Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 8(1): 129-140, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36632527

RESUMO

The Crabtree effect products ethanol and acetic acid can be used for itaconic acid (IA) production in Saccharomyces cerevisiae. However, both the IA synthesis and oxidative phosphorylation pathways were hampered by glucose repression when glucose was used as the substrate. This study aimed to improve IA titer by increasing gene expressions related to glucose derepression without impairing yeast growth on glucose. Engineering the acetyl-CoA synthesis pathway increased the titer of IA to 257 mg/L in a urea-based medium. Instead of entire pathway overexpression, we found that some signaling pathways regulating glucose repression were effective targets to improve IA production and respiratory capacity. As a consequence of the reduced inhibition, IA titer was further increased by knocking out a negative regulator of the mitochondrial retrograde signaling MKS1. SNF1/MIG1 signaling was disturbed by deleting the hexokinase HXK2 or an endoplasmic reticulum membrane protein GSF2. The shaking results showed that XYY286 (BY4741, HO::cadA, Y::Dz.ada, 208a::Mt.acs, Δhxk2, pRS415-cadA, pRS423-aac2) accumulated 535 mg/L IA in 168 h in the YSCGLU medium. qRT-PCR results verified that deletion of MKS1 or HXK2 upregulated the gene expressions of the IA synthesis and respiratory pathways during the growth on glucose.

2.
Biotechnol Rep (Amst) ; 24: e00367, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31453116

RESUMO

Stranded driftwood feedstocks may represent, after pretreatment with steam explosion and enzymatic hydrolysis, a cheap C-source for producing biochemicals and biofuels using oleaginous yeasts. The hydrolysis was optimized using a response surface methodology (RSM). The solid loading (SL) and the dosage of enzyme cocktail (ED) were variated following a central composite design (CCD) aimed at optimizing the conversion of carbohydrates into lipids (YL) by the yeast Solicoccozyma terricola DBVPG 5870. A second-order polynomial equation was computed for describing the effect of ED and SL on YL. The best combination (ED = 3.10%; SL = 22.07%) for releasing the optimal concentration of carbohydrates which gave the highest predicted YL (27.32%) was then validated by a new hydrolysis. The resulting value of YL (25.26%) was close to the theoretical maximum value. Interestingly, fatty acid profile achieved under the optimized conditions was similar to that reported for palm oil.

3.
Metab Eng Commun ; 7: e00077, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30197866

RESUMO

The triterpenoid (+)-ambrein is a natural precursor for (-)-ambrox, which constitutes one of the most sought-after fragrances and fixatives for the perfume industry. (+)-Ambrein is a major component of ambergris, an intestinal excretion of sperm whales that is found only serendipitously. Thus, the demand for (-)-ambrox is currently mainly met by chemical synthesis. A recent study described for the first time the applicability of an enzyme cascade consisting of two terpene cyclases, namely squalene-hopene cyclase from Alicyclobacillus acidocaldarius (AaSHC D377C) and tetraprenyl-ß-curcumene cyclase from Bacillus megaterium (BmeTC) for in vitro (+)-ambrein production starting from squalene. Yeasts, such as Pichia pastoris, are natural producers of squalene and have already been shown in the past to be excellent hosts for the biosynthesis of hydrophobic compounds such as terpenoids. By targeting a central enzyme in the sterol biosynthesis pathway, squalene epoxidase Erg1, intracellular squalene levels in P. pastoris could be strongly enhanced. Heterologous expression of AaSHC D377C and BmeTC and, particularly, development of suitable methods to analyze all products of the engineered strain provided conclusive evidence of whole-cell (+)-ambrein production. Engineering of BmeTC led to a remarkable one-enzyme system that was by far superior to the cascade, thereby increasing (+)-ambrein levels approximately 7-fold in shake flask cultivation. Finally, upscaling to 5 L bioreactor yielded more than 100 mg L-1 of (+)-ambrein, demonstrating that metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-ambrein.

4.
Data Brief ; 13: 37-45, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28560281

RESUMO

Here we describe microarray expression data (raw and normalized), experimental metadata, and gene-level data with expression statistics from Saccharomyces cerevisiae exposed to simulated asbestos mine drainage from the Vermont Asbestos Group (VAG) Mine on Belvidere Mountain in northern Vermont, USA. For nearly 100 years (between the late 1890s and 1993), chrysotile asbestos fibers were extracted from serpentinized ultramafic rock at the VAG Mine for use in construction and manufacturing industries. Studies have shown that water courses and streambeds nearby have become contaminated with asbestos mine tailings runoff, including elevated levels of magnesium, nickel, chromium, and arsenic, elevated pH, and chrysotile asbestos-laden mine tailings, due to leaching and gradual erosion of massive piles of mine waste covering approximately 9 km2. We exposed yeast to simulated VAG Mine tailings leachate to help gain insight on how eukaryotic cells exposed to VAG Mine drainage may respond in the mine environment. Affymetrix GeneChip® Yeast Genome 2.0 Arrays were utilized to assess gene expression after 24-h exposure to simulated VAG Mine tailings runoff. The chemistry of mine-tailings leachate, mine-tailings leachate plus yeast extract peptone dextrose media, and control yeast extract peptone dextrose media is also reported. To our knowledge this is the first dataset to assess global gene expression patterns in a eukaryotic model system simulating asbestos mine tailings runoff exposure. Raw and normalized gene expression data are accessible through the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) Database Series GSE89875 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89875).

5.
Prion ; 9(3): 207-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26038983

RESUMO

Prion strains are different self-propagating conformers of the same infectious protein. Three strains of the [PSI] prion, infectious forms of the yeast Sup35 protein, have been previously characterized in our laboratory. Here we report the discovery of a new [PSI] strain, named W8. We demonstrate its robust cellular propagation as well as the protein-only transmission. To reveal strain-specific sequence requirement, mutations that interfered with the propagation of W8 were identified by consecutive substitution of residues 5-55 of Sup35 by proline and insertion of glycine at alternate sites in this segment. Interestingly, propagating W8 with single mutations at residues 5-7 and around residue 43 caused the strain to transmute. In contrast to the assertion that [PSI] existed as a dynamic cloud of sub-structures, no random drift in transmission characteristics was detected in mitotically propagated W8 populations. Electron diffraction and mass-per-length measurements indicate that, similar to the 3 previously characterized strains, W8 fibers are composed of about 1 prion molecule per 4.7-Å cross-ß repeat period. Thus differently folded single Sup35 molecules, not dimeric and trimeric assemblies, form the basic repeating units to build the 4 [PSI] strains.


Assuntos
Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência Conservada , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA