Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insect Mol Biol ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39381854

RESUMO

Nearly all insects harbour bacterial communities that can have a profound effect on their life history, including regulating and shaping host metabolism, development, immunity and fitness. The bacteriomes of several coleopterans have been described; however, very little has been reported for wireworms. These long-lived larvae of click beetles (Coleoptera: Elateridae) are major agricultural pests of a variety of crops grown in the Canadian Prairies. Consequently, the goal of this study was to characterise the bacteriomes of five of the most significant pest species within the region: Limonius californicus, Hypnoidus abbreviatus, H. bicolor, Aeolus mellillus and Dalopius spp. To do this, we collected larvae from southern Manitoba fields (pre-seeding) and carried out 16S rRNA sequencing on individual specimens. Our results indicate wireworms have diverse and taxon-rich bacterial communities, with over 400 genera identified predominately from the phyla Proteobacteria, Actinobacteriota, Bacteroidota and Firmicutes. However, each species had nine or fewer genera comprising >80% of their bacteriome. Network analyses revealed some community structuring consistent among species, which may culminate in shaping/regulating host biology. Moreover, the microbial signatures were influenced by both ontogeny (early vs. late stage larvae) and reproductive strategy (sexual vs. parthenogenetic), with a myriad of other factors likely contributing to bacterial diversity that are impossible to resolve from our study. Overall, this metagenomics study represents the first to characterise the bacteriomes of wireworms in the Canadian Prairies and the findings could assist in the development of sustainable management strategies for these important agricultural pests.

2.
J Econ Entomol ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39397331

RESUMO

In central Canada, surveys for the three invasive (Palearctic) Agriotes species-A. obscurus, A. lineatus, and A. sputator-commonly collect A. pubescens, a North American native (Nearctic) click beetle (Coleoptera: Elateridae) that generally co-occurs with Nearctic A. mancus. Despite the abundance of A. pubescens on farmland, its life history and potential economic impact remain largely unknown. Here, we report the identification and field testing of the A. pubescens sex pheromone. We collected headspace volatiles from a single female beetle on Porapak Q, then extracted the female's pheromone gland, and analyzed aliquots of both Porapak extract and pheromone gland extract by gas chromatographic-electroantennographic detection (GC-EAD) and by GC-mass spectrometry. In GC-EAD recordings of gland extract, two esters-geranyl butanoate and geranyl octanoate-elicited antennal responses from A. pubescens males. In a field experiment in Quebec, traps baited with a 1:1 blend of these esters captured approximately 100× more A. pubescens males than traps baited with a single ester. This is the same trap lure used for capturing A. lineatus. In this experiment, and in a similar one run in British Columbia, heterospecific pheromone components added to conspecific pheromone lures reduced captures of A. mancus, A. sputator, A. lineatus, and A. obscurus by 29%, 96%, 44%, and 71%, respectively. These data indicate that, in North America, lures containing pheromone components of multiple Agriotes congeners may not be optimally attractive to all target species.

3.
Environ Entomol ; 53(5): 760-770, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39037436

RESUMO

Wireworms, the larvae of click beetles (Coleoptera: Elateridae), are often the target of insecticide seed treatments commonly used in corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) production in North America. Nevertheless, there is a lack of knowledge of the species, life history, and economic impact of wireworms present in these agroecosystems. An extensive survey of wireworms was conducted in corn and soybean fields in Ontario, Canada, from 2014 to 2017 to document species distribution and co-occurrence and to identify risk factors related to their abundance. In total, 4,332 specimens were collected from 1,245 different sampling records. The dominant species collected was Limonius agonus (Say) (Coleoptera: Elateridae) comprising 71.5% of the specimens. The remaining wireworm specimens were identified as Hypnoidus abbreviatus (Say), Melanotus similis (Kirby), M. cribulosus (LeConte), M. depressus (Melsheimer), M. communis (Gyllenhal), Agriotes mancus (Say), Aeolus mellillus (Say), and Hemicrepidius spp (Germar). Multiple wireworm species were found to commonly occur within the same field and the same sample. Path analysis was conducted to investigate whether site, soil, and agronomic characteristics influenced wireworm distribution and abundance. Several significant relationships were found between wireworm species and geographic factors, soil texture, and agronomic practices. The results of this survey provide critical information that can be used to improve integrated pest management of the major wireworm genera found in corn and soybean agroecosystems in Ontario.


Assuntos
Besouros , Glycine max , Larva , Zea mays , Animais , Glycine max/crescimento & desenvolvimento , Ontário , Besouros/fisiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Distribuição Animal
4.
Zookeys ; 1200: 75-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751965

RESUMO

The Elateridae, or click beetles are abundant and diverse in most terrestrial ecosystems in North America, acting as plant pests and filling many other ecological roles. The 112 genera of Elateridae Leach, 1815, or click beetles, known from Canada and USA are included in a first comprehensive digital interactive key to adults. A link to an online peer-reviewed LUCID key to elaterid genera and downloadable LUCID files are provided. Diagnostic morphological summaries using information from the 61 characters and 158 character states of the matrix key are presented for all genera. A table summarizes current understanding of habitat use by all elaterid genera in Canada and USA from literature, collections, citizen science, and our own observations. Diversity of elaterid genera was high throughout warm and cool temperate regions, especially in mountainous areas and mesic woodlands. Larvae of most genera were associated with soil, litter and decaying wood.

5.
Heliyon ; 9(6): e17302, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484362

RESUMO

Wireworms and white grubs are destructive underground pests in maize fields in China. Cyantraniliprole has good control effect on coleoptera pests. Here, we evaluated the toxicity of cyantraniliprole to the second instar larvae of Anomala corpulenta Motschulsky and third-instar of larvae of Pleonomus canaliculatus Faldermann and the effects of sublethal concentrations on the activity of antioxidant and detoxification enzymes. We also explored the efficacy of cyantraniliprole on underground pests under indoor and field conditions. The LC50 of cyantraniliprole for the third instar larvae of P. canaliculatus was 23.3712 mg/L, and that for the second instar larvae of A. corpulenta was 5.9715 mg/L. Cyantraniliprole can activate the activity of superoxide dismutase (SOD), peroxidase (POD), and glutathione S-transferase (GST) to different degrees at a sublethal dose. According to the pot experiment and the control efficacy test in the field, the indoor control effect of cyantraniliprole seed treatment on P. canaliculatus and white grubs was approximately 80%, and the maximum increase in yield achieved through cyantraniliprole application was approximately 15% in the field efficacy test. Cyantraniliprole has a strong control effect on wireworms and white grubs, so it can be used to treat seeds to control underground pests in maize fields.

6.
Insects ; 14(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367375

RESUMO

The effect of wireworm-damaged lettuce roots on the antioxidative defense system (ascorbate-glutathione cycle, photosynthetic pigments) and movement of insect/slug parasitic nematodes towards determined root exudates was studied in a glasshouse experiment. Lettuce seedlings were grown in a substrate soil in the absence/presence of wireworms (Elateridae). The ascorbate-glutathione system and photosynthetic pigments were analyzed by HPLC, while volatile organic compounds (VOC) emitted by lettuce roots were investigated by GC-MS. Herbivore-induced root compounds, namely 2,4-nonadienal, glutathione, and ascorbic acid, were selected for a chemotaxis assay with nematodes Steinernema feltiae, S. carpocapsae, Heterorhabditis bacteriophora, Phasmarhabditis papillosa, and Oscheius myriophilus. Root pests had a negative effect on the content of photosynthetic pigments in the leaves of infested plants, indicating that they reacted to the presence of reactive oxygen species (ROS). Using lettuce as a model plant, we recognized the ascorbate-glutathione system as a redox hub in defense response against wireworms and analyzed its role in root-exudate-mediated chemotaxis of nematodes. Infected plants also demonstrated increased levels of volatile 2,4-nonadienal. Entomopathogenic nematodes (EPNs, S. feltiae, S. carpocapsae, and H. bacteriophora) proved to be more mobile than parasitic nematodes O. myriophilus and P. papillosa towards chemotaxis compounds. Among them, 2,4-nonadienal repelled all tested nematodes. Most exudates that are involved in belowground tritrophic interactions remain unknown, but an increasing effort is being made in this field of research. Understanding more of these complex interactions would not only allow a better understanding of the rhizosphere but could also offer ecologically sound alternatives in the pest management of agricultural systems.

7.
J Nematol ; 54(1): 20220033, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36338427

RESUMO

Wireworms, the soil-borne larvae of click beetles (Coleoptera: Elateridae), are important crop pests throughout the world. In the eastern U.S., Melanotus communis larvae attack grain, root/ tuber, and vegetable crops. Our objectives were to characterize the pathogenicity and virulence of fungal and nematode entomopathogens on M. communis wireworms, and determine if wireworm size affected virulence. Pathogens tested included five entomopathogenic nematodes, Steinernema carpocapsae (All strain), S. feltiae (SN strain), S. riobrave (355 strain), Heterorhabditis bacteriophora (VS strain), and H. indica (HiHom1 strain); and two entomopathogenic fungi, Beauveria bassiana (GHA strain) and Cordyceps javanica (WF-GA17 strain). None of the pathogens tested caused >15% mortality at 7 or 14 days post-inoculation. Mortality was highest in S. carpocapsae (All strain); the other entomopathogens did not cause higher mortality than the untreated control. Overall, smaller wireworms were more susceptible than larger wireworms. Our results suggested that M. communis wireworms have defenses that limit the ability of the entomopathogens we tested to infect the wireworms. Conceivably, other entomopathogen strains or species may be more effective. Natural populations of entomopathogens may contribute to wireworm population reduction, but further studies are warranted before entomopathogens can be used for M. communis management.

8.
Insects ; 13(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36135470

RESUMO

The rhizosphere is where plant roots, physical soil, and subterranean organisms interact to contribute to soil fertility and plant growth. In agroecosystems, the nature of the ecological interactions within the rhizosphere is highly dynamic due to constant disruptions from agricultural practices. The concept of integrated pest management (IPM) was developed in order to promote an approach which is complementary to the environment and non-target organisms, including natural enemies, by reducing the sole reliance on synthetic pesticides to control pests. However, some of the implemented integrated cultural and biological control practices may impact the rhizosphere, especially when targeting subterranean pests. Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are generalist herbivores and a voracious group of pests that are difficult to control. This paper introduces some existing challenges in wireworm IPM, and discusses the potential impacts of various control methods on the rhizosphere. The awareness of the potential implications of different pest management approaches on the rhizosphere will assist in decision-making and the selection of the control tactics with the least long-term adverse effects on the rhizosphere.

9.
Biodivers Data J ; 10: e76968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250345

RESUMO

BACKGROUND: Since the late 1980s, long-term monitoring of terrestrial ecosystems in metal-contaminated areas near the Middle Ural Copper Smelter has been carried out in the Central Urals. As a part of these monitoring programmes, the data on species diversity, community composition and abundance of soil macroinvertebrates continue to be gathered. NEW INFORMATION: The dataset (available from the GBIF network at https://www.gbif.org/dataset/61e92984-382b-4158-be6b-e391c7ed5a64) includes a 2004 census for soil macroinvertebrates of spruce-fir forests along a pollution gradient in the Central Urals. The dataset describes soil macrofauna's abundance (the number of individuals per sample, i.e. the density) and community structure (list of supraspecific taxa, list of species for most abundant taxa and supraspecific taxa or species abundance). Seventeen sampling plots differed in the levels of toxic metal (Cu, Zn, Pb, Cd and Fe) soil contamination from air emissions of the Middle Ural Copper Smelter (heavily polluted, moderately polluted and unpolluted areas). The dataset consists of 340 sampling events (= samples corresponding to upper and lower layers of the 170 soil monoliths) and 64658 rows (2907 and 61751 for non-zero and zero density of taxa, respectively). Arachnida (Araneae and Opiliones), Carabidae (imagoes), Elateridae (larvae), Chilopoda, Diplopoda, Gastropoda, Staphylinidae (imagoes) and Lumbricidae were identified to species level. In contrast, Mermithida, Enchytraeidae, Lepidoptera larvae, Diptera larvae, Hemiptera, Hymenoptera and some other insects were identified to family or order levels. In total, 8430 individuals of soil macroinvertebrates were collected in two soil layers (organic and organic-mineral horizons), including 1046 Arachnida (spiders and harvestmen), 45 Carabidae, 300 Elateridae, 529 Myriapoda, 741 Gastropoda, 437 Staphylinidae, 623 Lumbricidae and 4709 other invertebrates. The presence-absence data on each taxon are provided for each sampling event. An overwhelming majority of such absences can be interpreted as "pseudo-absences" at the scale of sampling plots or study sites. The dataset contains information helpful for long-term ecotoxicological monitoring of forest ecosystems and contributes to studying soil macrofauna diversity in the Urals.

10.
Insects ; 13(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35206746

RESUMO

Sex pheromones are commonly used in traps to monitor populations and movements of male click beetles, but to date few attractants have been identified for females. Notable exceptions are plant-derived kairomones for female Agriotes brevis and A. ustulatus, allowing the monitoring of both males and females of these species with lures containing both pheromones and plant volatiles. The attractiveness of these plant volatiles for two congeners, A. obscurus and A. lineatus, which are agricultural pests in Europe and North America, was evaluated in the current study. Both the four-component MINIM plant-derived lure for A. brevis, and the blend of (E)-anethol and (E)-cinnamaldehyde for A. ustulatus, were not attractive to A. obscurus and A. lineatus, and instead appeared to reduce captures-both when compared to blank controls, and when blended with and compared to the sex pheromones of these species. This was most pronounced in A. obscurus, where (E)-anethol and (E)-cinnamaldehyde reduced male captures by 43 and 37%, respectively. Combining the pheromones of A. obscurus and A. lineatus reduced captures of these species by 77 and 19%, respectively, compared to these pheromones singly. This suggests that attractants for female click beetles can be highly species-specific, and that the blending of pheromones of congeneric species with each other, or with plant volatiles, can reduce captures. Further research into developing such attractants for economic species is urgently needed.

11.
Insects ; 12(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34442299

RESUMO

The attraction range of YATLORf pheromone traps to adults of four species of Agriotes (A. brevis, A. sordidus, A. litigiosus, and A. ustulatus) was studied to provide additional information about the most harmful Agriotes species in Europe. Male click beetles were marked and released at different distances from a pheromone trap. The recapture rate was calculated and analyzed using analysis of variance. The recapture rate was significantly affected by distance, species, and wind direction. The recapture rate decreased as distance increased. The majority of beetles were caught from short distances (up to 10 m) within the first five days. A. brevis, a mainly crawling species, showed the lowest recapture rate. The wind direction affected the recovery rate, with a significantly lower number of beetles moving downwind from the release points. Maximum sampling ranges and effective sampling areas were calculated. The obtained estimations were low (53 to 86 m and 509 to 2602 m2, respectively) for all the considered Agriotes species, suggesting that they were unsuitable for use as mass trapping instruments to disrupt mating. However, it seems possible to use the traps not only as monitoring tools, but also as attract-and-kill strategies for most beetle populations.

12.
J Chem Ecol ; 47(2): 123-133, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33606109

RESUMO

Wireworms, the larvae of click beetles (Coleoptera: Elateridae), are soil-dwelling insect pests inflicting major economic damage on many types of agricultural crops worldwide. The objective of this work was to identify the female-produced sex pheromones of the Pacific Coast wireworm, Limonius canus LeConte, and the sugarbeet wireworm, L. californicus (Mannerheim) (Coleoptera: Elateridae). Headspace volatiles from separate groups of female L. canus and L. californicus were collected on Porapak Q and analyzed by gas chromatography with electroantennographic detection (GC-EAD) and GC-mass spectrometry. GC-EAD recordings revealed strong responses from male L. canus and male L. californicus antennae to the same compound, which appeared below GC detection threshold. The structure of this candidate pheromone component was deduced from the results of micro-analytical treatments of extracts, retention index calculations on four GC columns, and by syntheses of more than 25 model compounds which were assessed for their GC retention characteristics and electrophysiological activity. The EAD-active compound was identified as (E)-4-ethyloct-4-enoic acid, which we name limoniic acid. In field experiments in British Columbia and Alberta, Canada, traps baited with synthetic limoniic acid captured large numbers of male Limonius click beetles, whereas unbaited control traps captured few. Compared to traps baited with the analogue, (E)-5-ethyloct-4-enoic acid, traps baited with limoniic acid captured 9-times more male L. californicus, and 6.5-times more male western field wireworms, L. infuscatus Motschulsky, but 2.3-times fewer male L. canus. Limoniic acid can now be developed for detection, monitoring and possibly control of L. californicus, L. infuscatus and L. canus populations.


Assuntos
Besouros/química , Atrativos Sexuais/química , Animais , Besouros/fisiologia , Feminino , Masculino , Atrativos Sexuais/fisiologia
13.
J Invertebr Pathol ; 179: 107534, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428919

RESUMO

Autodissemination techniques can potentially be used to distribute insecticides, including microbial insecticides, to cryptic pests. This approach is reliant on the target insect either passing the pathogen passively to other insects or the pathogen cycling within the population after the initial host dies. Here we examine, in small scale experiments, whether male Agriotes obscurus click beetles passively transmit the spores of the fungus Metarhizium brunneum directly, or indirectly via the environment, and whether this is influenced by exposure to synthetic female pheromone. We found that the beetles did not avoid M. brunneum spores and that this behaviour was not affected by pheromone. Exposure to pheromone increased beetle movement and uptake of spores, but this did not result in an increase in infected beetles under our conditions. Beetles were able to transfer spores at high levels via environmental contamination. However, contamination of the environment declined rapidly after exposure to the spores. The results are discussed in the context of developing an autodissemination strategy for click beetles.


Assuntos
Besouros/fisiologia , Metarhizium/fisiologia , Atrativos Sexuais/farmacologia , Animais , Besouros/microbiologia , Feminino , Masculino , Controle Biológico de Vetores
14.
Insects ; 11(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265915

RESUMO

The life histories of many soil-dwelling invertebrates remain poorly studied. The larvae of two click beetle species, Athous subfuscus and Dalopius marginatus, which are most abundant in European boreal forests, are both classified as omnivorous and are included in lists of root-damaging pests. Nevertheless, we are not aware of any direct proof of their ability (or inability) to consume plant roots. In this study, we asked whether these larvae actually feed on the roots of forest plants in the absence of other food sources. Live roots of boreal forest plants, including trees (Betula pubescens, Picea abies and Pinus sylvestris) and grass (Deschampsia flexuosa), were offered to click beetle larvae in a two-month microcosm experiment. The weight of roots placed in vials with the wireworms did not decrease, indicating that the larvae of these click beetle species did not feed on live roots, even in the absence of other food sources. This suggests that the feeding niches of A. subfuscus and D. marginatus larvae are narrower than previously thought and do not include live plant tissues. Therefore, these click beetle species should be excluded from the lists of forest pests damaging tree roots.

15.
Pest Manag Sci ; 76(8): 2653-2662, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32112498

RESUMO

BACKGROUND: Wireworms (larvae of the click beetle, Elateridae) are a significant agricultural pest, causing crop damage and reducing yields globally. Owing to the complex nature and opacity of the soil environment, research to investigate wireworm behaviour in situ has been scarce. X-ray computed tomography (CT) has previously been demonstrated as a powerful tool to independently visualise the 3D root system architecture, macroinvertebrate movement and distribution of burrow systems in soil, but not simultaneously within the same sample. In this study, we apply X-ray CT to visualise and quantify wireworms, their burrow systems and the root architecture of two contrasting crop species (Hordeum vulgare and Zea mays) in a soil pot experiment scanned at different time intervals. RESULTS: The majority of wireworm burrows were produced within the first 20 h post inoculation, suggesting that burrow systems are established quickly and persist at a similar volume. There was a significant difference in the volume of burrow systems produced by wireworms between the two crop species suggesting differences in wireworm behaviour elicited by crop species. There was no significant correlation between burrow volume and either root volume or surface area, indicating this behavioural difference is caused by factor(s) other than the mass of root systems. CONCLUSION: X-ray CT shows potential as a non-destructive technique to quantify the interaction of wireworms in the natural soil environment with crop roots, and aid the development of effective pest management strategies to minimise their negative impact on crop production. © 2020 Society of Chemical Industry.


Assuntos
Solo , Agricultura , Animais , Besouros , Larva , Tomografia Computadorizada por Raios X
16.
J Econ Entomol ; 112(2): 625-632, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30520991

RESUMO

Growing buckwheat (Fagopyrum esculentum Moench. Caryophyllales: Polygonaceae) in rotation with potato and other vegetable crops has been reported to decrease the density of an invasive wireworm species (Agriotes sputator Linnaeus. Coleoptera: Elateridae) in Nova Scotia, Canada. It was predicted that the negative effects on wireworm populations result from phytochemicals by buckwheat that act as deterrents, anti-feedants, or toxins in the roots or when released into the soil. Choice assays were conducted to test the attractiveness of germinating, branching, and flowering buckwheat, red spring wheat (Triticum aestivum Linnaeus. Poales: Poaceae) and island barley (Hordeum vulgare Linnaeus. Poales: Poaceae) to the larvae. Twenty-one day, no choice feeding assays were conducted to determine change in mass and mortality of A. sputator larvae when fed buckwheat or barley. There was no evidence that the wireworms were deterred by buckwheat and the germinating stage of all three crops was the most attractive based on the 24-h choice assays. After the 21-d no choice feeding assays, no differences between hosts were observed; however, wireworm herbivory significantly reduced the growth of barley but not buckwheat. The findings from the no choice feeding assays suggest that buckwheat may produce anti-feedants, but longer term feeding assays and field trials are required to confirm this possibility.


Assuntos
Besouros , Fagopyrum , Animais , Agentes de Controle Biológico , Larva , Nova Escócia
17.
Environ Sci Pollut Res Int ; 24(1): 236-251, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27709433

RESUMO

A survey of maize fields was conducted in northeast Italy from 1986 to 2014, resulting in a dataset of 1296 records including information on wireworm damage to maize, plant-attacking species, agronomic characteristics, landscape and climate. Three wireworm species, Agriotes brevis Candeze, A. sordidus Illiger and A. ustulatus Schäller, were identified as the dominant pest species in maize fields. Over the 29-year period surveyed, no yield reduction was observed when wireworm plant damage was below 15 % of the stand. A preliminary univariate analysis of risk assessment was applied to identify the main factors influencing the occurrence of damage. A multifactorial model was then applied by using the significant factors identified. This model allowed the research to highlight the strongest factors and to analyse how the main factors together influenced damage risk. The strongest factors were: A. brevis as prevalent damaging species, soil organic matter content >5 %, rotation including meadows and/or double crops, A. sordidus as prevalent damaging species, and surrounding landscape mainly meadows, uncultivated grass and double crops. The multifactorial model also showed how the simultaneous occurrence of two or more of the aforementioned risk factors can conspicuously increase the risk of wireworm damage to maize crops, while the probability of damage to a field with no-risk factors is always low (<1 %). These results make it possible to draw risk maps to identify low-risk and high-risk areas, a first step in implementing bespoke IPM procedures in an attempt to reduce the impact of soil insecticides significantly.


Assuntos
Besouros/efeitos dos fármacos , Controle de Insetos/métodos , Inseticidas/análise , Poluentes do Solo/análise , Zea mays/crescimento & desenvolvimento , Animais , Clima , Produtos Agrícolas/crescimento & desenvolvimento , Itália , Medição de Risco , Estações do Ano , Solo/química
18.
Annu Rev Entomol ; 60: 313-34, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25341096

RESUMO

Wireworms, the larvae of click beetles (Coleoptera: Elateridae), have had a centuries-long role as major soil insect pests worldwide. With insecticidal control options dwindling, research on click beetle biology and ecology is of increasing importance in the development of new control tactics. Methodological improvements have deepened our understanding of how larvae and adults spatially and temporarily utilize agricultural habitats and interact with their environment. This progress, however, rests with a few pest species, and efforts to obtain comparable knowledge on other economically important elaterids are crucial. There are still considerable gaps in our understanding of female and larval ecology; movement of elaterids within landscapes; and the impact of natural enemies, cultivation practices, and environmental change on elaterid population dynamics. This knowledge will allow generation of multifaceted control strategies, including cultural, physical, and chemical measures, tailored toward species complexes and crops across a range of appropriate spatial scales.


Assuntos
Besouros/fisiologia , Agricultura , Distribuição Animal , Animais , Besouros/crescimento & desenvolvimento , Meio Ambiente , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Controle Biológico de Vetores
19.
J Pest Sci (2004) ; 87(4): 609-617, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25395918

RESUMO

Currently, integrated pest management (IPM) of wireworms is not widespread in Europe. Therefore, to estimate the densities of three major wireworm species in southern Europe (Agriotes brevis Candeze, A. sordidus Illiger, and A. ustulatus Schäller), bait traps were deployed pre-seeding in maize fields in north-eastern Italy between 1993 and 2011. Research discovered that there was a significant correlation between all three wireworm species caught in the bait traps and damage to maize plants, but damage symptoms varied. Wherever A. ustulatus was the main species caught, there was no significant damage to maize plants, but seeds were damaged. Most of the symptoms caused by A. brevis and A. sordidus were to the central leaf/leaves, which wilted because of feeding on the collar. A. brevis was the most harmful species; when more than one A. brevis wireworm was caught per trap, plant damage sometimes resulted in reduced yield. Five A. ustulatus larvae per trap caused the same damage to maize as one A. brevis. A. sordidus came second (threshold two larvae/trap). These thresholds are reliable for: (1) bare soil in which there are no alternative food sources; (2) average soil temperature 10 cm beneath the surface of above 8 °C for 10 days; (3) soil humidity near to field water capacity, but days of flooding have not been considered. The implementation of the practical method described herein may lead to effective IPM of wireworms in maize and to a significant reduction in the number of fields treated with soil insecticides.

20.
J Invertebr Pathol ; 120: 43-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24944009

RESUMO

Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are serious soil dwelling pests of small grains, corn, sugar beets, and potatoes. Limonius californicus and Hypnoidus bicolor are the predominant wireworm species infesting wheat in Montana, particularly in the 'Golden Triangle' area of north-central Montana. Wireworm populations in field crops are increasing, but currently available insecticides provide only partial control, and no alternative management tools exist. In our study, three entomopathogenic fungi were tested for their efficacy against wireworms in spring wheat at two field locations (Ledger and Conrad, Montana, USA) in 2013. The three fungi (Metarhizium brunneum F52, Beauveria bassiana GHA, and Metarhizium robertsii DWR 346) were evaluated as seed-coat, in-furrow granular, and soil band-over-row drench applications in addition to imidacloprid (Gaucho® 600) seed treatment (as a chemical check), the approach currently being used by growers. Wireworm damage in these treatments was evaluated as standing plant counts, wireworm population surveys, and yield. The three fungi, applied as formulated granules or soil drenches, and the imidacloprid seed treatment all resulted in significantly higher plant stand counts and yields at both locations than the fungus-coated seed treatments or the untreated control. Significant differences were detected among the application methods but not among the species of fungi within each application method. All three fungi, when applied as granules in furrow or as soil drenches, were more effective than when used as seed-coating treatments for wireworm control, and provided an efficacy comparable or superior to imidacloprid. The fungi used in this study provided significant plant and yield protection under moderate wireworm pressure, supporting their value in the management of this pest.


Assuntos
Beauveria , Besouros , Metarhizium , Controle Biológico de Vetores/métodos , Triticum/microbiologia , Animais , Produtos Agrícolas/microbiologia , Larva/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA