Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.000
Filtrar
1.
Heliyon ; 10(14): e34334, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108885

RESUMO

Continuous wetland restoration initiatives in China are increasing, due to the global degradation of wetland ecosystems. However, monitoring of the restoration situation remains incomplete. In this study, we investigated the effects of wetland restoration on the macroinvertebrate taxonomic structure and feeding functional groups (FFGs) in the Naolihe National Nature Reserve (NNNR). Macroinvertebrate taxonomic diversity can be used to monitor wetlands, and we hypothesized that FFGs serve the same function. We calculated the diversity index, performed a non-metric multidimensional analysis based on macroinvertebrate taxonomics and FFGs, and subsequently, performed a t-test on the results. The results showed that macroinvertebrate diversity and FFGs analyses were in general agreement with taxonomic diversity, indicating that the macroinvertebrate community in the wetland with five years of fallow land was resembled that of the natural wetland. In contrast, the macroinvertebrate community in the wetland with two years of fallow differed significantly from that in the natural wetland. Additionally, the results of the ecosystem attributes based on biomass and FFGs showed that restored wetlands exhibited lower habitat stability than natural wetlands. Nutrients (NH4 +-N, NO3 --N, and total phosphorus) explained the changes in macroinvertebrate FFGs in the restored wetlands to a greater extent than in the natural wetlands. The results of this study highlight the importance of macroinvertebrate FFGs in wetland monitoring, which supports the use of macroinvertebrate FFGs in the NNNR to monitor wetland restoration.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39093390

RESUMO

This study comparatively evaluated effluent reuse from two TWs-a horizontal subsurface flow (HF) and a vertical subsurface flow (VF)-used for rural wastewater treatment in Central Chile during the initial operation stage. The two TWs were planted with Zantedeschia aethiopica and were operated for 10 months at a pilot scale. The water quality of the influent and effluents was measured and compared with reuse regulations. The results showed similarities in the behavior of the effluents from the two TWs, presenting differences only in the chemical oxygen demand (COD) and different forms of nitrogen, suggesting the necessity of complementary treatment stages or modifications to the operation. The effluents from the HF better fulfilled the reuse standards for irrigation, as the VF faced problems associated with its size. However, a complementary disinfection system is necessary to improve pathogen removal in the effluents coming from the two TWs, especially to be reused as irrigation water for crops. Finally, this work showed the potential for applying subsurface TWs for wastewater treatment in rural areas and reusing their effluents as irrigation water, practice that can contribute to reducing the pressure on water resources in Chile, and that can be used as an example for other countries facing similar problems.

3.
Front Microbiol ; 15: 1421094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101038

RESUMO

Traditionally constructed wetlands face significant limitations in treating tailwater from wastewater treatment plants, especially those associated with sugar mills. However, the advent of novel modified surface flow constructed wetlands offer a promising solution. This study aimed to assess the microbial community composition and compare the efficiencies of contaminant removal across different treatment wetlands: CW1 (Brick rubble, lignite, and Lemna minor L.), CW2 (Brick rubble and lignite), and CW3 (Lemna minor L.). The study also examined the impact of substrate and vegetation on the wetland systems. For a hydraulic retention time of 7 days, CW1 successfully removed more pollutants than CW2 and CW3. CW1 demonstrated removal rates of 72.19% for biochemical oxygen demand (BOD), 74.82% for chemical oxygen demand (COD), 79.62% for NH4 +-N, 77.84% for NO3 --N, 87.73% for ortho phosphorous (OP), 78% for total dissolved solids (TDS), 74.1% for total nitrogen (TN), 81.07% for total phosphorous (TP), and 72.90% for total suspended solids (TSS). Furthermore, high-throughput sequencing analysis of the 16S rRNA gene revealed that CW1 exhibited elevated Chao1, Shannon, and Simpson indices, with values of 1324.46, 8.8172, and 0.9941, respectively. The most common bacterial species in the wetland system were Proteobacteria, Spirochaetota, Bacteroidota, Desulfobacterota, and Chloroflexi. The denitrifying bacterial class Rhodobacteriaceae also had the highest content ratio within the wetland system. These results confirm that CW1 significantly improves the performance of water filtration. Therefore, this research provides valuable insights for wastewater treatment facilities aiming to incorporate surface flow-constructed wetland tailwater enhancement initiatives.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39102132

RESUMO

The constructed wetland coupled with a microbial fuel cell (CW-MFC) is a wastewater treatment process that combines contaminant removal with electricity production, making it an environmentally friendly option. This hybrid system primarily relies on anaerobic bioprocesses for wastewater treatment, although other processes such as aerobic bioprocesses, plant uptake, and chemical oxidation also contribute to the removal of organic matter and nutrients. CW-MFCs have been successfully used to treat various types of wastewater, including urban, pharmaceutical, paper and pulp industry, metal-contaminated, and swine wastewater. In CW-MFC, macrophytes such as rice plants, Spartina angalica, Canna indica, and Phragmites australis are used. The treatment process can achieve a chemical oxygen demand removal rate of between 80 and 100%. Initially, research focused on enhancing power generation from CW-MFC, but recent studies have shifted towards resource recovery from wastewater. This review paper provides an overview of the development of constructed wetland microbial fuel cell technology, from its early stages to its current applications. The paper also highlights research gaps and potential directions for future research.

5.
Ann Bot ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097776

RESUMO

BACKGROUND AND AIMS: Freshwater nitrogen inputs are increasing globally, altering the structure and function of wetland ecosystems adapted to low nutrient conditions. Carnivorous wetland plants, Utricularia spp., are hypothesised to reduce their reliance on carnivory and increase their assimilation of environmental nutrients when the supply of ambient nutrients increases. Despite success in using stable isotope approaches to quantify carnivory of terrestrial carnivorous plants, quantifying carnivory of aquatic Utricularia requires improvement. METHODS: We developed stable isotope mixing models to quantify aquatic plant carnivory and used these models to measure dietary changes of three Utricularia species: Utricularia australis, U. gibba, and U. uliginosa in 11 wetlands across a 794 km gradient in eastern Australia. Diet was assessed using multiple models that compared variations in the natural abundance nitrogen isotope composition (δ15N) of Utricularia spp. with that of non-carnivorous plants, and environmental and carnivorous nitrogen sources. KEY RESULTS: Carnivory supplied 40 - 100 % of plant nitrogen. The lowest carnivory rates coincided with the highest availability of ammonium and dissolved organic carbon. CONCLUSIONS: Our findings suggest that Utricularia populations may adapt to high nutrient environments by shifting away from energetically costly carnivory. This has implications for species conservation as anthropogenic impacts continue to affect global wetland ecosystems.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39150666

RESUMO

The present study aimed to explore the linkage between wetland health, provisioning service value (PsV) and livelihood vulnerability of the dependent fishermen community taking examples from the Moribund deltaic wetlands of India. Wetland health including hydrological strength, habitat state, and the water quality of the wetland was assessed using a random forest (RF) and XGBoosing machine learning approach, and the Livelihood Vulnerability Index (LVI) was computed using balanced weighted approach. Ordinary least square (OLS) regression, correlation matrix, and rank correlation matrix were done to make the relationship between wetland health and LVI. Wetland health was found poor (28.38%) in the isolated, smaller, and peripheral parts of the wetland with agricultural and built-up area proximity. Hydrological strength (with r2 of 0.67) was found as the most dominant health determinant followed by habitat state (with r2 of 0.62). OLS reported that in most of the cases, the standard regression residual is low (0.5 to - 0.5) which indicates that there is a strong relation between wetland health and LVI. KDE plot and correlation matrix also figured out the same. From the field survey, it was found that the wetlands with good habitat health are promising for providing more provisioning services like fish which in turn supports the livelihood of the dependent communities. The findings of this study have a deeper insight into livelihood management through wetland management. Hence, it would inspire policymakers and stakeholders to conserve wetlands not only for the sake of ecology but also for society.

7.
Mar Pollut Bull ; 207: 116834, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142052

RESUMO

Denitrification, anammox, and DNRA are three important nitrogen (N) reduction pathways in estuarine sediments. Although salinity is an important variables controlling microbial growth and activities, knowledge about the effects of changing salinity on those three processes in estuarine and coastal wetland sediments are not well understood. Herein, we performed a 60-d microcosms experiment with different salinities (0, 5, 15, 25 and 35 ‰) to explore the vital role of salinity in controlling N-loss and N retention in estuarine wetland sediments. The results showed that sediment organic matter, sulfide, and nitrate (NO3-) were profoundly decreased with increasing salinity, while sediment ammonium (NH4+) and ferrous (Fe2+) varied in reverse patterns. Meanwhile, N-loss and N retention rates and associated gene abundances were differentially inhibited with increasing salinity, while the contributions of denitrification, anammox, and DNRA to total nitrate reduction were apparently unaffected. Moreover, denitrification rate was the most sensitive to salinity, and then followed by DNRA, while anammox was the weakest among these three processes. In other words, anammox bacteria showed a wide range of salinity tolerance, while both denitrification and DNRA reflected a relatively limited dynamic range of it. Our findings could provide insights into temporal interactive effects of salinity on sediment physico-chemical properties, N reduction rates and associated gene abundances. Our findings can improve understanding of the effects of saltwater incursion on the N fate and N balance in estuarine and coastal sediments.

8.
J Environ Manage ; 367: 122006, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094414

RESUMO

Blue carbon ecosystems (BCEs), such as mangroves, saltmarshes, and seagrasses, are important nature-based solutions for climate change mitigation and adaptation but are threatened by degradation. Effective BCE restoration requires strategic planning and site selection to optimise outcomes. We developed a Geographic Information System (GIS)-based multi-criteria decision support tool to identify suitable areas for BCE restoration along the 2512 km-long coastline of Victoria, Australia. High-resolution spatial data on BCE distribution, coastal geomorphology, hydrodynamics, and land tenure were integrated into a flexible spatial model that distinguishes between passive and active restoration suitability. The tool was applied to identify high-priority locations for mangrove, saltmarsh, and seagrass restoration across different scenarios. Results indicate substantial potential for BCE restoration in Victoria, with 33,253 ha of suitable area identified, mostly (>97%) on public land, which aligned with the selection criteria used in the tool. Restoration opportunities are concentrated in bays and estuaries where historical losses have been significant. The mapped outputs provide a decision-support framework for regional restoration planning, while the tool itself can be adapted to other geographies. By integrating multiple spatial criteria and distinguishing between passive and active restoration, our approach offers a new method for targeting BCE restoration and informing resource allocation. The identified restoration potential will also require collaboration with coastal managers and communities, and consideration of socio-economic factors. With further refinements, such as incorporating multi-criteria decision analysis techniques, GIS-based tools can help catalyse strategic blue carbon investments and contribute to climate change mitigation and adaptation goals at different spatial scales. This study highlights the value of spatial identification for BCE restoration and provides a transferable framework for other regions.


Assuntos
Carbono , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Carbono/química , Técnicas de Apoio para a Decisão , Áreas Alagadas , Sistemas de Informação Geográfica , Vitória
9.
J Environ Manage ; 367: 122097, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39102784

RESUMO

Gaining a comprehensive understanding of the effect of land use/land cover (LULC) and soil depth on soil carbon storage, through the manipulation of external carbon input and turnover processes, is crucial for accurate predictions of regional soil carbon storage. Numerous research investigations have been conducted to examine the impact of LULC on the storage and cycling of carbon in the surface soils of coastal wetlands. Nevertheless, there remains a dearth of understanding concerning the implications of this phenomenon on subterranean soils, a crucial factor in discerning the capacity for carbon sequestration in coastal wetlands and implementing measures for their preservation. The study focused on the Yellow River Delta (YRD) in China, which serves as a representative model system. It aimed to assess the impact of LULC as well as soil depth on carbon storage. This was achieved by a combination of remote sensing interpretation and field samplings. The findings of the study indicate that there was an increase in soil organic carbon storage with both the area covered and the depth of the soil across the four different land use types, namely forest, grass, tidal flat, and cultivated land. Cultivated land was identified as the predominant LULC type, encompassing 41.73% of the entire YRD. Furthermore, it accounted for a substantial carbon storage of 76.08%. In comparison to soil layers at depths of 0-20 cm and 20-40 cm, 40-60 cm was discovered to have the maximum carbon storage, accounting for 42.29% of total carbon storage. Furthermore, one of the main factors influencing carbon storage is salinity, which shows a negative association with carbon storage. Moreover, the aforementioned findings underscore the significance of the conjoined physical and chemical properties induced by LULC in influencing the dynamics of soil carbon. This suggests that the inclusion of deep soil carbon in the estimation and restoration of soil carbon storage is necessary. This inclusion will support the realization of the United Nations' "Toward Zero Carbon" effort and facilitate the implementation of China's national carbon neutrality objectives.


Assuntos
Carbono , Rios , Solo , Áreas Alagadas , Solo/química , China , Carbono/análise , Sequestro de Carbono , Conservação dos Recursos Naturais
10.
Int J Phytoremediation ; : 1-14, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138934

RESUMO

Herbicide contamination in aquatic systems has become a global concern due to their long- term persistence, accumulation and health risks to humans. Paraquat, a widely used and cost-effective nonselective herbicide, is frequently applied in agricultural fields for pest control. Consequently, the removal of paraquat from contaminated water is crucial. This research presents a sustainable and environmentally benign method for paraquat removal from aqueous system by integrating wetland plants (Eichhornia crassipes) with biochar derived from melamine-modified palm kernel shells. The prepared biochar was characterized by using various analytical techniques. The effectiveness of biochar in enhancing phytoremediation was evaluated through a series of experiments, showing significant paraquat removal efficiencies of 99.7, 98.3, and 82.8% at different paraquat concentrations 50, 100, and 150 mg L-1, respectively. Additionally, present study examined the impact of biochar on the growth of E. crassipes, highlighting its potential to reduce the toxic effects of paraquat even present at higher concentrations. The paraquat removal mechanism was elucidated, focusing on the synergistic role of biochar adsorption and phytoremediation capability of E. crassipes. This innovative approach is an effective, feasible, sustainable and eco-friendly technique that can contribute to the development of advanced and affordable water remediation processes for widespread application.


The novelty of this study lies in the implementation of combined approach by phytoremediation with biochar modified with melamine. This study highlighted synergistic integration of two concurrent systems. The biochar generated from waste palm kernel shells played a pivotal role in facilitating the plants' survival and resilience against the paraquat toxicity, rather than succumbing to its deleterious effects. This research delineates a robust methodology for the elimination of emerging pollutants, offering researchers a platform to make pioneering advancements in this scientific field for sustainable future.

11.
New Phytol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140980

RESUMO

Climate and edaphic properties drive the biogeographic distribution of dominant soil microbial phylotypes in terrestrial ecosystems. However, the impact of plant species and their root nutritional traits on microbial distribution in coastal wetlands remains unclear. Here, we investigated the nutritional traits of 100 halophyte root samples and the bacterial communities in the corresponding soil samples from coastal wetlands across eastern China. This study spans 22° of latitude, covering over 2500 km from north to south. We found that 1% of soil bacterial phylotypes accounted for nearly 30% of the soil bacterial community abundance, suggesting that a few bacterial phylotypes dominated the coastal wetlands. These dominated phylotypes could be grouped into three ecological clusters as per their preference over climatic (temperature and precipitation), edaphic (soil carbon and nitrogen), and plant factors (halophyte vegetation, root carbon, and nitrogen). We further provide novel evidence that plant root nutritional traits, especially root C and N, can strongly influence the distribution of these ecological clusters. Taken together, our study provides solid evidence of revealing the dominance of specific bacterial phylotypes and the complex interactions with their environment, highlighting the importance of plant root nutritional traits on biogeographic distribution of soil microbiome in coastal wetland ecosystems.

12.
Water Sci Technol ; 90(3): 758-776, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141033

RESUMO

This article presents the authors' perspectives on modelling best practices for nature-based solutions (NBS). The authors led a workshop on NBS modelling as part of the 8th IWA Water Resource Recovery Modelling Seminar (WRRmod2022+) in January 2023, where the discussion centred around the design, use cases, and potential applications of NBS models. Four real-world case studies, encompassing an aerated lagoon, a biofilm-enhanced aerated lagoon, a stormwater basin, and a constructed wetland were reviewed to demonstrate practical applications and challenges in modelling NBS systems. The initial proposed modelling framework was derived from these case studies and encompassed eight sub-models used for these NBS types. The framework was subsequently extended to include eight additional NBS categories, requiring a total of 10 sub-models. In a subsequent step, with a different perspective, the framework was refined to focus on 13 primary use cases of NBS, identifying 10 sub-models needed or potentially required for these specific NBS applications. These frameworks help to identify the necessary sub-models for the NBS system at hand or the use case. This article also discusses the benefits and challenges of applying water resource recovery modelling best practices to NBS, along with recommendations for future research in this area.


Assuntos
Modelos Teóricos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
13.
Sci Total Environ ; : 175417, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153622

RESUMO

With the intensification of climate change and human activities, wetland ecosystem and their carbon pool function have been seriously compromised. To determine the soil organic carbon pool composition and stability response to wetland disturbance, three disturbed (grazing, mowing, invasion) and two undisturbed Carex tussock wetlands were investigated in Momoge Wetland, northeast China. The results showed that the disturbance significantly reduced the soil organic carbon content under hummock, but effectively promoted organic carbon storage in surface soil in hummock interspace. In disturbed wetlands, relative abundance of aromatic-C, asymmetric aliphatic-C, polysaccharide-C and clay minerals, and organic carbon stability significantly declined. Furthermore, asymmetric aliphatic-C and polysaccharide-C were the most important organic carbon chemical components affecting SOC stability under hummock and in hummock interspace. Disturbance facilitated the effects of pH, TP and minerals on organic carbon stability, with pH being the most important. These findings improved our understanding of the composition and stability of carbon pools in disturbed wetlands.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39112902

RESUMO

Sludge treatment reed bed planted (STRB) with Phragmites australis (P.australis) and Arundo donax (A.donax) was assessed in the presence of Eisenia fetida under control condition during the dry season. Worm-planted units were fed with mixed sewage sludge (dry and volatile solids of 29.44 g DS.L-1 and 24.23 g VS.L-1). Sludge loading rates (SLR) of 50, 60, and 70 kg DS m-2 year-1 were examined to assess dewatering efficiency. Surface layers in units with P.australis and A.donax achieved DS of 80 and 81% at a loading rate of 50 kg DS m-2 year-1, while their subsurface DS were 41 and 25%, respectively. Units with A.donax experienced plant loss when subjected to SLR exceeding 60 kg DS m-2 year-1. More than 10 cm of residual sludge accumulated on the top of units after a 2-month final rest. Evapotranspiration was greater in the unit with P.australis (5.23 mm day-1) compared to the unit with A.donax (4.24 mm day-1) while both were fed with 70 kg DS m-2 year-1. Water loss contributions from residual sludge layer, drained water, and evapotranspiration were 3, 46, and 51%, respectively. Units with P.australis indicated 20% higher water loss compared to units with A.donax. Although the drained water quality improved over time, it did not meet standard limits. The residual sludge layer contained macro and micronutrients, and heavy metals with a significant elemental order of N > Ca > P > S > mg > K (N:P:K = 31:8:1), Fe > Na > B > Mn > Mo and Zn > Cr > Cu > Pb > Ni > Cd. Overall, STRB could be a sustainable alternative technology to conventional sewage sludge management techniques.

15.
Environ Sci Technol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134052

RESUMO

Methane fluxes (FCH4) vary significantly across wetland ecosystems due to complex mechanisms, challenging accurate estimations. The interactions among environmental drivers, while crucial in regulating FCH4, have not been well understood. Here, the interactive effects of six environmental drivers on FCH4 were first analyzed using 396,322 half-hourly measurements from 22 sites across various wetland types and climate zones. Results reveal that soil temperature, latent heat turbulent flux, and ecosystem respiration primarily exerted direct effects on FCH4, while air temperature and gross primary productivity mainly exerted indirect effects by interacting with other drivers. Significant spatial variability in FCH4 regulatory mechanisms was highlighted, with different drivers demonstrated varying direct, indirect, and total effects among sites. This spatial variability was then linked to site-specific annual-average air temperature (17.7%) and water table (9.0%) conditions, allowing the categorization of CH4 sources into four groups with identified critical drivers. An improved estimation approach using a random forest model with three critical drivers was consequently proposed, offering accurate FCH4 predictions with fewer input requirements. By explicitly accounting for environmental interactions and interpreting spatial variability, this study enhances our understanding of the mechanisms regulating CH4 emissions, contributing to more efficient modeling and estimation of wetland FCH4.

16.
Environ Monit Assess ; 196(9): 808, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134774

RESUMO

Exploring the spatiotemporal variation characteristics of vegetation in the confluent area of water systems in western Jinan and its response mechanism to climatic factors is of great significance for the scientific evaluation of the benefits of the water system connectivity project and eco-environmental protection and can provide a reference for ecotourism development in the Jixi wetland park. Based on the Landsat series of images and meteorological data, this study used ENVI to interpret the normalized difference vegetation index (NDVI) of the confluent area from 2010 to 2021, and the spatiotemporal change characteristics and trends of NDVI were quantitatively analyzed. The response of the growing-season NDVI (GSN) to climate factors and its time-lag effect were explored. The results showed that the overall change in the interannual NDVI in the confluent area from 2010 to 2021 was stable. The GSN in the confluent area was significantly positively correlated with precipitation, average temperature, and relative humidity in 37.64%, 25.52%, and 20.87% of the area respectively, and significantly negatively correlated with sunshine hours in 15.32% of the area. There was a time-lag effect on the response of the GSN to climate factors; the response to precipitation and sunshine hours lagged by 1 month, and the response to average temperature and relative humidity was longer.


Assuntos
Monitoramento Ambiental , Áreas Alagadas , China , Análise Espaço-Temporal , Mudança Climática , Clima , Estações do Ano , Temperatura
17.
Water Res ; 263: 122167, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106623

RESUMO

Ethylmercury (EtHg), similar to methylmercury (MeHg), is highly neurotoxic and bioaccumulative. Although recent studies suggested its occurrence in natural soils and sediments, the common propylation derivatization for EtHg analysis might generate EtHg artifacts, potentially leading to its overestimation in environmental samples. Furthermore, the extensive environmental prevalence of EtHg remains unverified, keeping its importance largely uncertain. This study investigated the formation of EtHg artifacts during propylation derivatization, evaluating artifacts formation and recoveries under different extraction methods with real samples, and confirmed the widespread occurrence of EtHg in Chinese wetlands. EtHg artifacts were obviously present during the propylation derivatization and strongly dependent on the levels of Hg2+ (0.1-10 ng) in the derivatization solution (R² = 0.99), accounting for 1.38-2.14% of Hg2+. CuSO4-HNO3CH2Cl2 extraction (effectively removing Hg2+) combined with propylation derivatization offers excellent recovery (81-86%) and low artifacts (< LOD: 1.98 × 10-4 ng/g) for EtHg measurement in soils/sediments, with results aligning with those from online solid phase extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry (R2 = 0.99). Additionally, we observed the occurrence of EtHg in soil and sediment samples across 14 Chinese wetlands, with concentrations varying from 6.08 to 171 pg/g, similar to MeHg concentrations at some sites. EtHg positively correlates with MeHg, total Hg, and total organic carbon across all samples, indicating a possible biological formation. These findings help better understand and predict the prevalence of EtHg in wetlands and its key role in environmental Hg cycle.

18.
J Environ Manage ; 368: 122074, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128341

RESUMO

Hydrological connectivity is crucial for the healthy operation of wetland ecosystems. However, the current design of ecological corridors in wetland biodiversity networks is mostly based on species migration resistance, neglecting the important role of hydrological connectivity. How to incorporate hydrological connectivity into the wetland ecological corridor system (ECS) is still unclear. To answer the question, we proposed a framework for constructing a wetland ECS with the goal of improving conservation value of previously identified wetland biodiversity hotspots based on hydrological connectivity. In the proposed framework, we clarified the function-level-dimension of each corridor based on the dynamics of conservation value of biodiversity hotspots, the hierarchical classification of rivers and the dimension of hydrological connectivity. Then we determined the spatial distribution and functional zoning of the corridors by least cost model (LCM) using indicators that reflect wetland hydrological connectivity resistance, including water coverage, water use efficiency of vegetation, and land use suitability. The results are as follows: (1) to improve the overall hydrological connectivity and conservation value of biodiversity hotspots, 25 corridors should be constructed for vertical hydrological connectivity (with 3 for maintaining the status quo, 6 for improving and 16 for restoring connectivity) and 3 corridors should be constructed for lateral hydrological connectivity; (2) total area of all corridors are 11 km2, accounting for 6.79% of the study area (2.47% of core zone and 4.32% of buffer zone); (3) low suitability areas of hydrological vegetation gradient (HVG) are the most extensive, followed by low suitability areas of land use/cover change (LUCC) and the average fraction coverage of water surface (AFCW), accounting for 65.08%, 47.87% and 6.76% of the corridor coverage, respectively. The proposed framework of constructing wetland ECS in this study has the potential to provide the post-2020 global biodiversity framework and sustainable development goals with specific technical support and more targeted-control strategies for building a hydrological connected wetland biodiversity network.

19.
Environ Sci Pollut Res Int ; 31(34): 47189-47200, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990258

RESUMO

The effects of salinity gradients (500-4000 mg·L-1 NaCl) on electricity generation, nitrogen removal, and microbial community were investigated in a constructed wetland-microbial fuel cell (CW-MFC) system. The result showed that power density significantly increased from 7.77 mW m-2 to a peak of 34.27 mW m-2 as salinity rose, indicating enhanced electron transfer capabilities under saline conditions. At a moderate salinity level of 2000 mg·L-1 NaCl, the removal efficiencies of NH4+-N and TN reached their maximum at 77.34 ± 7.61% and 48.45 ± 8.14%, respectively. This could be attributed to increased microbial activity and the presence of critical nitrogen-removal organisms, such as Nitrospira and unclassified Betaproteobacteria at the anode, as well as Bacillus, unclassified Rhizobiales, Sphingobium, and Simplicispira at the cathode. Additionally, this salinity corresponded with the highest abundance of Exiguobacterium (3.92%), a potential electrogenic bacterium, particularly at the cathode. Other microorganisms, including Geobacter, unclassified Planctomycetaceae, and Thauera, adapted well to elevated salinity, thereby enhancing both electricity generation and nitrogen removal.


Assuntos
Bactérias , Fontes de Energia Bioelétrica , Nitrogênio , Salinidade , Áreas Alagadas , Bactérias/metabolismo , Eliminação de Resíduos Líquidos/métodos
20.
PeerJ ; 12: e17822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076778

RESUMO

Background: Microplastic (MP) pollution is now a global critical issue and has been the subject of considerable worry for multiple various types of habitats, notably in lagoons which are coastal areas connected to the ocean. MPs are of concern, particularly because floating MP in surface water can be ingested by a number of marine organisms. There are several lagoons along Southeast Asia's coastline, but Songkhla Lagoon is Thailand's only exit with a rich biodiversity. To date, there has been little research undertaken on MP in this lagoon, so there is a pressing need to learn more about the presence of MP in the lagoon's water. Methods: We investigate MPs in the surface water of Songkhla Lagoon, Thailand. Sampling took place at ten stations in the lagoon during the wet season in December 2022 and the dry season in February 2023. Samples were digested with hydrogen peroxide to remove organic matter followed by density separation using saturated sodium chloride. MPs were visually examined under a stereo microscope to describe and determine the shape, size, and color. Polymer type was identified using a micro Fourier transform infrared (FTIR) spectrometer. Moreover, the in-situ of water quality of the surface water was measured using a multi-parameter probe. A Mann-Whitney U test was performed to investigate the variations in MP levels and water quality parameters between the wet and dry seasons. Correlation analysis (Spearman rho) was used to determine the significance of correlations between MP and water quality (p < 0.05). Results: MPs were detected at all ten of the sites sampled. The most abundant MPs were small size class (<500 µm, primarily consisting of fibers). Five types of polymers were seen in surface water, including polyethylene terephthalate, rayon, polypropylene, polyester, and poly (ethylene:propylene). Rayon and polyester were the dominant polymers. Additionally, the most dominant color of MPs in the wet and dry season was black and blue, respectively. The mean contents of MPs in the wet and dry season were 0.43 ± 0.18 and 0.34 ± 0.08 items/L, respectively. The Mann-Whitney U test suggested a significant difference between water quality in the wet and dry seasons (p < 0.05). Correlation analysis (Spearman rho) indicated a negative significant difference relationship between the MPs and the values of total dissolved solid (TDS) in the wet season (r = -0.821, p = <0.05), revealing that the large amounts of MPs may possibly be dispersed within surface water bodies with low TDS concentrations. Based on the overall findings, MP pollution in the surface water of the lagoon is not found to be influenced by the seasonal context. Rivers flowing into the lagoon, especially the U-Taphao River, may be a principal pathway contributing to increased MP pollution loading in the lagoon. The results can be used as baseline data to undertake further research work relevant to sources, fates, distribution, and impacts of MPs in other coastal lagoons.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Tailândia , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Estações do Ano , Qualidade da Água , Água do Mar/química , Água do Mar/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA