Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 1030510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339005

RESUMO

Background: The mortality and disability rates of acute coronary syndrome (ACS) are quite high. Circular RNA (circRNA) is a competitive endogenous RNA (ceRNA) that plays an important role in the pathophysiology of ACS. Our goal is to screen circRNA-associated ceRNA networks for biomarker genes that are conducive to the diagnosis or exclusion of ACS, and better understand the pathology of the disease through the analysis of immune cells. Materials and methods: RNA expression profiles for circRNAs (GSE197137), miRNAs (GSE31568), and mRNAs (GSE95368) were obtained from the GEO database, and differentially expressed RNAs (DEcircRNAs, DEmiRNAs, and DEmRNAs) were identified. The circRNA-miRNA and miRNA-mRNA regulatory links were retrieved from the CircInteractome database and TargetScan databases, respectively. As a final step, a regulatory network has been designed for ceRNA. On the basis of the ceRNA network, hub mRNAs were verified by quantitative RT-PCR. Hub genes were validated using a third independent mRNA database GSE60993, and ROC curves were used to evaluate their diagnostic values. The correlation between hub genes and immune cells associated with ACS was then analyzed using single sample gene set enrichment analysis (ssGSEA). Results: A total of 17 DEcircRNAs, 229 DEmiRNAs, and 27 DEmRNAs were found, as well as 52 circRNA-miRNA pairings and 10 miRNA-mRNA pairings predicted. The ceRNA regulatory network (circRNA-miRNA-mRNA) was constructed, which included 2 circRNA (hsa_circ_0082319 and hsa_circ_0005654), 4 miRNA (hsa-miR-583, hsa-miR-661, hsa-miR-671-5p, hsa-miR-578), and 5 mRNA (XPNPEP1, UCHL1, DBNL, GPC6, and RAD51). The qRT-PCR analysis result showed that the XPNPEP1, UCHL1, GPC6 and RAD51 genes had a significantly decreased expression in ACS patients. Based on ROC curve analysis, we found that XPNPEP1 has important significance in preventing ACS occurrence and excluding ACS diagnosis. ACS immune infiltration analysis revealed significant correlations between the other 3 hub genes (UCHL1, GPC6, RAD51) and the immune cells (Eosinophils, T folliculars, Type 2 T helper cells, and Imumature dendritic cells). Conclusion: Our study constructed a circRNA-related ceRNA network in ACS. The XPNPEP1 gene could be a protective gene biomarker for ACS. The UCHL1, GPC6 and RAD51 genes were significantly correlated with immune cells in ACS.

2.
Genes Brain Behav ; 17(2): 126-138, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28834604

RESUMO

Metabolic diseases affect various organs including the brain. Accumulation or depletion of substrates frequently leads to brain injury and dysfunction. Deficiency of aminopeptidase P1, a cytosolic proline-specific peptidase encoded by the Xpnpep1 gene, causes an inborn error of metabolism (IEM) characterized by peptiduria in humans. We previously reported that knockout of aminopeptidase P1 in mice causes neurodevelopmental disorders and peptiduria. However, little is known about the pathophysiological role of aminopeptidase P1 in the brain. Here, we show that loss of aminopeptidase P1 causes behavioral and neurological deficits in mice. Mice deficient in aminopeptidase P1 (Xpnpep1-/- ) display abnormally enhanced locomotor activities in both the home cage and open-field box. The aminopeptidase P1 deficiency in mice also resulted in severe impairments in novel-object recognition, the Morris water maze task, and contextual, but not cued, fear memory. These behavioral dysfunctions were accompanied by epileptiform electroencephalogram activity and neurodegeneration in the hippocampus. However, mice with a heterozygous mutation for aminopeptidase P1 (Xpnpep1+/- ) exhibited normal behaviors and brain structure. These results suggest that loss of aminopeptidase P1 leads to behavioral, cognitive and neurological deficits. This study may provide insight into new pathogenic mechanisms for brain dysfunction related to IEMs.


Assuntos
Aminopeptidases/deficiência , Comportamento Animal/fisiologia , Disfunção Cognitiva/fisiopatologia , Hipocampo/fisiopatologia , Animais , Cognição/fisiologia , Disfunção Cognitiva/genética , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA