Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Int Immunopharmacol ; 143(Pt 1): 113359, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388895

RESUMO

Inflammation and extracellular matrix (ECM) degradation are two major factors involved in the pathogenesis of osteoarthritis (OA). Wedelolactone, a natural compound classified as a coumestan, is isolated from the medicinal plants Eclipta alba and Wedelia calendulacea. In this study, we assessed the protective effects of Wedelolactone on chondrocytes in OA. Our findings show that pretreatment with Wedelolactone effectively inhibited the IL-1ß-induced upregulation of COX­2, iNOS, TNF-α, and IL6 in chondrocytes, contributing to inflammation suppression. Moreover, pretreatment with Wedelolactone followed by IL-1ß treatment significantly increased the expression of Collagen II and SOX9, while decreasing the expression of Adamts5, MMP1, MMP3, and MMP13, thereby promoting ECM protection. Through Network pharmacology Analysis, we identified 14 key targets that link Wedelolactone and OA. GO and KEGG pathway analysis suggested that Wedelolactone primarily impacted OA by targeting inflammatory responses, particularly the NF-κB signaling pathway. Further studies demonstrated Wedelolactone prevented IL-1ß-induced activation of NF-κB signaling pathway by inhibiting the translocation of p65 and the preventing the degradation of IκBα in human chondrocytes. Molecular docking studies also indicated that Wedelolactone can directly bind to the NF-κB complex, thereby inhibited the nuclear localization of p65. In vivo experiments demonstrated that Wedelolactone can alleviate cartilage damage in DMM mice model. In summary, Wedelolactone appears to mitigate inflammation and cartilage degeneration by suppressing the NF-κB signaling pathway, thereby alleviating OA progression. Our results suggested Wedelolactone may offer therapeutic advantages for OA treatment.

2.
Immunopharmacol Immunotoxicol ; : 1-10, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39279139

RESUMO

CONTEXT: Inflammasome NLR family pyrin domain-containing 3 (NLRP3) is associated with neurological disorders. Neuroinflammation can be suppressed by inhibiting NLRP3 inflammasome activation, decreasing neurodegenerative disorder progression. We devised a therapeutic technique that can reduce neuroinflammation induced by microglial activation, avoiding neurodegeneration. We aimed to investigate the mechanisms underlying the pharmacological effects of galantamine and wedelolactone by evaluating the response of the nuclear factor kappa B (NF-κB) signaling pathway and NLRP3 inflammasome in lipopolysaccharide (LPS)-activated N9 microglia. METHODS: LPS and adenosine triphosphate were used to activate the NLRP3 inflammasome in N9 microglial cells, which were pretreated with galantamine and wedelolactone. Caspase-1, NLRP3, NF-κB, and interleukin (IL)-1ß levels were measured using RT-qPCR and immunostaining. RESULTS: Combined administration of galantamine and wedelolactone rescued microglial cells from LPS-induced cell death. Furthermore, treatment with galantamine and wedelolactone led to the suppression of NF-κB expression. NLRP3, caspase-1, and IL-1ß levels were decreased by the combined treatment. DISCUSSION AND CONCLUSION: The concurrent administration of galantamine and wedelolactone effectively suppresses the production of inflammatory cytokines and NLRP3 inflammasome activation in microglia. This inhibitory effect is likely linked to the NF-κB signaling pathway modulation. Therefore, this combined treatment is a potential therapeutic approach for neuroinflammatory diseases.

3.
Rejuvenation Res ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39276092

RESUMO

Liver fibrosis is a commonly observed pathological phenomenon that occurs during the progression of various types of chronic liver diseases. The Hippo pathway is closely associated with the pathogenesis of liver fibrosis. Previous studies have shown that wedelolactone (WED) has a significant antihepatic fibrosis effect, whereas the target and mechanism underlying WED remain elusive. In this study, we found that WED significantly alleviated liver fibrosis and injury by inhibiting the expression of Yes-associated protein (YAP) and tafazzin (TAZ). In an in vitro model, WED suppressed the activation of hepatic stellate cells (HSCs) induced by transforming growth factor (TGF-ß1), as well as the mRNA and protein expression of α-smooth muscle actin (α-SMA), YAP, and TAZ. The allosteric regulation of YAP by WED was confirmed using MD and cellular thermal shift assay. Moreover, specific knockdown or inhibition of YAP did not enhance the suppressive effect of WED on HSC activation or protein expression associated with fibrosis. These findings demonstrated that the administration of WED effectively alleviated liver fibrosis by suppressing the Hippo/YAP/TAZ pathways. In addition, YAP activity may be regulated by WED via allosteric regulation.

4.
Toxicol Sci ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110510

RESUMO

Hyperoxia-induced acute lung injury (HALI) is a complication of oxygen therapy. Ferroptosis is a vital factor in HALI. This paper was anticipated to investigate the underlying mechanism of Wedelolactone (WED) on ferroptosis in HALI. The current study used hyperoxia to injure two models, one HALI mouse model and one MLE-12 cell injury model. We found that WED treatment attenuated HALI by decreasing the lung injury score and lung wet/dry weight ratio and alleviating pathomorphological changes. Then, the inflammatory reaction and apoptosis in HALI mice and hyperoxia-mediated MLE-12 cells were inhibited by WED treatment. Moreover, WED alleviated ferroptosis with less iron accumulation and reversed expression alterations of ferroptosis markers, including MDA, GSH, GPX4, SLC7A11, FTH1, and TFR1 in hyperoxia-induced MLE-12 cells in vitro and in vivo. Nrf2-KO mice and Nrf2 inhibitor (ML385) decreased WED's ability to protect against apoptosis, inflammatory response, and ferroptosis in hyperoxia-induced MLE-12 cells. Collectively, our data highlighted the alleviatory role of WED in HALI by activating the Nrf2/HO-1 pathway.

5.
MedComm (2020) ; 5(6): e610, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881675

RESUMO

Noncanonical pyroptosis is triggered by Caspase 4/5/11, which cleaves Gasdermin D (GSDMD), leading to cell lysis. While GSDMD has been studied previously in systemic lupus erythematosus (SLE), the role of pyroptosis in SLE pathogenesis remains unclear and contentious, with limited understanding of Caspase 11-mediated pyroptosis in this condition. In this study, we explored the level of Caspase 11-mediated pyroptosis in SLE, identifying both the upstream pathways and the interaction between pyroptosis and adaptive immune responses. We observed increased Caspase 5/11 and GSDMD-dependent pyroptosis in the macrophages/monocytes of both lupus patients and mice. We identified serum lipopolysaccharide (LPS), released from the gut due to a compromised gut barrier, as the signal that triggers Caspase 11 activation in MRL/lpr mice. We further discovered that pyroptotic macrophages promote the differentiation of mature B cells independently of T cells. Additionally, inhibiting Caspase 11 and preventing LPS leakage proved effective in improving lupus symptoms in MRL/lpr mice. These findings suggest that elevated serum LPS, resulting from a damaged gut barrier, induces Caspase 11/GSDMD-mediated pyroptosis, which in turn promotes B cell differentiation and enhances autoimmune responses in SLE. Thus, targeting Caspase 11 could be a viable therapeutic strategy for SLE.

6.
J Pharm Pharmacol ; 76(8): 1038-1050, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38848454

RESUMO

OBJECTIVE: Breast cancer is a malignant tumor with high invasion and metastasis. TGF-ß1-induced epithelial-mesenchymal transition (EMT) is crucially involved in the growth and metastasis of breast cancer. Wedelolactone (Wed) is extracted from herbal medicine Ecliptae Herba, which is reported to have antineoplastic activity. Here, we aimed to elucidate the efficacy and mechanism of Wed against breast cancer. METHODS: The effects of Wed on migration and invasion of 4T1 were detected. The expression of EMT-related markers was detected by Western blot and qPCR. The 4T1 orthotopic murine breast cancer model was established to evaluate the therapeutic effect of Wed on the growth and metastasis of breast cancer through TGF-ß1/Smad pathway. RESULTS: Wed inhibited the proliferation, migration and invasion of 4T1. It exhibited concentration-dependent inhibition of p-Smad2/3. Wed also reversed the expression of EMT-markers induced by TGF-ß1. In addition, Wed suppressed the growth and metastasis of breast cancer in mice. It also affected p-Smad3 expression as well as EMT-related genes, suggesting that its anti-breast cancer effect may be related to the TGF-ß1/Smad pathway. CONCLUSION: Wed reverses EMT by regulating TGF-ß1/Smad pathway, potentially serving as a therapeutic agent for breast cancer. Wed is expected to be a potential drug to inhibit TGF-ß1/Smad pathway-related diseases.


Assuntos
Neoplasias da Mama , Movimento Celular , Proliferação de Células , Cumarínicos , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos BALB C , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/metabolismo , Feminino , Transdução de Sinais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Proteínas Smad/metabolismo , Metástase Neoplásica , Proteína Smad3/metabolismo , Invasividade Neoplásica , Humanos , Proteína Smad2/metabolismo
7.
Curr Res Microb Sci ; 6: 100238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745914

RESUMO

Oropouche virus (OROV) is a member of the Peribunyaviridae family and the causative agent of a dengue-like febrile illness transmitted by mosquitoes. Although mild symptoms generally occur, complications such as encephalitis and meningitis may develop. A lack of proper diagnosis, makes it a potential candidate for new epidemics and outbreaks like other known arboviruses such as Dengue, Yellow Fever and Zika virus. The study of natural molecules as potential antiviral compounds is a promising alternative for antiviral therapies. Wedelolactone (WDL) has been demonstrated to inhibit some viral proteins and virus replication, making it useful to target a wide range of viruses. In this study, we report the in silico effects of WDL on the OROV N-terminal polymerase and its potential inhibitory effects on several steps of viral infection in mammalian cells in vitro, which revealed that WDL indeed acts as a potential inhibitor molecule against OROV infection.

8.
Pharmacol Res ; 203: 107182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614373

RESUMO

Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.


Assuntos
Epigênese Genética , Inflamação , Processamento de Proteína Pós-Traducional , Piroptose , Humanos , Piroptose/efeitos dos fármacos , Animais , Inflamação/genética , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
9.
J Pharm Anal ; 14(4): 100910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655398

RESUMO

Eclipta prostrata L. has been used in traditional medicine and known for its liver-protective properties for centuries. Wedelolactone (WEL) and demethylwedelolactone (DWEL) are the major coumarins found in E. prostrata L. However, the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease (NAFLD) still remains to be explored. Utilizing a well-established zebrafish model of thioacetamide (TAA)-induced liver injury, the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis. Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver. The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped, and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized. Based on spatial metabolomics and transcriptomics, we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL. Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD, and presents a "multi-omics" platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.

10.
Biophys Chem ; 307: 107198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359582

RESUMO

Wedelolactone (WEL) is a small molecule compound isolated from Eclipta prostrate L., which has been reported to possess various biological activities such as anti-hepatotoxicity, anti-hypertension, anti-tumour, anti-phospholipase A2 and detoxification activity against snake venom. In the present study, we investigated the interaction of WEL with human serum albumin (HSA) using simultaneous fluorescence, UV-visible spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), molecular docking technique and molecular dynamics simulation. We found that the interaction between HSA and WEL can exhibit a static fluorescence burst mechanism, and the binding process is essentially spontaneous, with the main forces manifested as hydrogen bonding, van der Waals force and electrostatic interactions. Competitive binding and molecular docking studies showed that WEL preferentially bound to HSA in substructural region IIA (site I); molecular dynamics simulations showed that HSA interacted with WEL to form a stable complex, which also induced conformational changes in HSA. The study of the interaction between WEL and HSA can provide a reference for a more in-depth study of the pharmacodynamic mechanism of WEL and its further development and utilisation.


Assuntos
Cumarínicos , Simulação de Dinâmica Molecular , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Sítios de Ligação , Ligação Proteica , Dicroísmo Circular , Espectrometria de Fluorescência , Termodinâmica
11.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338694

RESUMO

The arbovirus Chikungunya (CHIKV) is transmitted by Aedes mosquitoes in urban environments, and in humans, it triggers debilitating symptoms involving long-term complications, including arthritis and Guillain-Barré syndrome. The development of antiviral therapies is relevant, as no efficacious vaccine or drug has yet been approved for clinical application. As a detailed map of molecules underlying the viral infection can be obtained from the metabolome, we validated the metabolic signatures of Vero E6 cells prior to infection (CC), following CHIKV infection (CV) and also upon the inclusion of the nsP2 protease inhibitor wedelolactone (CWV), a coumestan which inhibits viral replication processes. The metabolome groups evidenced significant changes in the levels of lactate, myo-inositol, phosphocholine, glucose, betaine and a few specific amino acids. This study forms a preliminary basis for identifying metabolites through HR-MAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Ressonance Spectroscopy) and proposing the affected metabolic pathways of cells following viral infection and upon incorporation of putative antiviral molecules.


Assuntos
Aedes , Febre de Chikungunya , Animais , Chlorocebus aethiops , Humanos , Células Vero , Metabolômica , Replicação Viral , Antivirais/farmacologia
12.
Heliyon ; 9(9): e20162, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809775

RESUMO

Inflammatory bowel disease is a relapsing inflammatory disease seriously endanger human health. Wedelolactone (WED) is a major active ingredient from Eclipta prostrata (L.) L. and has shown anti-inflammatory effects. However, the mechanism of WED in treating inflammatory colitis remains unknown. We aimed to investigate the mechanisms of WED in treating ulcerative colitis through lipidomic study. Sixty male C57BL/6 mice were exposed to DSS to induce acute colitis. Disease progression was judged by the disease activity index (DAI) and pathological changes of colon tissue. An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method was performed for colon and plasma lipidomics analyses. Differential metabolites in the three groups were distinguished by univariate and multivariate analysis. WED exerted anti-inflammatory effects representing by body weight and DAI score. Three metabolites were identified in plasma and 20 in colon. According to pathway analysis, the effects of WED on colitis were associated with seven pathways. The glycerophospholipid metabolism and ether lipid metabolism were the primary pathways. The findings provide important insight of the mechanism of WED in treating DSS induced colitis through lipidomic perspective.

13.
Int J Antimicrob Agents ; 62(6): 107000, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838148

RESUMO

OBJECTIVES: Development of novel antiherpes simplex virus (HSV) agents with active mechanisms different from nucleoside analogues is of high importance. Herein, we investigated the anti-HSV activities and mechanisms of wedelolactone (WDL) both in vitro and in vivo. METHODS: Cytopathic effect (CPE) inhibition assay, plaque assay, and western blot assay were used to evaluate the anti-HSV effects of WDL in vitro. The immunofluorescence assay, RT-PCR assay, plaque reduction assay, sandwich ELISA assay, syncytium formation assay, tanscriptome analysis and western blot assay were used to explore the anti-HSV mechanisms of WDL. The murine encephalitis and vaginal models of HSV infection were performed to evaluate the anti-HSV effects of WDL in vivo. RESULTS: WDL possessed inhibitory effects against both HSV-1 and HSV-2 in different cells with low toxicity, superior to the effects of acyclovir. WDL can directly inactivate the HSV particle via destruction of viral envelope and block HSV replication process after virus adsorption, different from the mechanisms of acyclovir. WDL may influence the host genes and signaling pathways related to HSV infection and immune responses. WDL can mainly interfere with the TBK1/IRF3 and SOCS1/STAT3 pathways to reduce HSV infection and inflammatory responses. Importantly, WDL treatment markedly improved mice survival, attenuated inflammatory symptoms, and reduced the virus titres in both HSV-1 and HSV-2 infected mice. CONCLUSIONS: Thus, the natural compound WDL has the potential to be developed into a novel anti-HSV agent targeting both viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Feminino , Animais , Camundongos , Envelope Viral , Herpes Simples/tratamento farmacológico , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Herpesvirus Humano 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
14.
Int J Biol Macromol ; 244: 125208, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37285884

RESUMO

Wedelolactone (WDL) is the major bioactive component in Ecliptae Herba. This present study investigated the effects of WDL on natural killer cell functions and possible underlying mechanisms. It was proved that wedelolactone enhanced the killing ability of NK92-MI by upregulating the expression of perforin and granzyme B through the JAK/STAT signaling pathway. Additionally, wedelolactone could induce the migration of NK-92MI cells by promoting CCR7 and CXCR4 expressions. However, the application of WDL is limited due to poor solubility and bioavailability. Accordingly, this study investigated the impact of polysaccharides from Ligustri Lucidi Fructus (LLFPs) on WDL. The biopharmaceutical properties and pharmacokinetic characteristics were determined to compare WDL individually and in combination with LLFPs. The results showed that LLFPs could benefit the biopharmaceutical properties of WDL. Specifically, stability, solubility, and permeability were increased by 1.19-1.82-fold, 3.22-fold, and 1.08-fold higher than those of WDL alone, respectively. Furthermore, the pharmacokinetic study revealed that LLFPs could remarkably improve AUC(0-t) (150.34 vs. 50.47 ng/mL ∗ h), t1/2 (40.78 vs. 2.81 h), and MRT(0-∞) (46.64 vs. 5.05 h) for WDL. In conclusion, WDL would be considered a potential immunopotentiator, and LLFPs could overcome the instability and insolubility, ultimately improving the bioavailability of this plant-derived phenolic coumestan.


Assuntos
Ligustrum , Disponibilidade Biológica , Células Matadoras Naturais , Polissacarídeos/farmacologia
15.
Thromb Res ; 226: 36-50, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119555

RESUMO

Thrombocytopenia is a common haematological problem worldwide. Currently, there are no relatively safe and effective agents for the treatment of thrombocytopenia. To address this challenge, we propose a computational method that enables the discovery of novel drug candidates with haematopoietic activities. Based on different types of molecular representations, three deep learning (DL) algorithms, namely recurrent neural networks (RNNs), deep neural networks (DNNs), and hybrid neural networks (RNNs+DNNs), were used to develop classification models to distinguish between active and inactive compounds. The evaluation results illustrated that the hybrid DL model exhibited the best prediction performance, with an accuracy of 97.8 % and Matthews correlation coefficient of 0.958 on the test dataset. Subsequently, we performed drug discovery screening based on the hybrid DL model and identified a compound from the FDA-approved drug library that was structurally divergent from conventional drugs and showed a potential therapeutic action against thrombocytopenia. The novel drug candidate wedelolactone significantly promoted megakaryocyte differentiation in vitro and increased platelet levels and megakaryocyte differentiation in irradiated mice with no systemic toxicity. Overall, our work demonstrates how artificial intelligence can be used to discover novel drugs against thrombocytopenia.


Assuntos
Inteligência Artificial , Trombocitopenia , Animais , Camundongos , Trombopoese , Redes Neurais de Computação , Algoritmos , Trombocitopenia/tratamento farmacológico
16.
Photochem Photobiol Sci ; 22(7): 1543-1559, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36826694

RESUMO

The Eclipta alba plant is considered hepatoprotective, owing to its phytoconstituents wedelolactone. In the current study, effect of elevated ultraviolet-B (eUV-B) radiation was investigated on biochemical, phytochemical, and antioxidative enzymatic activities of E. alba (Bhringraj) plant. The UV-B exposure resulted in an increase in oxidative stress, which has caused an imbalance in phytochemical, biochemical constituents, and induced antioxidative enzymatic activities. It was observed that the UV-B exposure promoted wedelolactone yield by 23.64%. Further, the leaf extract of UV-B-exposed plants was used for the synthesis of carbon quantum dots (CQDs) using low cost, one-step hydrothermal technique and its biocompatibility was studied using in vitro MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on HepG2 liver cell line. It revealed no toxicity in any treatment groups in comparison to the control. Both CQDs and leaf extract were orally administered to the golden hamster suffering from alcohol-induced liver cirrhosis. In the morphometric study, it was clearly observed that a combination of UV-B-exposed leaf extract and synthesized CQDs delivered the best result with maximum recovery of liver tissues. The present study reveals the positive impact of UV-B exposure on the medicinally important plant, increased yield of wedelolactone, and its enhanced hepatoprotective efficacy for the treatment of damaged liver tissues.


Assuntos
Eclipta , Pontos Quânticos , Animais , Cricetinae , Extratos Vegetais/farmacologia , Mesocricetus , Antioxidantes/farmacologia , Cirrose Hepática , Carbono/farmacologia
17.
J Invest Surg ; 36(1): 1-7, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36350036

RESUMO

Background: Acute kidney injury (AKI) is a common complication in patients with severe acute pancreatitis (SAP). Caspase-11-mediated pyroptosis is essential for the progression of multiple diseases, but its role in SAP-induced AKI remains unknown.Aims: This research investigated whether caspase-11-mediated pyroptosis is involved in SAP-induced AKI and whether inhibiting caspase-11-mediated pyroptosis improves SAP-induced AKI.Methods: A rat model of SAP with AKI was established by slowly injecting 5% sodium taurocholate into the biliopancreatic duct, then wedelolactone (25 or 50 mg/kg), an inhibitor of caspase-11, was injected through the intra-peritoneum 1 and 6 h after SAP induction. Serum biochemical indexes, including serum amylase, lipase, interleukin (IL)-6, blood urea nitrogen (BUN), tumor necrosis factor (TNF)-α, and creatinine (Cr) in rats, were evaluated using biochemical test kits. Caspase-11 and gasdermin D (GSDMD) expression in the kidney tissues was evaluated by western blotting and immunohistochemical staining. IL-1ß and IL-18 levels in kidney tissues were detected by ELISA kits. Furthermore, histopathological alterations of pancreas and kidney were assessed by H&E staining.Results: The serum biochemical indexes and pyroptosis-related proteins in kidney tissues were significantly increased after SAP induction. Furthermore, wedelolactone decreased the expression of pyroptosis-linked proteins in kidney tissues, reduced serum lipase, amylase, IL-6, TNF-α, BUN, and Cr, and ameliorated the renal and pancreatic histological damage in SAP rats.Conclusion: Caspase-11-mediated pyroptosis contributes to SAP-induced AKI, and targeting caspase-11-mediated pyroptosis might be a novel treatment strategy for SAP-induced AKI.


Assuntos
Injúria Renal Aguda , Pancreatite , Ratos , Animais , Pancreatite/complicações , Pancreatite/tratamento farmacológico , Piroptose , Caspases/efeitos adversos , Doença Aguda , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Creatinina , Fator de Necrose Tumoral alfa , Amilases , Interleucina-6 , Lipase
18.
Int J Stem Cells ; 16(3): 326-341, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310024

RESUMO

Background and Objectives: Osteoarthritis (OA) is a degenerative disease that leads to the progressive destruction of articular cartilage. Current clinical therapeutic strategies are moderately effective at relieving OA-associated pain but cannot induce chondrocyte differentiation or achieve cartilage regeneration. We investigated the ability of wedelolactone, a biologically active natural product that occurs in Eclipta alba (false daisy), to promote chondrogenic differentiation. Methods and Results: Real-time reverse transcription-polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining assays were used to evaluate the effects of wedelolactone on the chondrogenic differentiation of mesenchymal stem cells (MSCs). RNA sequencing, microRNA (miRNA) sequencing, and isobaric tags for relative and absolute quantitation analyses were performed to explore the mechanism by which wedelolactone promotes the chondrogenic differentiation of MSCs. We found that wedelolactone facilitates the chondrogenic differentiation of human induced pluripotent stem cell-derived MSCs and rat bone-marrow MSCs. Moreover, the forkhead box O (FOXO) signaling pathway was upregulated by wedelolactone during chondrogenic differentiation, and a FOXO1 inhibitor attenuated the effect of wedelolactone on chondrocyte differentiation. We determined that wedelolactone reduces enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation of the promoter region of FOXO1 to upregulate its transcription. Additionally, we found that wedelolactone represses miR-1271-5p expression, and that miR-1271-5p post-transcriptionally suppresses the expression of FOXO1 that is dependent on the binding of miR-1271-5p to the FOXO1 3'-untranscribed region. Conclusions: These results indicate that wedelolactone suppresses the activity of EZH2 to facilitate the chondrogenic differentiation of MSCs by activating the FOXO1 signaling pathway. Wedelolactone may therefore improve cartilage regeneration in diseases characterized by inflammatory tissue destruction, such as OA.

19.
J Ayurveda Integr Med ; 14(2): 100544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35337710

RESUMO

BACKGROUND: Wedelolactone, main active constituent of Wedelia calendulace and Eclipta alba plants which has been traditionally used to treat various chronic inflammatory conditions. However, its mechanism of action of anti-inflammatory effect on ulcerative colitis is yet to be established. OBJECTIVE: In the present study, the effect of the wedelolactone on the myeloperoxidase activities and in the production of proinflammatory cytokines involved in the pathogenesis of chronic inflammation was assessed. MATERIALS AND METHODS: Wistar rats were randomly divided into four groups containing six animals per group. Group I (Vehicle control): tap water and vehicle; Group II (DSS control): tap water containing 5% (w/v) of DSS over 7 days, and vehicle; Group III (treatment group): Wedelolactone 50 mg/kg/day, and tap water containing 5% DSS over 7 days, Group IV (treatment group): Wedelolactone 100 mg/kg/day and tap water containing 5% DSS over 7 days over the experiment. RESULTS: Study revealed that wedelolactone treatment dramatically decrease the release of IL-1a, IL-1b, IL-2, TNF, INFγ, STAT3 and CCL-5 in colons treated with DSS. In summary, these results suggest that the inhibition of IL-6/STAT3 signaling is a potential mechanism by which wedelolactone is used in the treatment of ulcerative colitis. CONCLUSION: Oral administration of Wedelolactone (100 mg/kg) significantly attenuated pathological colonic damage and inhibited inflammatory infiltration, myeloperoxidase activities. In summary, Wedelolactone showed anti-inflammatory effect by down regulation of the IL-6/STAT3 inflammatory signaling pathway. These findings provide new insights into the pharmacological actions of wedelolactone as a potential therapeutic agent for colitis.

20.
Fitoterapia ; 164: 105355, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36410612

RESUMO

BACKGROUND: The search for bioactive molecules from medicinal plants of the family Asteraceae has been one of the targets in various phytochemical and pharmacological investigations for many years. According to these studies, wedelolactone, a coumestan of the secondary metabolite type, is a key compound found in several Eclipta and Wedelia herbal plants. To date, numerous experimental studies with intention of highlighting its role in drug development programs were carried out, but an extensive review is not sufficient. OBJECTIVE: The current review aims to fill the gaps in extensive knowledge about phytochemistry, synthesis, pharmacology, and pharmacokinetics of coumestan wedelolactone. MATERIALS AND METHODS: The databases Google Scholar, Scopus, PubMed, Web of Science, Science Direct, Medline, and CNKI were used to compile the list of references. In order to find references, "wedelolactone" was considered separately or in combination with "phytochemistry", "synthesis", "pharmacology", and "pharmacokinetics." Since the 1950s, >100 publications have been collected and reviewed. RESULTS: Wedelolactone is likely to be a characteristic metabolite of two genera Eclipta and Wedelia, the family Asteraceae, while it could be synthetically derived from mono-phenol derivatives, through Sonogashira and cross-coupling reactions. Numerous biomedical investigations on wedelolactone revealed that its pharmacological values included anticancer, antiinflammatory, antidiabetic, antiobesity, antimyotoxicity, antibacterial, antioxidant, antivirus, anti-aging, cardiovascular, serine protease inhibition, especially its protective health benefits to living organs such as liver, kidney, lung, neuron, eye, bone, and tooth. The combination of wedelolactone and potential agents is a preferential approach to improve its biomedical values. Pharmacokinetic study exhibited that wedelolactone was metabolized in rat plasma due to hydrolysis, open-ring lactone, methylation, demethylation, and glucuronidation. CONCLUSIONS: Wedelolactone is a promising agent with the great pharmacological values. Molecular mechanisms of the actions of this compound at both in vitro and in vivo levels are now available. However, reports highlighting biosynthesis and structure-activity relationship are still not adequate. Moreover, chemo-preventive records utilizing nano-technological approaches to improve its bioavailability are needed since the solubility in the living body environment is still limited.


Assuntos
Asteraceae , Eclipta , Plantas Medicinais , Ratos , Animais , Estrutura Molecular , Extratos Vegetais/química , Asteraceae/química , Eclipta/química , Compostos Fitoquímicos/farmacologia , Etnofarmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA