RESUMO
OBJECTIVE: Infantile epileptic spasms (IS) are epileptic seizures that are associated with increased risk for developmental impairments, adult epilepsies, and mortality. Here, we investigated coherence-based network dynamics in scalp EEG of infants with IS to identify frequency-dependent networks associated with spasms. We hypothesized that there is a network of increased fast ripple connectivity during the electrographic onset of clinical spasms, which is distinct from controls. METHODS: We retrospectively analyzed peri-ictal and interictal EEG recordings of 14 IS patients. The data was compared with 9 age-matched controls. Wavelet phase coherence (WPC) was computed between 0.2 and 400 Hz. Frequency- and time-dependent brain networks were constructed using this coherence as the strength of connection between two EEG channels, based on graph theory principles. Connectivity was evaluated through global efficiency (GE) and channel-based closeness centrality (CC), over frequency and time. RESULTS: GE in the fast ripple band (251-400 Hz) was significantly greater following the onset of spasms in all patients (P < 0.05). Fast ripple networks during the first 10s from spasm onset show enhanced anteroposterior gradient in connectivity (posterior > central > anterior, Kruskal-Wallis P < 0.001), with maximum CC over the centroparietal channels in 10/14 patients. Additionally, this anteroposterior gradient in CC connectivity is observed during spasms but not during the interictal awake or asleep states of infants with IS. In controls, anteroposterior gradient in fast ripple CC was noted during arousals and wakefulness but not during sleep. There was also a simultaneous decrease in GE in the 5-8 Hz range after the onset of spasms (P < 0.05), of unclear biological significance. SIGNIFICANCE: We identified an anteroposterior gradient in the CC connectivity of fast ripple hubs during spasms. This anteroposterior gradient observed during spasms is similar to the anteroposterior gradient in the CC connectivity observed in wakefulness or arousals in controls, suggesting that this state change is related to arousal networks.
Assuntos
Epilepsia , Espasmos Infantis , Lactente , Adulto , Humanos , Estudos Retrospectivos , Eletroencefalografia , Convulsões , EspasmoRESUMO
Hypertensive pregnancy disorders put the maternal-fetal dyad at risk and are one of the leading causes of morbidity and mortality during pregnancy. Multiple efforts have been made to understand the physiological mechanisms behind changes in blood pressure. Still, to date, no study has focused on analyzing the dynamics of the interactions between the systems involved in blood pressure control. In this work, we aim to address this question by evaluating the phase coherence between different signals using wavelet phase coherence. Electrocardiogram, continuous blood pressure, electrocardiogram-derived respiration, and muscle sympathetic nerve activity signals were obtained from ten normotensive pregnant women, ten normotensive non-pregnant women, and ten pregnant women with preeclampsia during rest and cold pressor test. At rest, normotensive pregnant women showed higher phase coherence in the high-frequency band (0.15-0.4 Hz) between muscle sympathetic nerve activity and the RR interval, blood pressure, and respiration compared to non-pregnant normotensive women. Although normotensive pregnant women showed no phase coherence differences with respect to hypertensive pregnant women at rest, higher phase coherence between the same pairs of variables was found during the cold pressor test. These results suggest that, in addition to the increased sympathetic tone of normotensive pregnant women widely described in the existing literature, there is an increase in cardiac parasympathetic modulation and respiratory-driven modulation of muscle sympathetic nerve activity and blood pressure that could compensate sympathetic increase and make blood pressure control more efficient to maintain it in normal ranges. Moreover, blunted modulation could prevent its buffer effect and produce an increase in blood pressure levels, as observed in the hypertensive women in this study. This initial exploration of cardiorespiratory coupling in pregnancy opens the opportunity to follow up on more in-depth analyses and determine causal influences.
RESUMO
Tai Chi is an effective strategy for slowing cognitive decline, although the underlying mechanism remains unclear. We designed a cross-sectional study to examine brain functional connectivity in middle-aged Hong Chuan Tai Chi practitioners. Eighteen middle-aged Hong Chuan Tai Chi practitioners and 22 age-matched Tai Chi-naïve controls completed functional near-infrared spectroscopy (fNIRS) tests to evaluate oxyhemoglobin changes in the prefrontal cortex (PFC), motor cortex (MC), and occipital cortex (OC) in five frequency intervals (I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; IV, 0.021-0.052 Hz; V, 0.0095-0.021 Hz). Wavelet phase coherence was used to analyze the match between the instantaneous phases of the two signals to accurately measure brain functional connectivity. Global cognition was measured using the Montreal Cognitive Assessment scale. Compared with the control group, Hong Chuan Tai Chi practitioners had better global cognition (p < 0.01) and showed higher functional connectivity of the PFC, MC, and OC in intervals I, III, VI, and V in the resting state within the same brain hemispheres or between the left and right hemispheres. Our findings revealed that middle-aged Hong Chuan Tai Chi practitioners had higher functional connectivity of the PFC, MC, and OC across both brain hemispheres in cardiac activity, myogenic activity, sympathetic nervous system, and endothelial cell metabolic activities which may contribute to higher global cognition.
Assuntos
Tai Chi Chuan , Encéfalo/fisiologia , Mapeamento Encefálico , Estudos Transversais , Oxiemoglobinas/metabolismo , Tai Chi Chuan/métodosRESUMO
Moyamoya is a cerebrovascular disease with a high mortality rate. Early detection and mechanistic studies are necessary. Near-infrared spectroscopy (NIRS) was used to study the signals of the cerebral tissue oxygen saturation index (TOI) and the changes in oxygenated and deoxygenated hemoglobin concentrations (HbO and Hb) in 64 patients with moyamoya disease and 64 healthy volunteers. The wavelet transforms (WT) of TOI, HbO and Hb signals, as well as the wavelet phase coherence (WPCO) of these signals from the left and right frontal lobes of the same subject, were calculated. Features were extracted from the spontaneous oscillations of TOI, HbO and Hb in five physiological activity-related frequency segments. Machine learning models based on support vector machine (SVM), random forest (RF) and extreme gradient boosting (XGBoost) have been built to classify the two groups. For 20-min signals, the 10-fold cross-validation accuracies of SVM, RF and XGBoost were 87%, 85% and 85%, respectively. For 5-min signals, the accuracies of the three methods were 88%, 88% and 84%, respectively. The method proposed in this article has potential for detecting and screening moyamoya with high proficiency. Evaluating the cerebral oxygenation with NIRS shows great potential in screening moyamoya diseases.
Assuntos
Doença de Moyamoya , Circulação Cerebrovascular/fisiologia , Humanos , Aprendizado de Máquina , Oxigênio , Saturação de OxigênioRESUMO
For decades the role of autonomic regulation and the baroreflex in the generation of the respiratory sinus arrhythmia (RSA) - modulation of heart rate by the frequency of breathing - has been under dispute. We hypothesized that by using autonomic blockers we can reveal which oscillations and their interactions are suppressed, elucidating their involvement in RSA as well as in cardiovascular regulation more generally. R-R intervals, end tidal CO2, finger arterial pressure, and muscle sympathetic nerve activity (MSNA) were measured simultaneously in 7 subjects during saline, atropine and propranolol infusion. The measurements were repeated during spontaneous and fixed-frequency breathing, and apnea. The power spectra, phase coherence and couplings were calculated to characterise the variability and interactions within the cardiovascular system. Atropine reduced R-R interval variability (p < 0.05) in all three breathing conditions, reduced MSNA power during apnea and removed much of the significant coherence and couplings. Propranolol had smaller effect on the power of oscillations and did not change the number of significant interactions. Most notably, atropine reduced R-R interval power in the 0.145-0.6 Hz interval during apnea, which supports the hypothesis that the RSA is modulated by a mechanism other than the baroreflex. Atropine also reduced or made negative the phase shift between the systolic and diastolic pressure, indicating the cessation of baroreflex-dependent blood pressure variability. This result suggests that coherent respiratory oscillations in the blood pressure can be used for the non-invasive assessment of autonomic regulation.
RESUMO
As a complex cognitive activity, knowledge transfer is mostly correlated to cognitive processes such as working memory, behavior control, and decision-making in the human brain while engineering problem-solving. It is crucial to explain how the alteration of the functional brain network occurs and how to express it, which causes the alteration of the cognitive structure of knowledge transfer. However, the neurophysiological mechanisms of knowledge transfer are rarely considered in existing studies. Thus, this study proposed functional connectivity (FC) to describe and evaluate the dynamic brain network of knowledge transfer while engineering problem-solving. In this study, we adopted the modified Wisconsin Card-Sorting Test (M-WCST) reported in the literature. The neural activation of the prefrontal cortex was continuously recorded for 31 participants using functional near-infrared spectroscopy (fNIRS). Concretely, we discussed the prior cognitive level, knowledge transfer distance, and transfer performance impacting the wavelet amplitude and wavelet phase coherence. The paired t-test results showed that the prior cognitive level and transfer distance significantly impact FC. The Pearson correlation coefficient showed that both wavelet amplitude and phase coherence are significantly correlated to the cognitive function of the prefrontal cortex. Therefore, brain FC is an available method to evaluate cognitive structure alteration in knowledge transfer. We also discussed why the dorsolateral prefrontal cortex (DLPFC) and occipital face area (OFA) distinguish themselves from the other brain areas in the M-WCST experiment. As an exploratory study in NeuroManagement, these findings may provide neurophysiological evidence about the functional brain network of knowledge transfer while engineering problem-solving.
RESUMO
Older adults with mild cognitive impairment (MCI) have a high risk of developing Alzheimer's disease. Gait performance is a potential clinical marker for the progression of MCI into dementia. However, the relationship between gait and brain functional connectivity (FC) in older adults with MCI remains unclear. Forty-five subjects [MCI group, n = 23; healthy control (HC) group, n = 22] were recruited. Each subject performed a walking task (Task 01), counting backward-walking task (Task 02), naming animals-walking task (Task 03), and calculating-walking task (Task 04). The gait parameters and cerebral oxygenation signals from the left prefrontal cortex (LPFC), right prefrontal cortex (RPFC), left motor cortex (LMC), right motor cortex (RMC), left occipital leaf cortex (LOL), and right occipital leaf cortex (ROL) were obtained simultaneously. Wavelet phase coherence was calculated in two frequency intervals: low frequency (interval I, 0.052-0.145 Hz) and very low frequency (interval II, 0.021-0.052 Hz). Results showed that the FC of RPFC-RMC is significantly lower in interval I in Task 03 compared with that in Task 02 in the MCI group (p = 0.001). Also, the right relative symmetry index (IDpsR) is significantly lower in Task 03 compared with that in Task 02 (p = 0.000). The IDpsR is positively correlated with the FC of RPFC-RMC in interval I in the MCI group (R = 0.205, p = 0.041). The gait symmetry such as left relative symmetry index (IDpsL) and IDpsR is significantly lower in the dual-task (DT) situation compared with the single task in the two groups (p < 0.05). The results suggested that the IDpsR might reflect abnormal change in FC of RPFC-RMC in interval I in the MCI population during Task 03. The gait symmetry is affected by DTs in both groups. The findings of this study may have a pivotal role in the early monitoring and intervention of brain dysfunction among older adults with MCI.
RESUMO
BACKGROUND: The prognosis for cardiac arrest (CA) is associated with the degree of cerebral ischemia. We investigated the relationship between the wavelet coherence of cerebral oxyhemoglobin (HbO2) among different channels and outcomes after CA. Moreover, we aimed to develop a prognostication method after CA. METHODS: Eighty-three post-resuscitation patients were included. The HbO2 data were collected during the post-resuscitation period (median day, 1) using functional near-infrared spectroscopy. The coherence between sections of prefrontal HbO2 oscillations in five frequency intervals (I, 0.6-2â¯Hz; II, 0.15-0.6â¯Hz; III, 0.05-0.15â¯Hz; IV, 0.02-0.05â¯Hz; and V, 0.0095-0.02â¯Hz) were analyzed. We evaluated the outcomes using cerebral performance category (CPC) scores (good outcome, CPCâ¯≤â¯2 and poor outcome, CPCâ¯≥â¯3) at 3 months after CA. Additionally, the predictive method was developed using the biomarker and coherence value after CA. RESULTS: Among the included patients, 19 patients (22.9%) had a good outcome. Poor outcome group had significantly lower phase coherence in the myogenic frequency interval III compared to good outcome group (0.36⯱â¯0.14 vs. 0.54⯱â¯0.18, Pâ¯<â¯0.001). The predictive method using neuron-specific enolase (NSE) and interval III value demonstrated good discrimination (area under the curve 0.919; 95% confidence interval, 0.850-0.989). CONCLUSIONS: The predictive method using NSE and phase coherence of HbO2 in the interval III from the vascular smooth muscle cells could be a useful tool for prognosticating after CA. This suggests that evaluating cerebral ischemia using phase coherence of HbO2 might be a helpful outcome predictor following CA.
Assuntos
Parada Cardíaca , Oxigênio , Biomarcadores , Parada Cardíaca/terapia , Humanos , Oxiemoglobinas , Fosfopiruvato Hidratase , Valor Preditivo dos Testes , Prognóstico , Espectroscopia de Luz Próxima ao Infravermelho , Análise de OndaletasRESUMO
Race-specific differences in the level of glycated hemoglobin are well known. However, these differences were detected by invasive measurement of mean oxygenation, and their understanding remains far from complete. Given that oxygen is delivered to the cells by hemoglobin through the cardiovascular system, a possible approach is to investigate the phase coherence between blood flow and oxygen transportation. Here we introduce a noninvasive optical method based on simultaneous recordings using NIRS, white light spectroscopy and LDF, combined with wavelet-based phase coherence analysis. Signals were recorded simultaneously for individuals in two groups of healthy subjects, 16 from Sub-Saharan Africa (BA group) and 16 Europeans (CA group). It was found that the power of myogenic oscillations in oxygenated and de-oxygenated hemoglobin is higher in the BA group, but that the phase coherence between blood flow and oxygen saturation, or blood flow and hemoglobin concentrations is higher in the CA group.
Assuntos
Hemodinâmica , Espectroscopia de Luz Próxima ao Infravermelho , População Negra , Circulação Cerebrovascular , Humanos , Oxigênio , Oxiemoglobinas , Análise de Ondaletas , População BrancaRESUMO
To reveal the physiological mechanism of the cognitive decline in subjects with hypertension, the functional connectivity (FC) was assessed by using the wavelet phase coherence (WPCO), and effective connectivity (EC) was assessed by using the coupling strength (CS) of near-infrared spectroscopy (NIRS) signals. NIRS signals were continuously recorded from the prefrontal cortex, sensorimotor cortex, and occipital lobes of 13 hypertensive patients (hypertension group, 70 ± 6.5 years old) and 16 elderly healthy subjects (control group, 71 ± 5.5 years old) in resting and standing periods. WPCO and CS were calculated in four frequency intervals: I, 0.6-2; II, 0.145-0.6; III, 0.052-0.145; and IV, 0.021-0.052 Hz. CS quantifies coupling amplitude. In comparison with the control group, the hypertension group showed significantly decreased (p < 0.05) WPCO and CS in intervals III and IV and in the resting and standing states. WPCO and CS were significantly decreased in the resting state compared with those in the standing state in the hypertension group (p < 0.05). Decreased WPCO and CS indicated a reduced network interaction, suggesting disturbed neurovascular coupling in subjects with hypertension. Compared with the control group, the hypertension group showed significantly lower Mini-Mental State Examination (MMSE) (p = 0.028) and Montreal Cognitive Assessment (MoCA) scores (p = 0.011). In the hypertension group, correlation analysis showed that WPCO and CS were significantly positively correlated with MMSE and MoCA scores, respectively. These findings may provide evidence of impaired cognitive function in hypertension and can enhance the understanding on neurovascular coupling.
RESUMO
OBJECTIVE: Poor sleep quality, which is typically related to impairments in cognitive control, is pervasive among the elderly. However, the brain function mechanisms underlying the association between sleep and elderly behavior remain elusive. This study aims to assess the effects of poor sleep quality on low-frequency neural oscillations based on the wavelet phase coherence (WPCO) and wavelet amplitude (WA) of oxyhemoglobin concentration changes (Delta [HbO2]) measured through near-infrared spectroscopy (NIRS) method. METHODS: Subjective sleep quality was measured through the Pittsburgh Sleep Quality Index (PSQI). Continuously recorded NIRS signals from the prefrontal cortex, sensorimotor cortical, and occipital lobes of 15 poor-sleep-quality elderly subjects (PSQ group) as well as 14 healthy elderly subjects (control group) in the resting and task states. The WPCO and WA values were calculated in low frequency (0.01-0.08â¯Hz). Pearson correlation analysis was used to assess the respective degrees of correlation between the WPCO of bilateral prefrontal lobes, WA of left prefrontal cortex (LPFC), WA of right prefrontal cortex (RPFC), F1 scores, and PSQI scores, respectively. RESULTS: The WPCO values were significantly lower in the PSQ group than in the control group (pâ¯<â¯0.05). Compared with the control group, the WA was significantly higher in the PSQ group and was also significantly higher in the resting state than in the task state. The F1 scores were significantly lower in the PSQ group when performing 1-back task. In the PSQ group, the correlation analysis showed the negative correlation between the PSQI scores and WPCO values. The WA values of LPFC and RFFC exhibited positive correlations with the PSQI scores. CONCLUSIONS: Collectively, these results suggest that poor sleep reduces phase synchronization, which may contribute to the diminished cognitive functions among the sample population.
Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Transtornos do Sono-Vigília/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise de Ondaletas , Idoso , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologiaRESUMO
Noninvasive and accurate assessment of driving fatigue in relation to brain activity during long-term driving can contribute to traffic safety and accident prevention. This study evaluated functional connectivity (FC) in relevant brain regions. Synergistic mechanisms in different brain regions were detected by a novel simulator, which combined semi-immersive virtual reality technology and functional near-infrared spectroscopy. Each subject was instructed to complete driving tasks coupled with a mental calculation task. Wavelet coherence (WCO) and wavelet phase coherence (WPCO) were calculated and assessed in frequency intervals (I) 0.6-2 and (II) 0.145-0.6Hz as global connectivity measures; (III) 0.052-0.145, (IV) 0.021-0.052, (V) 0.0095-0.021 and (VI) 0.005-0.0095Hz as FC. WCO and WPCO revealed the strength and synchronization of cerebral connectivity, respectively. Significantly low WCO levels were found in intervals I and III in prefrontal cortex (PFC) and IV in motor cortex (MC) at the end of the driving task. Furthermore, significantly low WPCO were found in intervals I, and III in PFC and interval IV in MC. Experimental findings suggested that progressive mental fatigue adversely influences the cognitive function in the PFC and the cooperative mechanism between the PFC and MC.
Assuntos
Condução de Veículo , Encéfalo/fisiologia , Adulto , Fadiga/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Análise e Desempenho de Tarefas , Interface Usuário-Computador , Análise de Ondaletas , Adulto JovemRESUMO
OBJECTIVE: The objective of this study was to assess the effects of long-term offshore work on cerebral oxygenation oscillations in sailors based on the wavelet phase coherence (WPCO) of near-infrared spectroscopy (NIRS) signals. METHODS: The fatigue severity scale (FSS) was first applied to assess the fatigue level of sailors and age-matched controls. Continuous recordings of NIRS signals were then obtained from the prefrontal lobes in 30 healthy sailors and 30 age-matched controls during the resting state. WPCO between the left and right prefrontal oscillations was analysed and Pearson correlation analysis was used to study the relationship between the FSS and the wavelet amplitude (WA), and between the FSS and the WPCO level. RESULTS: The periodic oscillations of Delta (HbO2) signals were identified at six frequency intervals: I (0.6-2â Hz); II (0.145-0.6â Hz); III (0.052-0.145â Hz); IV (0.021-0.052â Hz); V (0.0095-0.021â Hz); and VI (0.005-0.0095â Hz). The WA in intervals I (F=8.823, p=0.004) and III (F=4.729, p=0.034) was significantly lower in sailors than that in the controls. The WPCO values of sailor group were significantly lower in intervals III (F=4.686, p=0.039), IV (F=4.864, p=0.036) and V (F=5.195, p=0.03) than those of the control group. In the sailor group, the WA in interval I (r=-0.799, p<0.01) and in interval III (r=-0.721, p<0.01) exhibited a negative correlation with the FSS. Also, the WPCO exhibited a negative correlation with the FSS in intervals III (r=-0.839, p<0.01), IV (r=-0.765, p<0.01) and V (r=-0.775, p<0.01) in the sailor group. CONCLUSIONS: The negative correlation between WA and FSS indicates that the lower oscillatory activities might contribute to the development of fatigue. The low WPCO in intervals III, IV and V represents a reduced phase synchronisation of myogenic, neurogenic and endothelial metabolic activities respectively and this may suggest a decline of cognitive function.
Assuntos
Isquemia Encefálica/complicações , Fadiga/etiologia , Exposição Ocupacional/efeitos adversos , Ocupações , Oxigênio/metabolismo , Córtex Pré-Frontal/metabolismo , Navios , Adulto , Infarto Cerebral/complicações , Circulação Cerebrovascular , Cognição , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Fadiga/metabolismo , Humanos , Doenças Profissionais/etiologia , Saúde Ocupacional , Espectroscopia de Luz Próxima ao Infravermelho , Análise de Ondaletas , Adulto JovemRESUMO
This study aims to assess the vigilance task-related change in connectivity in healthy adults using wavelet phase coherence (WPCO) analysis of near-infrared spectroscopy signals (NIRS). NIRS is a non-invasive neuroimaging technique for assessing brain activity. Continuous recordings of the NIRS signals were obtained from the prefrontal cortex (PFC) and sensorimotor cortical areas of 20 young healthy adults (24.9 ± 3.3 years) during a 10-min resting state and a 20-min vigilance task state. The vigilance task was used to simulate driving mental load by judging three random numbers (i.e., whether odd numbers). The task was divided into two sessions: the first 10 min (Task t1) and the second 10 min (Task t2). The WPCO of six channel pairs were calculated in five frequency intervals: 0.6-2 Hz (I), 0.145-0.6 Hz (II), 0.052-0.145 Hz (III), 0.021-0.052 Hz (IV), and 0.0095-0.021 Hz (V). The significant WPCO formed global connectivity (GC) maps in intervals I and II and functional connectivity (FC) maps in intervals III to V. Results show that the GC levels in interval I and FC levels in interval III were significantly lower in the Task t2 than in the resting state (p < 0.05), particularly between the left PFC and bilateral sensorimotor regions. Also, the reaction time (RT) shows an increase in Task t2 compared with that in Task t1. However, no significant difference in WPCO was found between Task t1 and resting state. The results showed that the change in FC at the range of 0.6-2 Hz was not attributed to the vigilance task per se, but the interaction effect of vigilance task and time factors. The findings suggest that the decreased attention level might be partly attributed to the reduced GC levels between the left prefrontal region and sensorimotor area. The present results provide a new insight into the vigilance task-related brain activity.
RESUMO
Postural instability and falls are commonly seen because of aging and motor disabilities. This study aims to assess the posture-related changes in brain functional connectivity by wavelet phase coherence (WPCO) of oxyhemoglobin concentration change (Δ[HbO2]) signals measured through near-infrared spectroscopy (NIRS) in elderly subjects. The NIRS signals were continuously recorded from the prefrontal cortex and sensorimotor cortical areas in 39 healthy elderly subjects and 22 young healthy subjects during 20min resting and 10min standing states. Eight connection types were obtained from the recorded brain areas. The WPCO were calculated in five frequency intervals in each channel pair as follows: I, 0.6-2Hz; II, 0.145-0.6Hz; III, 0.052-0.145Hz; IV, 0.021-0.052Hz; and V, 0.0095-0.021Hz. Results show that posture change and age significantly interacts with the right prefrontal cortex (PFC) and left sensorimotor cortex (SMC) connectivity in interval V (F=5.010, p=0.028). The left and right PFC connectivity in interval I, the left and right SMC connectivity in interval IV, and the connectivity in interval V, including right PFC and right SMC connectivity, left PFC and left SMC connectivity, and right PFC and left SMC connectivity, showed a significant difference between the Group Elderly and Group Young in response to posture change (p<0.05). This study provides new insight into the mechanism of posture control, and results may be useful in assessing the risk of postural instability in aged persons.
Assuntos
Envelhecimento , Equilíbrio Postural , Córtex Pré-Frontal/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Sensório-Motor/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Análise de Ondaletas , Adulto JovemRESUMO
The prefrontal cortex plays an important role in planning complex cognitive behavior, personality expression, and decision making. This study aims to assess the phase synchronization of signals of the oxyhemoglobin concentration changes (Δ[HbO2]) in the left and right prefrontal tissues through near-infrared spectroscopy (NIRS) with wavelet phase coherence (WPCO) method. The NIRS signals were continuously recorded from the left and right prefrontal lobes in 43 healthy elderly subjects (age: 69.6 ± 8.4 years) and 40 young healthy subjects (age: 24.5 ± 1.7 years) during the resting state. Phase synchronization between the left and right prefrontal oscillations in six frequency intervals (I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; IV, 0.021-0.052 Hz; V, 0.0095-0.021 Hz; and VI, 0.005-0.0095 Hz) was analyzed using the WPCO method. The WPCO values of elderly subjects were significantly lower in frequency intervals I (F=7.376, p=0.010) and III (F=6.418, p=0.016) than those of the young subjects. Low phase coherence in intervals I and III indicates reduced synchronization of cardiac activity in the prefrontal area and weakened prefrontal functional connectivity, respectively.
Assuntos
Envelhecimento/sangue , Circulação Cerebrovascular , Oximetria/métodos , Oxiemoglobinas/metabolismo , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Fatores Etários , Idoso , Envelhecimento/psicologia , Biomarcadores/sangue , Pressão Sanguínea , Cognição , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Oscilometria , Valor Preditivo dos Testes , Fatores de Tempo , Análise de Ondaletas , Adulto JovemRESUMO
This study aims to assess the dynamic cerebral autoregulation (dCA) in response to posture change using wavelet phase coherence (WPCO) of cerebral tissue oxyhemoglobin concentrations (Delta [HbO2]) and arterial blood pressure (ABP) signals in healthy elderly subjects. Continuous recordings of near-infrared spectroscopy (NIRS) and ABP signals were obtained from simultaneous measurements in 16 healthy elderly subjects (age: 68.9±7.1 years) and 19 young subjects (age: 24.9±3.2 years). The phase coherence between Delta [HbO2] and ABP oscillations in six frequency intervals (I, 0.6-2 Hz; II, 0.15-0.6 Hz; III, 0.05-0.15 Hz; IV, 0.02-0.05 Hz, V, 0.0095-0.02 Hz and VI, 0.005-0.0095 Hz) was analyzed using WPCO. The sit-to-stand posture change induces significantly lower WPCO in interval III (F=5.50 p=0.025) in the elderly subjects than in the young subjects. However, the stand-to-sit posture change induces higher WPCO in intervals II (F=5.25 p=0.028) and V (F=6.22 p=0.018) in the elderly subjects than in the young subjects. The difference of WPCO in response to posture change between the elderly and the young subjects indicates an altered CA due to aging. This study provides new insight into the dynamics of CA and may be useful in identifying the risk for dCA processes.
Assuntos
Envelhecimento/metabolismo , Pressão Arterial , Homeostase , Oxiemoglobinas/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Análise de Ondaletas , Adulto , Idoso , Córtex Cerebral/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , PosturaRESUMO
The wavelet phase coherence of oscillations in the peripheral blood flow of contralateral skin sites was studied in 20 healthy subjects. Skin perfusion was registered simultaneously on similar regions of the outer sides of the right and left forearms by the laser Doppler flowmetry technique. To estimate the reliability of the obtained wavelet phase coherence values we applied the comparative method using amplitude-adjusted Fourier transform surrogates. High median values (0.63 and 0.59) of the wavelet phase coherence were obtained for the frequency intervals of respiratory (0.145-0.6Hz) and cardiac (0.6-2Hz) rhythms in 18 and 20 participants, respectively. In all the 20 participants we detected high and reliable values (Ðе=0.72) of the wavelet phase coherence for skin blood flow oscillations in the myogenic interval (0.052-0.145Hz). Additionally, we demonstrated high wavelet phase coherence in the neurogenic (0.021-0.052Hz) and endothelial (0.0095-0.021Hz) intervals in 8 and 7 participants, respectively. The corresponding medians of the reliable wavelet phase coherence values for these intervals were 0.74 and 0.82. The obtained results suggest that the microvascular blood flow possesses not only the local mechanisms of generating low-frequency blood flow oscillations, but also a central mechanism, which is likely to synchronize low-frequency oscillations throughout the whole cardiovascular system.
Assuntos
Fluxometria por Laser-Doppler , Microcirculação , Periodicidade , Pele/irrigação sanguínea , Análise de Ondaletas , Adolescente , Velocidade do Fluxo Sanguíneo , Feminino , Análise de Fourier , Voluntários Saudáveis , Humanos , Oscilometria , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto JovemRESUMO
We experimentally altered the timing of respiratory motoneuron activity as a means to modulate and better understand otherwise hidden human central neural and hemodynamic oscillatory mechanisms. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations, and muscle sympathetic nerve activity in 13 healthy supine young men who gradually increased or decreased their breathing frequencies between 0.05 and 0.25 Hz over 9-min periods. We analyzed results with traditional time- and frequency-domain methods, and also with time-frequency methods (wavelet transform, wavelet phase coherence, and directional coupling). We determined statistical significance and identified frequency boundaries by comparing measurements with randomly generated surrogates. Our results support several major conclusions. First, respiration causally modulates both sympathetic (weakly) and vagal motoneuron (strongly) oscillations over a wide frequency range-one that extends well below the frequency of actual breaths. Second, breathing frequency broadly modulates vagal baroreflex gain, with peak gains registered in the low frequency range. Third, breathing frequency does not influence median levels of sympathetic or vagal activity over time. Fourth, phase relations between arterial pressure and sympathetic and vagal motoneurons are unaffected by breathing, and are therefore likely secondary to intrinsic responsiveness of these motoneurons to other synaptic inputs. Finally, breathing frequency does not affect phase coherence between diastolic pressure and muscle sympathetic oscillations, but it augments phase coherence between systolic pressure and R-R interval oscillations over a limited portion of the usual breathing frequency range. These results refine understanding of autonomic oscillatory processes and those physiological mechanisms known as the human respiratory gate.
Assuntos
Músculos/inervação , Músculos/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Pressão Arterial/fisiologia , Barorreflexo/fisiologia , Dióxido de Carbono/metabolismo , Eletrocardiografia/métodos , Hemodinâmica , Humanos , Masculino , Músculos/metabolismo , Respiração , Sistema Nervoso Simpático/metabolismo , Nervo Vago/fisiologia , Adulto JovemRESUMO
In this work we demonstrate that functional infrared imaging is capable of detecting low frequency temperature fluctuations in intact human skin and revealing spatial, temporal, spectral, and time-frequency based differences among three tissue classes: microvasculature, large sub-cutaneous veins, and the remaining surrounding tissue of the forearm. We found that large veins have stronger contractility in the range of 0.005-0.06 Hz compared to the other two tissue classes. Wavelet phase coherence and power spectrum correlation analysis show that microvasculature and skin areas without vessels visible by IR have high phase coherence in the lowest three frequency ranges (0.005-0.0095 Hz, 0.0095-0.02 Hz, and 0.02-0.06 Hz), whereas large veins oscillate independently.