Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.554
Filtrar
1.
Emerg Infect Dis ; 30(10): 2090-2098, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39320165

RESUMO

West Nile virus (WNV) is the most common cause of human arboviral disease in the contiguous United States, where only lineage 1 (L1) WNV had been found. In 2023, an immunocompetent patient was hospitalized in Nebraska with West Nile neuroinvasive disease and multisystem organ failure. Testing at the Centers for Disease Control and Prevention indicated an unusually high viral load and acute antibody response. Upon sequencing of serum and cerebrospinal fluid, we detected lineage 3 (L3) and L1 WNV genomes. L3 WNV had previously only been found in Central Europe in mosquitoes. The identification of L3 WNV in the United States and the observed clinical and laboratory features raise questions about the potential effect of L3 WNV on the transmission dynamics and pathogenicity of WNV infections. Determining the distribution and prevalence of L3 WNV in the United States and any public health and clinical implications is critical.


Assuntos
Filogenia , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Febre do Nilo Ocidental/virologia , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/genética , Nebraska/epidemiologia , Genoma Viral , Masculino
2.
J Neuroinflammation ; 21(1): 236, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334427

RESUMO

West Nile virus (WNV) and Usutu virus (USUV) are closely related flaviviruses with differing capacities to cause neurological disease in humans. WNV is thought to use a transneural route of neuroinvasion along motor neurons and causes severe motor deficits. The potential for use of transneural routes of neuroinvasion by USUV has not been investigated experimentally, and evidence from the few clinical case reports of USUV-associated neuroinvasive disease is lacking. We hypothesised that, compared with WNV, USUV is less able to infect motor neurons, and therefore determined the susceptibility of human induced pluripotent stem cell (iPSC)-derived spinal cord motor neurons to infection. Both viruses could grow to high titres in iPSC-derived neural cultures. However, USUV could not productively infect motor neurons due to restriction by the antiviral response, which was not induced upon WNV infection. Inhibition of the antiviral response allowed for widespread infection and transportation of USUV along motor neurons within a compartmented culture system. These results show a stark difference in the ability of these two viruses to evade initiation of intrinsic antiviral immunity. Our data suggests that USUV cannot infect motor neurons in healthy individuals but in case of immunodeficiency may pose a risk for motor-related neurological disease and transneural invasion.


West Nile virus, but not Usutu virus, can productively infect human motor neurons as a possible route of neuroinvasion.


Assuntos
Flavivirus , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Vírus do Nilo Ocidental , Humanos , Vírus do Nilo Ocidental/fisiologia , Vírus do Nilo Ocidental/patogenicidade , Neurônios Motores/virologia , Células Cultivadas , Flavivirus/fisiologia , Células-Tronco Pluripotentes Induzidas/virologia , Infecções por Flavivirus/virologia , Febre do Nilo Ocidental/virologia , Animais , Medula Espinal/virologia
3.
Cureus ; 16(8): e67932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39328698

RESUMO

Opsoclonus-Myoclonus syndrome is a rare neurological disorder that presents with oculomotor dysfunction and is associated with immunological triggers such as an infection. We present a patient with Opsoclonus-Myoclonus syndrome secondary to a West Nile virus (WNV) infection and focus on a unique series of magnetic resonance imaging findings. The following is a case report based on experience taking care of the patient as a member of the primary team in the hospital, chart review, and imaging findings obtained and reported through the department of radiology. A 61-year-old male presented with fatigue, ataxia, dysarthria, and fever after a recent cabin visit in the summer. The initial workup ruled out meningitis and stroke. The patient's condition deteriorated despite empiric treatment. Repeat magnetic resonance imaging (MRI) revealed patchy fluid-attenuated inversion recovery (FLAIR) hyperintensities in the cerebellar hemispheres. Further evaluation confirmed West Nile virus infection through positive immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies. This case underscores the importance of neuroimaging in evaluating encephalopathy, especially in the presence of multiple comorbidities. These findings contribute to the broader knowledge of West Nile virus encephalitis.

4.
J Infect ; : 106296, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343246

RESUMO

West Nile Virus (WNV) is a mosquito-borne pathogen that primarily infects birds. Infections can spillover to humans and cause a spectrum of clinical symptoms, including WNV neuroinvasive disease. The extrinsic incubation period (EIP) is the time taken for a mosquito to become infectious following the ingestion of an infected blood meal. Characterising how the EIP varies with temperature is an essential part of predicting the impact and transmission dynamics of WNV. We re-analyse existing experimental data using Bayesian time delay models, allowing us to account for variation in how quickly individual mosquitoes become infectious with WNV. In these experiments, cohorts of Culex pipiens mosquitoes were infected with WNV and kept under different temperature conditions, being checked for disseminated infection at defined timepoints. We find that EIPs are best described with a Weibull distribution and become shorter log-linearly with temperature. Under 18ºC, less than 1% of infected Cx. pipiens had a disseminated infection after 5 days, compared to 9.73% (95% CrI: 7.97 to 11.54) at 25ºC and 42.20% (95% CrI: 38.32 to 46.60) at 30ºC. In the hottest experimental temperature treatment (32ºC), the EIP50 was estimated at 3.78 days (CrI: 3.42 to 4.15) compared to over 100 days in the coolest treatment (15ºC). The variance of EIPs was found to be much larger at lower temperatures than higher temperatures, highlighting the importance of characterising the time delay distribution associated with the EIP. We additionally demonstrate a competitive advantage of WNV strain WN02 over NY99, where the former infects mosquitoes more quickly at colder temperature than the latter. This research contributes crucial parameters to the WNV literature, providing essential insights for modellers and those planning interventions.

5.
Microorganisms ; 12(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39338572

RESUMO

In an age of emerging zoonoses, it is important to understand the intricate system of vectors and reservoirs, or hosts, and their relation to humans. West Nile Virus (WNV) has been detected in a myriad of nonhuman hosts. Transmission of the virus to humans is reliant on amplified seroprevalence within the host, which occurs primarily in birds. However, recent studies have found that other animal groups, including crocodilians, can obtain seroprevalence amplification to levels that make them competent hosts able to transmit WNV to mosquitoes, which can then transmit to humans. Climate change could exacerbate this transmission risk by shifting the distributions of mosquito vectors towards novel geographic ranges. Here, we use maximum entropy models to map the current and future distributions of three mosquito vector species and four crocodilian species in North America to determine the emerging risk of WNV outbreaks associated with changing climates and WNV associated with crocodilians in North America. From our models, we determined that one mosquito species in particular, Culex quinquefasciatus, will increase its distribution across the ranges of all crocodilian species in all tested climate change scenarios. This poses a potential risk to public health for people visiting and living near crocodilian farms and high-density natural crocodilian populations.

6.
Pharmaceutics ; 16(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39339151

RESUMO

Diseases transmitted by arthropod-borne viruses such as West Nile virus (WNV) and chikungunya virus (CHIKV) pose threat to global public health. Unfortunately, to date, there is no available approved drug for severe symptoms caused by both viruses. It has been reported that reverse transcriptase inhibitors can effectively inhibit RNA polymerase activity of RNA viruses. We screened the anti-WNV activity of the FDA-approved reverse transcriptase inhibitor library and found that 4 out of 27 compounds showed significant antiviral activity. Among the candidates, etravirine markedly inhibited WNV infection in both Huh 7 and SH-SY5Y cells. Further assays revealed that etravirine inhibited the infection of multiple arboviruses, including yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), and CHIKV. A deeper study at the phase of action showed that the drug works primarily during the viral replication process. This was supported by the strong interaction potential between etravirine and the RNA-dependent RNA polymerase (RdRp) of WNV and alphaviruses, as evaluated using molecular docking. In vivo, etravirine significantly rescued mice from WNV infection-induced weight loss, severe neurological symptoms, and death, as well as reduced the viral load and inflammatory cytokines in target tissues. Etravirine showed antiviral effects in both arthrophlogosis and lethal mouse models of CHIKV infection. This study revealed that etravirine is an effective anti-WNV and CHIKV arbovirus agent both in vitro and in vivo due to the inhibition of viral replication, providing promising candidates for clinical application.

7.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274895

RESUMO

Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design.


Assuntos
Antivirais , Proteínas não Estruturais Virais , Antivirais/farmacologia , Antivirais/química , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Animais , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , Ensaios Clínicos como Assunto , Serina Endopeptidases/metabolismo , Replicação Viral/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos
8.
J Infect Dis ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297691

RESUMO

BACKGROUND: Seroprevalence studies are the standard for disease surveillance, and serology determined eligibility for the first dengue vaccine. Expanding flavivirus co-circulation and vaccination complicate testing. We evaluate the accuracy of a common dengue virus serological assay, examine immunity to non-dengue flaviviruses as a contributor to decreased performance, and assess whether alternative cut points may improve assay performance. METHODS: Children (n = 770) aged 2-9 years in Kampong Speu, Cambodia were enrolled in a prospective longitudinal study, and PanBio indirect dengue virus immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) was performed. Plaque reduction neutralization tests (PRNTs) using dengue viruses were performed on a subset to assess the accuracy of the IgG ELISA, and PRNTs with Zika, Japanese encephalitis, and West Nile viruses evaluated immunity to non-dengue flaviviruses. Receiver operating curve analysis identified an alternative cut point to improve IgG ELISA accuracy. RESULTS: The dengue IgG ELISA had a lower specificity than previously reported (58% vs 93%-100%). Of those with false-positive IgG results, 46% had detectable neutralizing antibodies against other flaviviruses including 14% against West Nile virus. A higher IgG cut point improved the test accuracy in this population. CONCLUSIONS: Physicians and public health authorities should be alert for West Nile in Cambodia. Immunity to non-dengue flaviviruses can impact dengue surveillance. CLINICAL TRIALS REGISTRATION: NCT03534245.

9.
Trop Med Infect Dis ; 9(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39330890

RESUMO

West Nile Virus (WNV) poses a significant global public health threat as a mosquito-borne pathogen. While laboratory mouse models have historically played a crucial role in understanding virus biology, recent research has focused on utilizing immunocompromised models to study arboviruses like dengue and Zika viruses, particularly their interactions with Aedes aegypti mosquitoes. However, there has been a shortage of suitable mouse models for investigating WNV and St. Louis encephalitis virus interactions with their primary vectors, Culex spp. mosquitoes. Here, we establish the AG129 mouse (IFN α/ß/γ R-/-) as an effective vertebrate model for examining mosquito-WNV interactions. Following intraperitoneal injection, AG129 mice exhibited transient viremia lasting several days, peaking on the second or third day post-infection, which is sufficient to infect Culex quinquefasciatus mosquitoes during a blood meal. We also observed WNV replication in the midgut and dissemination to other tissues, including the fat body, in infected mosquitoes. Notably, infectious virions were present in the saliva of a viremic AG129 mouse 16 days post-exposure, indicating successful transmission capacity. These findings highlight the utility of AG129 mice for studying vector competence and WNV-mosquito interactions.

10.
Ecology ; : e4420, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319755

RESUMO

Mosquito-borne diseases contribute substantially to the global burden of disease, and are strongly influenced by environmental conditions. Ongoing and rapid environmental change necessitates improved understanding of the response of mosquito-borne diseases to environmental factors like temperature, and novel approaches to mapping and monitoring risk. Recent development of trait-based mechanistic models has improved understanding of the temperature dependence of transmission, but model predictions remain challenging to validate in the field. Using West Nile virus (WNV) as a case study, we illustrate the use of a novel remote sensing-based approach to mapping temperature-dependent mosquito and viral traits at high spatial resolution and across the diurnal cycle. We validate the approach using mosquito and WNV surveillance data controlling for other key factors in the ecology of WNV, finding strong agreement between temperature-dependent traits and field-based metrics of risk. Moreover, we find that WNV infection rate in mosquitos exhibits a unimodal relationship with temperature, peaking at ~24.6-25.2°C, in the middle of the 95% credible interval of optimal temperature for transmission of WNV predicted by trait-based mechanistic models. This study represents one of the highest resolution validations of trait-based model predictions, and illustrates the utility of a novel remote sensing approach to predicting mosquito-borne disease risk.

11.
Emerg Microbes Infect ; 13(1): 2406278, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39295515

RESUMO

West Nile virus (WNV) was first detected in the Netherlands in 2020, with circulation observed in birds, mosquitoes, and humans in two geographical areas. Usutu virus (USUV) has been circulating in the Netherlands since 2016. Following the detection of WNV in the Netherlands, we investigated the possible use of petting zoos as urban sentinel sites to examine the extent of WNV and USUV circulation around the two WNV outbreak locations. Chickens at petting zoos and in backyards were sampled within a 15-kilometer radius of the confirmed WNV circulation areas at three timepoints over one year (2021-2022). Sera were analysed using a protein microarray for binding antibodies to orthoflavivirus NS1 antigens and reactive samples were confirmed through micro-focus reduction neutralization tests (mFRNT). Furthermore, mosquitoes at sampling locations were collected to assess their blood feeding behaviour. This serosurvey detected the circulation of USUV and WNV in petting zoo and backyard chickens in 2021, both within and outside the 2020 outbreak areas. The WNV circulation was not detected by other existing surveillance schemes in mosquitoes, wild birds, horses and humans. In addition, the results show rapid decay of USUV antibodies in approximately 20 weeks. Our findings support the utility and the added value of petting zoo chickens as sentinels for monitoring USUV and WNV circulation compared to other available methods. Seroconversions observed in petting zoos and backyard chickens living in or near densely populated urban areas further highlighted potential public health risks that went undetected.


Assuntos
Anticorpos Antivirais , Galinhas , Doenças das Aves Domésticas , Vigilância de Evento Sentinela , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/isolamento & purificação , Países Baixos/epidemiologia , Galinhas/virologia , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Anticorpos Antivirais/sangue , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Vigilância de Evento Sentinela/veterinária , Flavivirus/imunologia , Flavivirus/isolamento & purificação , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/virologia , Animais de Zoológico/virologia , Culicidae/virologia , Surtos de Doenças/veterinária
12.
Artigo em Russo | MEDLINE | ID: mdl-39269304

RESUMO

Opsoclonus is oculomotor dyskinesia characterized by rapid, repetitive conjugate eye movements that are involuntary, arrhythmic, chaotic, and multidirectional (horizontal, vertical, and torsional components). Most common cause of the symptom is paraneoplastic process. It is combined with myoclonus usually with the development of opsoclonus-myoclonus syndrome. Viral etiology is one of the possible causes of the of this syndrome, which is presented in the following case. A 26-year-old man was admitted to an infectious hospital suspected by encephalitis. After a 2-day febrile fever the patient developed balance problem, nausea, vomiting, tremors in the limbs and head, sensations of jerking of eyeballs. The neurological examination revealed opsoclonus, myoclonic jerking in the limbs, neck and trunk muscles, severe static and dynamic ataxia, there was no consciousness changes or altered mental stature. Cerebrospinal fluid examination revealed a pleocytosis (24 cells), increased protein levels (1.1 g/l). MRI of the brain was normal. After excluding of typical neuroinfections the patient was tested for West Nile fever. Elevated titers of IgG and IgM for West Nile fever virus were detected, as well as positive PCR for virus RNA in the cerebrospinal fluid. Patient was treated by acyclovir, an antibiotic and dexamethasone but severe neurological symptoms were persisted for 2 weeks with inability of sitting and walking. Then the symptoms gradually began to improve, rehabilitation was included with total recovery during the next 2 months. The doctors should be aware for possibility of neuroinvasive form of West Nile fever as the etiology of opsoclonus-myoclonus syndrome.


Assuntos
Síndrome de Opsoclonia-Mioclonia , Febre do Nilo Ocidental , Humanos , Masculino , Adulto , Síndrome de Opsoclonia-Mioclonia/etiologia , Síndrome de Opsoclonia-Mioclonia/tratamento farmacológico , Síndrome de Opsoclonia-Mioclonia/diagnóstico , Febre do Nilo Ocidental/complicações , Febre do Nilo Ocidental/diagnóstico , Vírus do Nilo Ocidental
13.
One Health ; 19: 100888, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39290643

RESUMO

The Region of Central Macedonia (RCM) in Northern Greece recorded the highest number of human West Nile virus (WNV) infections in Greece, despite considerable local mosquito control actions. We examined spatial patterns and associations of mosquito levels, infected mosquito levels, and WNV human cases (WNVhc) across the municipalities of this region over the period 2010-2023 and linked it with climatic characteristics. We combined novel entomological and available epidemiological and climate data for the RCM, aggregated at the municipality level and used Local and Global Moran's I index to assess spatial associations of mosquito levels, infected mosquito levels, and WNVhc. We identified areas with strong interdependencies between adjacent municipalities in the Western part of the region. Furthermore, we employed a Generalized Linear Mixed Model to first, identify the factors driving the observed levels of mosquitoes, infected mosquitoes and WNVhc and second, estimate the influence of climatic features on the observed levels. This modeling approach indicates a strong dependence of the mosquito levels on the temperatures in winter and spring and the total precipitation in early spring, while virus circulation relies on the temperatures of late spring and summer. Our findings highlight the significant influence of climatic factors on mosquito populations (∼60 % explained variance) and the incidence of WNV human cases (∼40 % explained variance), while the unexplained ∼40 % of the variance suggests that targeted interventions and enhanced surveillance in identified hot-spots can enhance public health response.

14.
J Gen Virol ; 105(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39189607

RESUMO

West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and C. tarsalis mosquitoes. The titres of both WNV strains - WN02-1956 and NY99 - were suppressed by EILV in C6/36 cells as early as 48-72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In C. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in C. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.


Assuntos
Culex , Mosquitos Vetores , Superinfecção , Vírus do Nilo Ocidental , Animais , Culex/virologia , Vírus do Nilo Ocidental/fisiologia , Mosquitos Vetores/virologia , Superinfecção/virologia , Linhagem Celular , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/virologia , Replicação Viral
15.
Front Public Health ; 12: 1429583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086811

RESUMO

Background: West Nile virus (WNV) is an emerging mosquito-borne pathogen in Serbia, where it has been detected as a cause of infection in humans since 2012. We analyzed and modelled WNV transmission patterns in the country between 2012 and 2023. Methods: We applied a previously developed modelling approach to quantify epidemiological parameters of interest and to identify the most important environmental drivers of the force of infection (FOI) by means of statistical analysis in the human population in the country. Results: During the study period, 1,387 human cases were recorded, with substantial heterogeneity across years. We found that spring temperature is of paramount importance for WNV transmission, as FOI magnitude and peak timing are positively associated with it. Furthermore, FOI is also estimated to be greater in regions with a larger fraction of older adult people, who are at higher risk to develop severe infections. Conclusion: Our results highlight that temperature plays a key role in shaping WNV outbreak magnitude in Serbia, confirming the association between spring climatic conditions and WNV human transmission risk and thus pointing out the importance of this factor as a potential early warning predictor for timely application of preventive and control measures.


Assuntos
Surtos de Doenças , Estações do Ano , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Sérvia/epidemiologia , Humanos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Surtos de Doenças/estatística & dados numéricos , Adulto , Pessoa de Meia-Idade , Temperatura , Feminino , Idoso , Masculino , Adolescente , Animais , Adulto Jovem , Criança
17.
Viruses ; 16(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39205277

RESUMO

West Nile virus (WNV) nonstructural protein 5 (NS5) possesses multiple enzymatic domains essential for viral RNA replication. During infection, NS5 predominantly localizes to unique replication organelles (ROs) at the rough endoplasmic reticulum (RER), known as vesicle packets (VPs) and convoluted membranes (CMs), with a portion of NS5 accumulating in the nucleus. NS5 is a soluble protein that must be in the VP, where its enzymatic activities are required for viral RNA synthesis. However, the mechanistic processes behind the recruitment of NS5 from the cytoplasm to the RER membrane remain unclear. Here, we utilize high-resolution confocal microscopy and sucrose density gradient ultracentrifugation to investigate whether the association of NS5 with other NS proteins contributes to its membrane recruitment and retention. We demonstrate that NS1 or NS3 partially influences the NS5 association with the membrane. We further demonstrate that processed NS5 is predominantly in the cytoplasm and nucleus, indicating that the processing of NS5 from the viral polyprotein does not contribute to its membrane localization. These observations suggest that other host or viral factors, such as the enwrapment of NS5 by the RO, may also be necessary for the complete membrane retention of NS5. Therefore, studies on the inhibitors that disrupt the membrane localization of WNV NS5 are warranted for antiviral drug development.


Assuntos
Proteínas não Estruturais Virais , Vírus do Nilo Ocidental , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Vírus do Nilo Ocidental/enzimologia , Vírus do Nilo Ocidental/fisiologia , Humanos , Animais , Replicação Viral , RNA Helicases/metabolismo , RNA Helicases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Chlorocebus aethiops , Citoplasma/metabolismo , Células Vero , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Febre do Nilo Ocidental/virologia , Linhagem Celular , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
18.
Cureus ; 16(7): e65777, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39211671

RESUMO

West Nile virus (WNV) is a single-stranded RNA virus causing a wide spectrum of diseases. Neuroinvasive conditions such as meningitis and encephalitis are feared complications of WNV infection. Here, we describe the case of a 78-year-old male whose only initial presenting symptoms were fever and transient diplopia, whose initial MRI imaging with and without contrast did not reveal any abnormalities. He was discharged, only to return to care the next day; lumbar puncture was performed suggesting bacterial meningitis, and he was admitted and given antibiotics. Repeat MRI was negative, and he developed an altered mental status requiring intubation. WNV neuroinvasive disease was subsequently found after serology was performed. Supportive care was given, and he made a full recovery with no residual deficits. This case highlights an unusual presentation of WNV encephalitis and highlights the difficulty that can be present in diagnosing this disease.

19.
Vaccines (Basel) ; 12(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39203991

RESUMO

Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.

20.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39183472

RESUMO

One of the most recent advances in the analysis of viral RNA-cellular protein interactions is the Comprehensive Identification of RNA-binding Proteins by Mass Spectrometry (ChIRP-MS). Here, we used ChIRP-MS in mock-infected and Zika-infected wild-type cells and cells knockout for the zinc finger CCCH-type antiviral protein 1 (ZAP). We characterized 'ZAP-independent' and 'ZAP-dependent' cellular protein interactomes associated with flavivirus RNA and found that ZAP affects cellular proteins associated with Zika virus RNA. The ZAP-dependent interactome identified with ChIRP-MS provides potential ZAP co-factors for antiviral activity against Zika virus and possibly other viruses. Identifying the full spectrum of ZAP co-factors and mechanisms of how they act will be critical to understanding the ZAP antiviral system and may contribute to the development of antivirals.


Assuntos
RNA Viral , Proteínas de Ligação a RNA , Infecção por Zika virus , Zika virus , Zika virus/genética , Zika virus/fisiologia , Zika virus/metabolismo , Humanos , RNA Viral/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Ligação Proteica , Interações Hospedeiro-Patógeno/genética , Espectrometria de Massas , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA