Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(44): 60521-60529, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39453826

RESUMO

This work unveils critical insights through spectroscopic analysis highlighting electrical phenomena and oxygen vacancy generation in self-aligned fully solution-processed oxide thin-film transistors (TFTs). Ar inductively coupled plasma treatment was conducted to fabricate an amorphous indium zinc oxide (a-InZnO) TFT in a self-aligned process. Results showed that the Ar plasma-activated a-InZnO regions became conductive, which means that a homogeneous layer can act as both channel and electrode in the device. Several techniques were employed to probe specific aspects of the source-drain-channel interface in the fully solution-processed TFTs. X-ray absorption near-edge structure and Extended X-ray absorption fine structure were conducted to investigate the existence of oxygen vacancies, which is the main driving factor in inducing a conductive region. X-ray photoelectron spectroscopy was also used to explain the oxygen refilling mechanism. Ultraviolet Photoelectron Spectroscopy was conducted to analyze the valence band maximum and work function. Integration of these results facilitated the construction of the energy band diagram at the interface, wherein a Schottky barrier height of ∼0.37 eV was observed. By leveraging these techniques, insights into the electronic properties and performance of next-generation transistors are gained, enabling their future widespread adoption.

2.
J Synchrotron Radiat ; 31(Pt 5): 1105-1117, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39190503

RESUMO

Under DAPHNE4NFDI, the X-ray absorption spectroscopy (XAS) reference database, RefXAS, has been set up. For this purpose, we developed a method to enable users to submit a raw dataset, with its associated metadata, via a dedicated website for inclusion in the database. Implementation of the database includes an upload of metadata to the scientific catalogue and an upload of files via object storage, with automated query capabilities through a web server and visualization of the data and files. Based on the mode of measurements, quality criteria have been formulated for the automated check of any uploaded data. In the present work, the significant metadata fields for reusability, as well as reproducibility of results (FAIR data principles), are discussed. Quality criteria for the data uploaded to the database have been formulated and assessed. Moreover, the usability and interoperability of available XAS data/file formats have been explored. The first version of the RefXAS database prototype is presented, which features a human verification procedure, currently being tested with a new user interface designed specifically for curators; a user-friendly landing page; a full list of datasets; advanced search capabilities; a streamlined upload process; and, finally, a server-side automatic authentication and (meta-) data storage via MongoDB, PostgreSQL and (data-) files via relevant APIs.

3.
Adv Sci (Weinh) ; 11(36): e2406657, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39052881

RESUMO

Effectively suppressing nonradiative recombination at the SnO2/perovskite interface is imperative for perovskite solar cells. Although the capabilities of alkali salts at the SnO2/perovskite interface have been acknowledged, the effects and optimal selection of alkali metal cations remain poorly understood. Herein, a novel approach for obtaining the optimal alkali metal cation (A-cation) at the interface is investigated by comparatively analyzing different alkali carbonates (A2CO3; Li2CO3, Na2CO3, K2CO3, Rb2CO3, and Cs2CO3). Theoretical calculations demonstrate that A2CO3 coordinates with undercoordinated Sn and O on the surface, effectively mitigating oxygen vacancy (VO) defects with increasing A-cation size, whereas Cs2CO3 exhibits diminished preferability owing to enhanced steric hindrance. The experimental results highlight the crucial role of Rb2CO3 in actively passivating VO defects, forming a robust bond with SnO2, and facilitating Rb+ diffusion into the perovskite layer, thereby enhancing charge extraction, alleviating deep-level trap states and structural distortion in the perovskite film, and significantly suppressing nonradiative recombination. X-ray absorption spectroscopy analyses further reveal the effect of Rb2CO3 on the local structure of the perovskite film. Consequently, a Rb2CO3-treated device with aperture area of 0.14 cm2 achieves a notable efficiency of 22.10%, showing improved stability compared to the 20.11% achieved for the control device.

4.
Data Brief ; 55: 110634, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39035838

RESUMO

Here, we present As K-edge X-ray absorption spectroscopy (XAS) data for 28 arsenic minerals and compounds. These minerals and compounds were obtained from mineral dealers, museum collections, and chemical suppliers, and were positively identified by synchrotron-based powder X-ray diffraction (XRD). All samples were analyzed for both XRD and XAS at the Canadian Light Source synchrotron (Saskatoon, Canada). The As K-edge XAS data were collected in both transmission and fluorescence modes and cover the extended X-ray absorption fine structure (EXAFS) region. Raw XAS data in both modes are provided to support XAS analysis obtained for geological or environmental research. Furthermore, As K-edge EXAFS spectra, the k3 weighted oscillatory χ(k) functions, and the Fourier-transforms in χ(R) of these K-edge data are processed and presented graphically. Corresponding XRD data was collected to confirm phase identity. Two-dimensional powder diffraction images were collected against an area detector and integrated to produce line scans. The XRD data were either collected at a wavelength of 0.68866 Å (18 keV) or 0.3497 Å (35.45 keV). Raw, tabulated asc files are available, while the patterns are also presented graphically over a 0-40 °2Θ range or 0-26.5 °2Θ range, respectively. The intent of this dataset is to provide reference XAS spectra to researchers conducting environmental or geological research on As.

5.
Environ Sci Technol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020513

RESUMO

Microplastic-derived dissolved organic matter (MP-DOM) is an emerging carbon source in the environment. Interactions between MP-DOM and iron minerals alter the transformation of ferrihydrite (Fh) as well as the distribution and fate of MP-DOM. However, these interactions and their effects on both two components are not fully elucidated. In this study, we selected three types of MP-DOM as model substances and utilized Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the structural features of DOMs and DOM-mineral complexes at the molecular and atomic levels. Our results suggest that carboxyl and hydroxyl groups in MP-DOM increased the Fe-O bond length by 0.02-0.03 Å through interacting with Fe atoms in the first shell, thereby inhibiting the transformation of Fh to hematite (Hm). The most significant inhibition of Fh transformation was found in PS-DOM, followed by PBAT-DOM and PE-DOM. MP-DOM components, such as phenolic compounds and condensed polycyclic aromatics (MW > 360 Da) with high oxygen content and high unsaturation, exhibited stronger mineral adsorption affinity. These findings provide a profound theoretical basis for accurately predicting the behavior and fate of iron minerals as well as MP-DOM in complex natural environments.

6.
Exploration (Beijing) ; 4(1): 20230056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38854491

RESUMO

Revealing and clarifying the chemical reaction processes and mechanisms inside the batteries will bring a great help to the controllable preparation and performance modulation of batteries. Advanced characterization techniques based on synchrotron radiation (SR) have accelerated the development of various batteries over the past decade. In situ SR techniques have been widely used in the study of electrochemical reactions and mechanisms due to their excellent characteristics. Herein, the three most wide and important synchrotron radiation techniques used in battery research were systematically reviewed, namely X-ray absorption fine structure (XAFS) spectroscopy, small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD). Special attention is paid to how these characterization techniques are used to understand the reaction mechanism of batteries and improve the practical characteristics of batteries. Moreover, the in situ combining techniques advance the acquisition of single scale structure information to the simultaneous characterization of multiscale structures, which will bring a new perspective to the research of batteries. Finally, the challenges and future opportunities of SR techniques for battery research are featured based on their current development.

7.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930290

RESUMO

GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) technology and investigated using multiple characterization techniques of Nomarski microscopy (NM), high-resolution X-ray diffraction (HR-XRD), variable angular spectroscopic ellipsometry (VASE), Raman scattering, photoluminescence (PL), and synchrotron radiation (SR) near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NM confirmed crack-free wurtzite (w-) GaN thin films in a large range of 180-1500 nm. XRD identified the w- single crystalline structure for these GaN films with the orientation along the c-axis in the normal growth direction. An optimized 700 °C growth temperature, plus other corresponding parameters, was obtained for the PA-MBE growth of GaN on Si, exhibiting strong PL emission, narrow/strong Raman phonon modes, XRD w-GaN peaks, and high crystalline perfection. VASE studies identified this set of MBE-grown GaN/Si as having very low Urbach energy of about 18 meV. UV (325 nm)-excited Raman spectra of GaN/Si samples exhibited the GaN E2(low) and E2(high) phonon modes clearly without Raman features from the Si substrate, overcoming the difficulties from visible (532 nm) Raman measurements with strong Si Raman features overwhelming the GaN signals. The combined UV excitation Raman-PL spectra revealed multiple LO phonons spread over the GaN fundamental band edge emission PL band due to the outgoing resonance effect. Calculation of the UV Raman spectra determined the carrier concentrations with excellent values. Angular-dependent NEXAFS on Ga K-edge revealed the significant anisotropy of the conduction band of w-GaN and identified the NEXAFS resonances corresponding to different final states in the hexagonal GaN films on Si. Comparative GaN material properties are investigated in depth.

8.
Environ Sci Technol ; 58(26): 11748-11759, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912726

RESUMO

Despite extensive study, geochemical modeling often fails to accurately predict lead (Pb) immobilization in environmental samples. This study employs the Charge Distribution MUlti-SIte Complexation (CD-MUSIC) model, X-ray absorption fine structure (XAFS), and density functional theory (DFT) to investigate mechanisms of phosphate (PO4) induced Pb immobilization on metal (hydr)oxides. The results reveal that PO4 mainly enhances bidentate-adsorbed Pb on goethite via electrostatic synergy at low PO4 concentrations. At relatively low pH (below 5.5) and elevated PO4 concentrations, the formation of the monodentate-O-sharing Pb-PO4 ternary structure on goethite becomes important. Precipitation of hydropyromorphite (Pb5(PO4)3OH) occurs at high pH and high concentrations of Pb and PO4, with an optimized log Ksp value of -82.02. The adjustment of log Ksp compared to that in the bulk solution allows for quantification of the overall Pb-PO4 precipitation enhanced by goethite. The CD-MUSIC model parameters for both the bidentate Pb complex and the monodentate-O-sharing Pb-PO4 ternary complex were optimized. The modeling results and parameters are further validated and specified with XAFS analysis and DFT calculations. This study provides quantitative molecular-level insights into the contributions of electrostatic enhancement, ternary complexation, and precipitation to phosphate-induced Pb immobilization on oxides, which will be helpful in resolving controversies regarding Pb distribution in environmental samples.


Assuntos
Chumbo , Fosfatos , Chumbo/química , Fosfatos/química , Compostos de Ferro/química , Minerais/química , Concentração de Íons de Hidrogênio , Adsorção
9.
IUCrJ ; 11(Pt 4): 620-633, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38904549

RESUMO

Here, the novel technique of extended-range high-energy-resolution fluorescence detection (XR-HERFD) has successfully observed the n = 2 satellite in manganese to a high accuracy. The significance of the satellite signature presented is many hundreds of standard errors and well beyond typical discovery levels of three to six standard errors. This satellite is a sensitive indicator for all manganese-containing materials in condensed matter. The uncertainty in the measurements has been defined, which clearly observes multiple peaks and structure indicative of complex physical quantum-mechanical processes. Theoretical calculations of energy eigenvalues, shake-off probability and Auger rates are also presented, which explain the origin of the satellite from physical n = 2 shake-off processes. The evolution in the intensity of this satellite is measured relative to the full Kα spectrum of manganese to investigate satellite structure, and therefore many-body processes, as a function of incident energy. Results demonstrate that the many-body reduction factor S02 should not be modelled with a constant value as is currently done. This work makes a significant contribution to the challenge of understanding many-body processes and interpreting HERFD or resonant inelastic X-ray scattering spectra in a quantitative manner.

10.
Environ Sci Technol ; 58(23): 10084-10094, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38816987

RESUMO

The preservation of soil organic carbon (OC) is an effective way to decelerate the emission of CO2 emission. However, the coregulation of pore structure and mineral composition in OC stabilization remains elusive. We employed the in situ nondestructive oxidation of OC by low-temperature ashing (LTA) combined with near edge X-ray absorption fine structure (NEXAFS), high-resolution microtomography (µ-CT), field emission electron probe microanalysis (FE-EPMA) with C-free embedding, and novel Cosine similarity measurement to investigate the C retention in different aggregate fractions of contrasting soils. Pore structure and minerals contributed equally (ca. 50%) to OC accumulation in macroaggregates, while chemical protection played a leading role in C retention with 53.4%-59.2% of residual C associated with minerals in microaggregates. Phyllosilicates were discovered to be more prominent than Fe (hydr)oxides in C stabilization. The proportion of phyllosilicates-associated C (52.0%-61.9%) was higher than that bound with Fe (hydr)oxides (45.6%-55.3%) in all aggregate fractions tested. This study disentangled quantitatively for the first time a trade-off between physical and chemical protection of OC varying with aggregate size and the different contributions of minerals to OC preservation. Incorporating pore structure and mineral composition into C modeling would optimize the C models and improve the soil C content prediction.


Assuntos
Carbono , Minerais , Solo , Solo/química , Carbono/análise , Minerais/química , Dióxido de Carbono/análise , China , Tomografia com Microscopia Eletrônica , Monitoramento Ambiental
11.
IUCrJ ; 11(Pt 3): 325-346, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602752

RESUMO

An X-ray absorption spectroscopy (XAS) electrochemical cell was used to collect high-quality XAS measurements of N-truncated Cu:amyloid-ß (Cu:Aß) samples under near-physiological conditions. N-truncated Cu:Aß peptide complexes contribute to oxidative stress and neurotoxicity in Alzheimer's patients' brains. However, the redox properties of copper in different Aß peptide sequences are inconsistent. Therefore, the geometry of binding sites for the copper binding in Aß4-8/12/16 was determined using novel advanced extended X-ray absorption fine structure (EXAFS) analysis. This enables these peptides to perform redox cycles in a manner that might produce toxicity in human brains. Fluorescence XAS measurements were corrected for systematic errors including defective-pixel data, monochromator glitches and dispersion of pixel spectra. Experimental uncertainties at each data point were measured explicitly from the point-wise variance of corrected pixel measurements. The copper-binding environments of Aß4-8/12/16 were precisely determined by fitting XAS measurements with propagated experimental uncertainties, advanced analysis and hypothesis testing, providing a mechanism to pursue many similarly complex questions in bioscience. The low-temperature XAS measurements here determine that CuII is bound to the first amino acids in the high-affinity amino-terminal copper and nickel (ATCUN) binding motif with an oxygen in a tetragonal pyramid geometry in the Aß4-8/12/16 peptides. Room-temperature XAS electrochemical-cell measurements observe metal reduction in the Aß4-16 peptide. Robust investigations of XAS provide structural details of CuII binding with a very different bis-His motif and a water oxygen in a quasi-tetrahedral geometry. Oxidized XAS measurements of Aß4-12/16 imply that both CuII and CuIII are accommodated in an ATCUN-like binding site. Hypotheses for these CuI, CuII and CuIII geometries were proven and disproven using the novel data and statistical analysis including F tests. Structural parameters were determined with an accuracy some tenfold better than literature claims of past work. A new protocol was also developed using EXAFS data analysis for monitoring radiation damage. This gives a template for advanced analysis of complex biosystems.


Assuntos
Peptídeos beta-Amiloides , Cobre , Espectroscopia por Absorção de Raios X , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Cobre/química , Cobre/metabolismo , Espectroscopia por Absorção de Raios X/métodos , Humanos , Nanoestruturas/química , Sítios de Ligação , Oxirredução
12.
Environ Sci Pollut Res Int ; 31(17): 25342-25355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472574

RESUMO

We investigated the structural changes in clay minerals after Cs adsorption and understood their low desorption efficiency using an ion-exchanger. We focused on the role of interlayers in Cs adsorption and desorption in 2:1 clay minerals, namely illite, hydrobiotite, and montmorillonite, using batch experiments and XRD and EXAFS analyses. The adsorption characteristics of the clay minerals were analyzed using cation exchange capacity (CEC), maximum adsorption isotherms (Qmax), and radiocesium interception potential (RIP) experiments. Although illite showed a low CEC value, it exhibited high selectivity for Cs with a relatively high RIP/CEC ratio. The Cs desorption efficiency after treatment with a NaCl ion exchanger was the highest for illite (74.3%), followed by hydrobiotite (45.5%) and montmorillonite (30.3%); thus, Cs adsorbed onto planar sites, rather than on interlayers or frayed edge sites (FESs), is easily desorbed. After NaCl treatment, XRD analysis showed that the low desorption efficiency was due to the collapse of the interlayer-fixed Cs, which tightly narrowed the interlayers' hydrobiotite due to the ion exchange of divalent cations (Mg2+ or Ca2+) into the monovalent cation (Na+). Moreover, EXAFS analysis showed that hydrobiotite formed inner-sphere structures after NaCl desorption, indicating that it was difficult to remove Cs from NaCl desorption due to the collapsed hydrobiotite and montmorillonite interlayers as well as the strong bonding in FESs of illite. In contrast, chelation desorption using oxalic acid effectively dissolved the narrowed interlayers of hydrobiotite (98%) and montmorillonite (85.26%), enhancing the desorption efficiency. Therefore, low desorption efficiency for Cs clays using an ion exchanger was caused by the collapsed interlayer due to the exchange between monovalent cation and divalent cation.


Assuntos
Bentonita , Césio , Argila , Césio/química , Adsorção , Cloreto de Sódio , Minerais/química , Cátions Monovalentes , Silicatos de Alumínio/química
13.
J Phys Condens Matter ; 36(19)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306709

RESUMO

Pressure-induced structural phase transitions play a pivotal role in unlocking novel material functionalities and facilitating innovations in materials science. Nonetheless, unveiling the mechanisms of densification, which relies heavily on precise and comprehensive structural analysis, remains a challenge. Herein, we investigated the archetypalB4 →B1 phase transition pathway in ZnO by combining x-ray absorption fine structure (XAFS) spectroscopy with machine learning. Specifically, we developed an artificial neural network (NN) to decipher the extended-XAFS spectra by reconstructing the partial radial distribution functions of Zn-O/Zn pairs. This provided us with access to the evolution of the structural statistics for all the coordination shells in condensed ZnO, enabling us to accurately track the changes in the internal structural parameteruand the anharmonic effect. We observed a clear decrease inuand an increased anharmonicity near the onset of theB4 →B1 phase transition, indicating a preference for the iT phase as the intermediate state to initiate the phase transition that can arise from the softening of shear phonon modes. This study suggests that NN-based approach can facilitate a more comprehensive and efficient interpretation of XAFS under complexin-situconditions, which paves the way for highly automated data processing pipelines for high-throughput and real-time characterizations in next-generation synchrotron photon sources.

14.
J Appl Crystallogr ; 57(Pt 1): 125-139, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38322727

RESUMO

X-ray absorption spectroscopy (XAS) is a promising technique for determining structural information from sensitive biological samples, but high-accuracy X-ray absorption fine structure (XAFS) requires corrections of systematic errors in experimental data. Low-temperature XAS and room-temperature X-ray absorption spectro-electrochemical (XAS-EC) measurements of N-truncated amyloid-ß samples were collected and corrected for systematic effects such as dead time, detector efficiencies, monochromator glitches, self-absorption, radiation damage and noise at higher wavenumber (k). A new protocol was developed using extended X-ray absorption fine structure (EXAFS) data analysis for monitoring radiation damage in real time and post-analysis. The reliability of the structural determinations and consistency were validated using the XAS measurement experimental uncertainty. The correction of detector pixel efficiencies improved the fitting χ2 by 12%. An improvement of about 2.5% of the structural fitting was obtained after dead-time corrections. Normalization allowed the elimination of 90% of the monochromator glitches. The remaining glitches were manually removed. The dispersion of spectra due to self-absorption was corrected. Standard errors of experimental measurements were propagated from pointwise variance of the spectra after systematic corrections. Calculated uncertainties were used in structural refinements for obtaining precise and reliable values of structural parameters including atomic bond lengths and thermal parameters. This has permitted hypothesis testing.

15.
ACS Nano ; 18(2): 1611-1620, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166379

RESUMO

Single-atom catalysts, known for their high activity, have garnered significant interest. Currently, single-atom catalysts were prepared mainly on 2D substrates with random distribution. Here, we report a strategy for preparing arrayed single Pt (Pt1) atoms, which are templated through coordination with phosphotungstic acids (PTA) intercalated inside hexagonally packed silicate nanochannels for a high single Pt-atom loading of ca. 3.0 wt %. X-ray absorption spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, in conjunction with the density-functional theory calculation, collectively indicate that the Pt single atoms are stabilized via a four-oxygen coordination on the PTA within the nanochannels' inner walls. The critical reduction in the Pt-adsorption energy to nearly the cohesive energy of Pt clustering is attributed to the interaction between PTA and the silicate substrate. Consequently, the transition from single-atom dispersion to clustering of Pt atoms can be controlled by adjusting the number density of PTA intercalated within the silicate nanochannels, specifically when the number ratio of Pt atoms to PTA changes from 3.7 to 18. The 3D organized Pt1-PTA pairs, facilitated by the arrayed silicate nanochannels, demonstrate high and stable efficiency with a hydrogen production rate of ca. 300 mmol/h/gPt─approximately twice that of the best-reported Pt efficiency in polyoxometalate-based photocatalytic systems.

16.
ACS Nano ; 18(3): 1995-2005, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38214304

RESUMO

Transition metal (TM) based Prussian whites, comprising a cyanide anion ((C≡N)-) and TM cations in an alternative manner, have been widely adopted as cathode materials for rechargeable batteries. Prussian whites are characterized by the TM electronic states that exclusively adopt low spin (LS) toward the C atom and high spin (HS) toward the N atom through the hybridized covalent bonding in the TM─C≡N─TM unit with the average oxidation states of the TM ions being 2+, considerably affecting the phase transition behavior upon the release and storage of carrier ions; however, there have been only a few studies on their associated features. Herein, Prussian whites with different HS TM ions were synthesized via coprecipitation and the phase transition behavior controlled by the π electron interaction between the cyanide anions and TM ions during battery operations was investigated. In situ X-ray characterizations reveal that the combined effect of π backdonation in the LS Fe-C unit and π donation in the HS TM-N unit effectively controls the bond length of the TM─C≡N─TM building unit, thus markedly influencing the lattice volume of a series of Prussian white cathodes during the charge/discharge process. This study presents a comprehensive understanding of the structure-property relationship of the Prussian white cathodes involving π electron interactions during battery operations.

17.
Small ; 20(25): e2309331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213019

RESUMO

The ß-relaxation is one of the major dynamic behaviors in metallic glasses (MGs) and exhibits diverse features. Despite decades of efforts, the understanding of its structural origin and contribution to the overall dynamics of MG systems is still unclear. Here two palladium-based Pd─Cu─P and Pd─Ni─P MGs are reported with distinct different ß-relaxation behaviors and reveal the structural origins for the difference using the advanced X-ray photon correlation spectroscopy and absorption fine structure techniques together with the first-principles calculations. The pronounced ß-relaxation and fast atomic dynamics in the Pd─Cu─P MG mainly come from the strong mobility of Cu atoms and their locally favored structures. In contrast, the motion of Ni atoms is constrained by P atoms in the Pd─Ni─P MG, leading to the weakened ß-relaxation peak and sluggish dynamics. The correlation of atomic dynamics with microscopic structures provides a way to understand the structural origins of different dynamic behaviors as well as the nature of aging in disordered materials.

18.
Adv Mater ; 36(15): e2310769, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38239004

RESUMO

It is challenging to control the electronic structure of 2D transition metal dichalcogenides (TMD) for extended applications in renewable energy devices. Here, ReSe2-VSe2 (Re1- xVxSe2) alloy nanosheets over the whole composition range via a colloidal reaction is synthesized. Increasing x makes the nanosheets more metallic and induces a 1T″-to-1T phase transition at x = 0.5-0.6. Compared to the MoSe2-VSe2 and WSe2-VSe2 alloy nanosheets, ReSe2 and VSe2 are mixed more homogeneously at the atomic scale. The alloy nanosheets at x = 0.1-0.7 exhibit an enhanced electrocatalytic activity toward acidic hydrogen evolution reaction (HER). In situ X-ray absorption fine structure measurements reveal that alloying caused the Re and V atoms to be synergically more active in the HER. Gibbs free energy (ΔGH*) and density of state calculations confirm that alloying and Se vacancies effectively activate the metal sites toward HER. The composition dependence of HER performance is explained by homogenous atomic mixing with the increased Se vacancies. The study provides a strategy for designing new TMD alloy nanosheets with enhanced catalytic activity.

19.
Small ; 20(13): e2307236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37974471

RESUMO

Bimetallic metal-organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally addressed through development of a synthesis of mixed metal Zr/Ce-MOFs in aqueous environment, overcoming significant hurdles in the development of MOF nanozymes, sufficiently stable on biologically relevant conditions. Specifically, a green and safe synthesis of Zr/Ce-MOF-808 is reported in water/acetic acid mixture which affords remarkably water-stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. The new materials outperform analogous bimetallic MOF nanozymes, showcasing that rational synthesis modifications could impart outstanding improvements. Further, atomic-level characterization by X-ray Absorption Fine Structure (XAFS) and X-ray Diffraction (XRD) confirmed superior nanozymes arise from differences in the synthetic method, which results in aqueous stable materials, and Ce incorporation, which perturbs the ligand exchange dynamics of the material, and could ultimately be used to fine tune the intrinsic MOF reactivity. Similar rational strategies which leverage metals in a synergistic manner should enable other water-stable bimetallic MOF nanozymes able to surpass existing ones, laying the path for varied biotechnological applications.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Ácido Acético , Biotecnologia , Água
20.
J Synchrotron Radiat ; 31(Pt 1): 77-84, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010796

RESUMO

A plug-flow fixed-bed cell for synchrotron powder X-ray diffraction (PXRD) and X-ray absorption fine structure (XAFS) idoneous for the study of heterogeneous catalysts at high temperature, pressure and under gas flow is designed, constructed and demonstrated. The operating conditions up to 1000°C and 50 bar are ensured by a set of mass flow controllers, pressure regulators and two infra-red lamps that constitute a robust and ultra-fast heating and cooling method. The performance of the system and cell for carbon dioxide hydrogenation reactions under specified temperatures, gas flows and pressures is demonstrated both for PXRD and XAFS at the P02.1 (PXRD) and the P64 (XAFS) beamlines of the Deutsches Elektronen-Synchrotron (DESY).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA