/fisiologia , Natação , Tetraodontiformes/fisiologia , Animais , Recifes de Corais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA