Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.460
Filtrar
1.
Comput Biol Med ; 180: 108943, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096611

RESUMO

Gait analysis has proven to be a key process in the functional assessment of people involving many fields, such as diagnosis of diseases or rehabilitation, and has increased in relevance lately. Gait analysis often requires gathering data, although this can be very expensive and time consuming. One of the main solutions applied in fields when data acquisition is a problem is augmentation of datasets with artificial data. There are two main approaches for doing that: simulation and synthetic data generation. In this article, we propose a parametrizable generative system of synthetic walking simplified human skeletons. For achieving that, a data gathering experiment with up to 26 individuals was conducted. The system consists of two artificial neural networks: a recurrent neural network for the generation of the movement and a multilayer perceptron for determining the size of the segments of the skeletons. The system has been evaluated through four processes: (i) an observational appraisal by researchers in gait analysis, (ii) a visual representation of the distribution of the generated data, (iii) a numerical analysis using the normalized cross-correlation coefficient, and (iv) an angular evaluation to check the kinematic validity of the data. The evaluation concluded that the system is able to generate realistic and accurate gait data. These results reveal a promising path for this research field, which can be further improved through increasing the variety of movements and the user sample.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39087831

RESUMO

The development of wearable electronic devices for human health monitoring requires materials with high mechanical performance and sensitivity. In this study, we present a novel transparent tissue-like ionogel-based wearable sensor based on silver nanowire-reinforced ionogel nanocomposites, P(AAm-co-AA) ionogel-Ag NWs composite. The composite exhibits a high stretchability of 605% strain and a moderate fracture stress of about 377 kPa. The sensor also demonstrates a sensitive response to temperature changes and electrostatic adsorption. By encapsulating the nanocomposite in a polyurethane transparent film dressing, we address issues such as skin irritation and enable multidirectional stretching. Measuring resistive changes of the ionogel nanocomposite in response to corresponding strain changes enables its utility as a highly stretchable wearable sensor with excellent performance in sensitivity, stability, and repeatability. The fabricated pressure sensor array exhibits great proficiency in stress distribution, capacitance sensing, and discernment of fluctuations in both external electric fields and stress. Our findings suggest that this material holds promise for applications in wearable and flexible strain sensors, temperature sensors, pressure sensors, and actuators.

3.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123881

RESUMO

In the context in which severe visual impairment significantly affects human life, this article emphasizes the potential of Artificial Intelligence (AI) and Visible Light Communications (VLC) in developing future assistive technologies. Toward this path, the article summarizes the features of some commercial assistance solutions, and debates the characteristics of VLC and AI, emphasizing their compatibility with blind individuals' needs. Additionally, this work highlights the AI potential in the efficient early detection of eye diseases. This article also reviews the existing work oriented toward VLC integration in blind persons' assistive applications, showing the existing progress and emphasizing the high potential associated with VLC use. In the end, this work provides a roadmap toward the development of an integrated AI-based VLC assistance solution for visually impaired people, pointing out the high potential and some of the steps to follow. As far as we know, this is the first comprehensive work which focuses on the integration of AI and VLC technologies in visually impaired persons' assistance domain.


Assuntos
Inteligência Artificial , Tecnologia Assistiva , Pessoas com Deficiência Visual , Humanos , Pessoas com Deficiência Visual/reabilitação , Luz , Iluminação , Inquéritos e Questionários
4.
Sensors (Basel) ; 24(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39123940

RESUMO

Physical therapy is often essential for complete recovery after injury. However, a significant population of patients fail to adhere to prescribed exercise regimens. Lack of motivation and inconsistent in-person visits to physical therapy are major contributing factors to suboptimal exercise adherence, slowing the recovery process. With the advancement of virtual reality (VR), researchers have developed remote virtual rehabilitation systems with sensors such as inertial measurement units. A functional garment with an integrated wearable sensor can also be used for real-time sensory feedback in VR-based therapeutic exercise and offers affordable remote rehabilitation to patients. Sensors integrated into wearable garments offer the potential for a quantitative range of motion measurements during VR rehabilitation. In this research, we developed and validated a carbon nanocomposite-coated knit fabric-based sensor worn on a compression sleeve that can be integrated with upper-extremity virtual rehabilitation systems. The sensor was created by coating a commercially available weft knitted fabric consisting of polyester, nylon, and elastane fibers. A thin carbon nanotube composite coating applied to the fibers makes the fabric electrically conductive and functions as a piezoresistive sensor. The nanocomposite sensor, which is soft to the touch and breathable, demonstrated high sensitivity to stretching deformations, with an average gauge factor of ~35 in the warp direction of the fabric sensor. Multiple tests are performed with a Kinarm end point robot to validate the sensor for repeatable response with a change in elbow joint angle. A task was also created in a VR environment and replicated by the Kinarm. The wearable sensor can measure the change in elbow angle with more than 90% accuracy while performing these tasks, and the sensor shows a proportional resistance change with varying joint angles while performing different exercises. The potential use of wearable sensors in at-home virtual therapy/exercise was demonstrated using a Meta Quest 2 VR system with a virtual exercise program to show the potential for at-home measurements.


Assuntos
Articulação do Cotovelo , Nanocompostos , Realidade Virtual , Dispositivos Eletrônicos Vestíveis , Humanos , Nanocompostos/química , Articulação do Cotovelo/fisiologia , Robótica/instrumentação , Nanotubos de Carbono/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Amplitude de Movimento Articular/fisiologia , Carbono/química
5.
Sensors (Basel) ; 24(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124030

RESUMO

Quantitative mobility analysis using wearable sensors, while promising as a diagnostic tool for Parkinson's disease (PD), is not commonly applied in clinical settings. Major obstacles include uncertainty regarding the best protocol for instrumented mobility testing and subsequent data processing, as well as the added workload and complexity of this multi-step process. To simplify sensor-based mobility testing in diagnosing PD, we analyzed data from 262 PD participants and 50 controls performing several motor tasks wearing a sensor on their lower back containing a triaxial accelerometer and a triaxial gyroscope. Using ensembles of heterogeneous machine learning models incorporating a range of classifiers trained on a set of sensor features, we show that our models effectively differentiate between participants with PD and controls, both for mixed-stage PD (92.6% accuracy) and a group selected for mild PD only (89.4% accuracy). Omitting algorithmic segmentation of complex mobility tasks decreased the diagnostic accuracy of our models, as did the inclusion of kinesiological features. Feature importance analysis revealed that Timed Up and Go (TUG) tasks to contribute the highest-yield predictive features, with only minor decreases in accuracy for models based on cognitive TUG as a single mobility task. Our machine learning approach facilitates major simplification of instrumented mobility testing without compromising predictive performance.


Assuntos
Acelerometria , Aprendizado de Máquina , Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Acelerometria/instrumentação , Acelerometria/métodos , Algoritmos
6.
Sensors (Basel) ; 24(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39124092

RESUMO

The proliferation of wearable technology enables the generation of vast amounts of sensor data, offering significant opportunities for advancements in health monitoring, activity recognition, and personalized medicine. However, the complexity and volume of these data present substantial challenges in data modeling and analysis, which have been addressed with approaches spanning time series modeling to deep learning techniques. The latest frontier in this domain is the adoption of large language models (LLMs), such as GPT-4 and Llama, for data analysis, modeling, understanding, and human behavior monitoring through the lens of wearable sensor data. This survey explores the current trends and challenges in applying LLMs for sensor-based human activity recognition and behavior modeling. We discuss the nature of wearable sensor data, the capabilities and limitations of LLMs in modeling them, and their integration with traditional machine learning techniques. We also identify key challenges, including data quality, computational requirements, interpretability, and privacy concerns. By examining case studies and successful applications, we highlight the potential of LLMs in enhancing the analysis and interpretation of wearable sensor data. Finally, we propose future directions for research, emphasizing the need for improved preprocessing techniques, more efficient and scalable models, and interdisciplinary collaboration. This survey aims to provide a comprehensive overview of the intersection between wearable sensor data and LLMs, offering insights into the current state and future prospects of this emerging field.


Assuntos
Atividades Humanas , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Inquéritos e Questionários , Aprendizado de Máquina
7.
ACS Nano ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145724

RESUMO

Recent years have witnessed tremendous advances in machine learning techniques for wearable sensors and bioelectronics, which play an essential role in real-time sensing data analysis to provide clinical-grade information for personalized healthcare. To this end, supervised learning and unsupervised learning algorithms have emerged as powerful tools, allowing for the detection of complex patterns and relationships in large, high-dimensional data sets. In this Review, we aim to delineate the latest advancements in machine learning for wearable sensors, focusing on key developments in algorithmic techniques, applications, and the challenges intrinsic to this evolving landscape. Additionally, we highlight the potential of machine-learning approaches to enhance the accuracy, reliability, and interpretability of wearable sensor data and discuss the opportunities and limitations of this emerging field. Ultimately, our work aims to provide a roadmap for future research endeavors in this exciting and rapidly evolving area.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39154254

RESUMO

PURPOSE: The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises. METHODS: The cohort included both healthy and patients with rotator-cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto-inertial sensors. Six supervised machine-learning models (k-Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross-validation method, with different combinations of outer and inner folds. RESULTS: A total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1-score of 89.89%. CONCLUSION: The results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home-based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient-driven sensor positioning. LEVEL OF EVIDENCE: Level III.

9.
Sleep ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109929

RESUMO

STUDY OBJECTIVES: Discerning the differential contribution of sleep behavior and sleep physiology to the subsequent development of posttraumatic-stress-disorder (PTSD) symptoms following military operational service among combat soldiers. METHODS: Longitudinal design with three measurement time points: during basic training week (T1), during intensive stressed training week (T2), and following military operational service (T3). Participating soldiers were all from the same unit, ensuring equivalent training schedules and stress exposures. During measurement weeks soldiers completed the Depression Anxiety and Stress Scale (DASS) and the PTSD Checklist for DSM-5 (PCL-5). Sleep physiology (sleep heart-rate) and sleep behavior (duration, efficiency) were monitored continuously in natural settings during T1 and T2 weeks using wearable sensors. RESULTS: Repeated measures ANOVA revealed a progressive increase in PCL-5 scores from T1 and T2 to T3, suggesting an escalation in PTSD symptom severity following operational service. Hierarchical linear regression analysis uncovered a significant relation between the change in DASS stress scores from T1 to T2 and subsequent PCL-5 scores at T3. Incorporating participants' sleep heart-rate markedly enhanced the predictive accuracy of the model, with increased sleep heart-rate from T1 to T2 emerging as a significant predictor of elevated PTSD symptoms at T3, above and beyond the contribution of DASS stress scores. Sleep behavior did not add to the accuracy of the model. CONCLUSION: Findings underscore the critical role of sleep physiology, specifically elevated sleep heart-rate following stressful military training, in indicating subsequent PTSD risk following operational service among combat soldiers. These findings may contribute to PTSD prediction and prevention efforts.

10.
Small ; : e2404771, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109931

RESUMO

Triboelectric nanogenerators (TENG) are promising alternatives for clean energy harvesting. However, the material utilization in the development of TENG relies majorly on polymers derived from non-renewable resources. Therefore, minimizing the carbon footprint associated with such TENG development demands a shift toward usage of sustainable materials. This study pioneers using natural rubber (NR) as a sustainable alternative in TENG development. Infusing graphene in NR, its dielectric constant and tribonegativity are optimized, yielding a remarkable enhancement. The optimized sample exhibits a dielectric constant of 411 (at 103 Hz) and a contact potential difference (CPD) value of 1.85 V. In contrast, the pristine NR sample showed values of 6 and 3.06 V for the dielectric constant and CPD. Simulation and experimental studies fine-tune the TENG's performance, demonstrating excellent agreement between theoretical predictions and practical studies. Sensors developed via stencil printing technique possess a remarkably low layer thickness of 270 µm, and boast a power density of 420 mW m-2, a staggering 250% increase over conventional NR. Moreover, the material is pressure sensitive, enabling precise real-time human motion detection, including finger contact, finger bending, neck bending, and arm bending. This versatile sensor offers wireless monitoring, empowering healthcare monitoring based on the Internet of Things.

12.
J Neurol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143345

RESUMO

BACKGROUND: The diagnosis of Parkinson's disease is currently based on clinical evaluation. Despite clinical hallmarks, unfortunately, the error rate is still significant. Low in-vivo diagnostic accuracy of clinical evaluation mainly relies on the lack of quantitative biomarkers for an objective motor performance assessment. Non-invasive technologies, such as wearable sensors, coupled with machine learning algorithms, assess quantitatively and objectively the motor performances, with possible benefits either for in-clinic and at-home settings. We conducted a systematic review of the literature on machine learning algorithms embedded in smart devices in Parkinson's disease diagnosis. METHODS: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we searched PubMed for articles published between December, 2007 and July, 2023, using a search string combining "Parkinson's disease" AND ("healthy" or "control") AND "diagnosis", within the Groups and Outcome domains. Additional search terms included "Algorithm", "Technology" and "Performance". RESULTS: From 89 identified studies, 47 met the inclusion criteria based on the search string and four additional studies were included based on the Authors' expertise. Gait emerged as the most common parameter analysed by machine learning models, with Support Vector Machines as the prevalent algorithm. The results suggest promising accuracy with complex algorithms like Random Forest, Support Vector Machines, and K-Nearest Neighbours. DISCUSSION: Despite the promise shown by machine learning algorithms, real-world applications may still face limitations. This review suggests that integrating machine learning with wearable sensors has the potential to improve Parkinson's disease diagnosis. These tools could provide clinicians with objective data, potentially aiding in earlier detection.

13.
J Sports Sci ; : 1-9, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109877

RESUMO

The purpose of this study was to test whether a machine learning model can accurately predict VO2 across different exercise intensities by combining muscle oxygen (MO2) with heart rate (HR). Twenty young highly trained athletes performed the following tests: a ramp incremental exercise, three submaximal constant intensity exercises, and three severe intensity exhaustive exercises. A Machine Learning model was trained to predict VO2, with model inputs including heart rate, MO2 in the left (LM) and right legs (RM). All models demonstrated equivalent results, with the accuracy of predicting VO2 at different exercise intensities varying among different models. The LM+RM+HR model performed the best across all intensities, with low bias in predicted VO2 for all intensity exercises (0.08 ml/kg/min, 95% limits of agreement: -5.64 to 5.81), and a very strong correlation (r = 0.94, p < 0.001) with measured VO2. Furthermore, the accuracy of predicting VO2 using LM+HR or RM+HR was higher than using LM+RM, and higher than the accuracy of predicting VO2 using LM, RM, or HR alone. This study demonstrates the potential of a machine learning model combining MO2 and HR to predict VO2 with minimal bias, achieving accurate predictions of VO2 for different intensity levels of exercise.

14.
JMIR Form Res ; 8: e53977, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110968

RESUMO

BACKGROUND: Wearable physiological monitoring devices are promising tools for remote monitoring and early detection of potential health changes of interest. The widespread adoption of such an approach across communities and over long periods of time will require an automated data platform for collecting, processing, and analyzing relevant health information. OBJECTIVE: In this study, we explore prospective monitoring of individual health through an automated data collection, metrics extraction, and health anomaly analysis pipeline in free-living conditions over a continuous monitoring period of several months with a focus on viral respiratory infections, such as influenza or COVID-19. METHODS: A total of 59 participants provided smartwatch data and health symptom and illness reports daily over an 8-month window. Physiological and activity data from photoplethysmography sensors, including high-resolution interbeat interval (IBI) and step counts, were uploaded directly from Garmin Fenix 6 smartwatches and processed automatically in the cloud using a stand-alone, open-source analytical engine. Health risk scores were computed based on a deviation in heart rate and heart rate variability metrics from each individual's activity-matched baseline values, and scores exceeding a predefined threshold were checked for corresponding symptoms or illness reports. Conversely, reports of viral respiratory illnesses in health survey responses were also checked for corresponding changes in health risk scores to qualitatively assess the risk score as an indicator of acute respiratory health anomalies. RESULTS: The median average percentage of sensor data provided per day indicating smartwatch wear compliance was 70%, and survey responses indicating health reporting compliance was 46%. A total of 29 elevated health risk scores were detected, of which 12 (41%) had concurrent survey data and indicated a health symptom or illness. A total of 21 influenza or COVID-19 illnesses were reported by study participants; 9 (43%) of these reports had concurrent smartwatch data, of which 6 (67%) had an increase in health risk score. CONCLUSIONS: We demonstrate a protocol for data collection, extraction of heart rate and heart rate variability metrics, and prospective analysis that is compatible with near real-time health assessment using wearable sensors for continuous monitoring. The modular platform for data collection and analysis allows for a choice of different wearable sensors and algorithms. Here, we demonstrate its implementation in the collection of high-fidelity IBI data from Garmin Fenix 6 smartwatches worn by individuals in free-living conditions, and the prospective, near real-time analysis of the data, culminating in the calculation of health risk scores. To our knowledge, this study demonstrates for the first time the feasibility of measuring high-resolution heart IBI and step count using smartwatches in near real time for respiratory illness detection over a long-term monitoring period in free-living conditions.

15.
J Med Internet Res ; 26: e56750, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102676

RESUMO

BACKGROUND: Fall detection is of great significance in safeguarding human health. By monitoring the motion data, a fall detection system (FDS) can detect a fall accident. Recently, wearable sensors-based FDSs have become the mainstream of research, which can be categorized into threshold-based FDSs using experience, machine learning-based FDSs using manual feature extraction, and deep learning (DL)-based FDSs using automatic feature extraction. However, most FDSs focus on the global information of sensor data, neglecting the fact that different segments of the data contribute variably to fall detection. This shortcoming makes it challenging for FDSs to accurately distinguish between similar human motion patterns of actual falls and fall-like actions, leading to a decrease in detection accuracy. OBJECTIVE: This study aims to develop and validate a DL framework to accurately detect falls using acceleration and gyroscope data from wearable sensors. We aim to explore the essential contributing features extracted from sensor data to distinguish falls from activities of daily life. The significance of this study lies in reforming the FDS by designing a weighted feature representation using DL methods to effectively differentiate between fall events and fall-like activities. METHODS: Based on the 3-axis acceleration and gyroscope data, we proposed a new DL architecture, the dual-stream convolutional neural network self-attention (DSCS) model. Unlike previous studies, the used architecture can extract global feature information from acceleration and gyroscope data. Additionally, we incorporated a self-attention module to assign different weights to the original feature vector, enabling the model to learn the contribution effect of the sensor data and enhance classification accuracy. The proposed model was trained and tested on 2 public data sets: SisFall and MobiFall. In addition, 10 participants were recruited to carry out practical validation of the DSCS model. A total of 1700 trials were performed to test the generalization ability of the model. RESULTS: The fall detection accuracy of the DSCS model was 99.32% (recall=99.15%; precision=98.58%) and 99.65% (recall=100%; precision=98.39%) on the test sets of SisFall and MobiFall, respectively. In the ablation experiment, we compared the DSCS model with state-of-the-art machine learning and DL models. On the SisFall data set, the DSCS model achieved the second-best accuracy; on the MobiFall data set, the DSCS model achieved the best accuracy, recall, and precision. In practical validation, the accuracy of the DSCS model was 96.41% (recall=95.12%; specificity=97.55%). CONCLUSIONS: This study demonstrates that the DSCS model can significantly improve the accuracy of fall detection on 2 publicly available data sets and performs robustly in practical validation.


Assuntos
Acidentes por Quedas , Aprendizado Profundo , Acidentes por Quedas/prevenção & controle , Humanos , Dispositivos Eletrônicos Vestíveis , Redes Neurais de Computação , Masculino
16.
Artigo em Inglês | MEDLINE | ID: mdl-39056543

RESUMO

BACKGROUND: Remote monitoring systems have the potential to measure symptoms and treatment effects in people with Parkinson's disease (PwP) in the home environment. However, information about user experience and long-term compliance of such systems in a large group of PwP with relatively severe PD symptoms is lacking. OBJECTIVE: The aim was to gain insight into user experience and long-term compliance of a smartwatch (to be worn 24/7) and an online dashboard to report falls and receive feedback of data. METHODS: We analyzed the data of the "Bringing Parkinson Care Back Home" study, a 1-year observational cohort study in 200 PwP with a fall history. User experience, compliance, and reasons for noncompliance were described. Multiple Cox regression models were used to identify determinants of 1-year compliance. RESULTS: We included 200 PwP (mean age: 69 years, 37% women), of whom 116 (58%) completed the 1-year study. The main reasons for dropping out of the study were technical problems (61 of 118 reasons). Median wear time of the smartwatch was 17.5 h/day. The online dashboard was used by 77% of participants to report falls. Smartphone possession, shorter disease duration, more severe motor symptoms, and less-severe freezing and balance problems, but not age and gender, were associated with a higher likelihood of 1-year compliance. CONCLUSIONS: The 1-year compliance with this specific smartwatch was moderate, and the user experience was generally good, except battery life and data transfer. Future studies can build on these findings by incorporating a smartwatch that is less prone to technical issues.

17.
JMIR AI ; 3: e51118, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985504

RESUMO

BACKGROUND: Abdominal auscultation (i.e., listening to bowel sounds (BSs)) can be used to analyze digestion. An automated retrieval of BS would be beneficial to assess gastrointestinal disorders noninvasively. OBJECTIVE: This study aims to develop a multiscale spotting model to detect BSs in continuous audio data from a wearable monitoring system. METHODS: We designed a spotting model based on the Efficient-U-Net (EffUNet) architecture to analyze 10-second audio segments at a time and spot BSs with a temporal resolution of 25 ms. Evaluation data were collected across different digestive phases from 18 healthy participants and 9 patients with inflammatory bowel disease (IBD). Audio data were recorded in a daytime setting with a smart T-Shirt that embeds digital microphones. The data set was annotated by independent raters with substantial agreement (Cohen κ between 0.70 and 0.75), resulting in 136 hours of labeled data. In total, 11,482 BSs were analyzed, with a BS duration ranging between 18 ms and 6.3 seconds. The share of BSs in the data set (BS ratio) was 0.0089. We analyzed the performance depending on noise level, BS duration, and BS event rate. We also report spotting timing errors. RESULTS: Leave-one-participant-out cross-validation of BS event spotting yielded a median F1-score of 0.73 for both healthy volunteers and patients with IBD. EffUNet detected BSs under different noise conditions with 0.73 recall and 0.72 precision. In particular, for a signal-to-noise ratio over 4 dB, more than 83% of BSs were recognized, with precision of 0.77 or more. EffUNet recall dropped below 0.60 for BS duration of 1.5 seconds or less. At a BS ratio greater than 0.05, the precision of our model was over 0.83. For both healthy participants and patients with IBD, insertion and deletion timing errors were the largest, with a total of 15.54 minutes of insertion errors and 13.08 minutes of deletion errors over the total audio data set. On our data set, EffUNet outperformed existing BS spotting models that provide similar temporal resolution. CONCLUSIONS: The EffUNet spotter is robust against background noise and can retrieve BSs with varying duration. EffUNet outperforms previous BS detection approaches in unmodified audio data, containing highly sparse BS events.

18.
Am J Epidemiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960702

RESUMO

BACKGROUND: Studies examining the joint associations of lifestyle exposures can reveal novel synergistic and joint effects, but no study has examined the joint association of diet and physical activity (PA) with type 2 diabetes (T2D) and hypertension. The aim of this study is to examine the joint associations of PA and diet with incidence of type T2D and hypertension, as a combined outcome and separately in a large sample of UK adults. METHODS: This prospective cohort study included 144,288 UK Biobank participants aged 40-69. Moderate to vigorous PA (MVPA) was measured using the International Physical Activity Questionnaire and a wrist accelerometer. We categorised PA and diet indicators (diet quality score (DQS) and energy intake (EI)) based on tertiles and derived joint PA and diet variables. Outcome was major cardiometabolic disease incidence (combination of T2D and hypertension). RESULTS: A total of 14,003(7.1%) participants developed T2D, 28,075(19.2%) developed hypertension, and 30,529(21.2%) developed T2D or hypertension over a mean follow-up of 10.9(3.7) years. Participants with middle and high self-reported MVPA levels had lower risk of major cardiometabolic disease regardless of diet, e.g. among high DQS group, hazard ratios in middle and high MVPA group were 0.90 (95%CI:0.86-0.94), and 0.88(95%CI:0.84-0.92), respectively. Participants with jointly high device-measured MVPA and high DQS levels had lower major cardiometabolic disease risk (HR: 0.84, 95%CI:0.71-0.99). The equivalent joint device-measured MVPA and EI exposure analyses showed no clear pattern of associations with the outcomes. CONCLUSION: Higher PA is an important component in cardiometabolic disease prevention across all diet quality and total EI groups. The observed lack of association between diet health outcomes may stem from a lower DQS.

19.
Ann Work Expo Health ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002148

RESUMO

Workplace exposure is an important source of ill health. The use of wearable sensors and sensing technologies may help improve and maintain worker health, safety, and wellbeing. Input from workers should inform the integration of these sensors into workplaces. We developed an online survey to understand the acceptability of wearable sensor technologies for occupational health and safety (OSH) management. The survey was disseminated to members of OSH-related organizations, mainly in the United Kingdom and the Netherlands. There were 158 respondents, with over half (n = 91, 58%) reporting current use of wearable sensors, including physical hazards (n = 57, 36%), air quality (n = 53, 34%), and location tracking (n = 36, 23%), although this prevalence likely also captures traditional monitoring equipment. There were no clear distinctions in wearable sensor use between the reported demographic and occupational characteristics, with the exception that hygienists were more likely than non-hygienists (e.g. safety professionals) to use wearable sensors (66% versus 34%). Overall, there was an interest in how sensors can help OSH professionals understand patterns of exposure and improve exposure management practices. Some wariness was expressed primarily around environmental and physical constraints, the quality of the data, and privacy concerns. This survey identified a need to better identify occupational situations that would benefit from wearable sensors and to evaluate existing devices that could be used for occupational hygiene. Further, this work underscores the importance of clearly defining "sensor" according to the occupational setting and context.

20.
J Neuromuscul Dis ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38995798

RESUMO

Background: More responsive, reliable, and clinically valid endpoints of disability are essential to reduce size, duration, and burden of clinical trials in adult persons with spinal muscular atrophy (aPwSMA). Objective: The aim is to investigate the feasibility of smartphone-based assessments in aPwSMA and provide evidence on the reliability and construct validity of sensor-derived measures (SDMs) of mobility and manual dexterity collected remotely in aPwSMA. Methods: Data were collected from 59 aPwSMA (23 walkers, 20 sitters and 16 non-sitters) and 30 age-matched healthy controls (HC). SDMs were extracted from five smartphone-based tests capturing mobility and manual dexterity, which were administered in-clinic and remotely in daily life for four weeks. Reliability (Intraclass Correlation Coefficients, ICC) and construct validity (ability to discriminate between HC and aPwSMA and correlations with Revised Upper Limb Module, RULM and Hammersmith Functional Scale - Expanded HFMSE) were quantified for all SDMs. Results: The smartphone-based assessments proved feasible, with 92.1% average adherence in aPwSMA. The SDMs allowed to reliably assess both mobility and dexterity (ICC > 0.75 for 15/22 SDMs). Twenty-one out of 22 SDMs significantly discriminated between HC and aPwSMA. The highest correlations with the RULM were observed for SDMs from the manual dexterity tests in both non-sitters (Typing, ρ= 0.78) and sitters (Pinching, ρ= 0.75). In walkers, the highest correlation was between mobility tests and HFMSE (5 U-Turns, ρ= 0.79). Conclusions: This exploratory study provides preliminary evidence for the usability of smartphone-based assessments of mobility and manual dexterity in aPwSMA when deployed remotely in participants' daily life. Reliability and construct validity of SDMs remotely collected in real-life was demonstrated, which is a pre-requisite for their use in longitudinal trials. Additionally, three novel smartphone-based performance outcome assessments were successfully established for aPwSMA. Upon further validation of responsiveness to interventions, this technology holds potential to increase the efficiency of clinical trials in aPwSMA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA