Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Acta Trop ; 255: 107249, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740319

RESUMO

BACKGROUND: Natural human infections by Plasmodium cynomolgi and P. inui have been reported recently and gain the substantial attention from Southeast Asian countries. Zoonotic transmission of non-human malaria parasites to humans from macaque monkeys occurred through the bites of the infected mosquitoes. The objective of this study is to establish real-time fluorescence loop-mediated isothermal amplification (LAMP) assays for the detection of zoonotic malaria parasites by combining real-time fluorescent technology with the isothermal amplification technique. METHODS: By using 18S rRNA as the target gene, the primers for P. cynomolgi, P. coatneyi and P. inui were newly designed in the present study. Four novel real-time fluorescence LAMP assays were developed for the detection of P. cynomolgi, P. coatneyi, P. inui and P. knowlesi. The entire amplification process was completed in 60 min, with the assays performed at 65 °C. By using SYTO-9 as the nucleic acid intercalating dye, the reaction was monitored via real-time fluorescence signal. RESULTS: There was no observed cross-reactivity among the primers from different species. All 70 field-collected monkey samples were successfully amplified by real-time fluorescence LAMP assays. The detection limit for P. cynomolgi, P. coatneyi and P. knowlesi was 5 × 109 copies/µL. Meanwhile, the detection limit of P. inui was 5 × 1010 copies/µL. CONCLUSION: This is the first report of the detection of four zoonotic malaria parasites by real-time fluorescence LAMP approaches. It is an effective, rapid and simple-to-use technique. This presented platform exhibits considerable potential as an alternative detection for zoonotic malaria parasites.


Assuntos
Malária , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Plasmodium , RNA Ribossômico 18S , Sensibilidade e Especificidade , Zoonoses , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Malária/diagnóstico , Malária/parasitologia , Malária/veterinária , RNA Ribossômico 18S/genética , Técnicas de Diagnóstico Molecular/métodos , Plasmodium/genética , Plasmodium/isolamento & purificação , Plasmodium/classificação , Zoonoses/parasitologia , Zoonoses/diagnóstico , Humanos , Primers do DNA/genética , Fluorescência , Macaca/parasitologia , Doenças dos Macacos/parasitologia , Doenças dos Macacos/diagnóstico
2.
medRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38633782

RESUMO

Background: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/µL for P. knowlesi and 0.002 parasites/µL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/µL); Divis et al. real-time 18S rRNA (0.0002 parasites/µL); Lubis et al. hemi-nested SICAvar (1.1 parasites/µL) and Lee et al. nested 18S rRNA (11 parasites/µL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/µL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

3.
Parasitol Int ; 101: 102891, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38537686

RESUMO

Malaria remains a significant global public health concern, with a recent increase in the number of zoonotic malaria cases in Southeast Asian countries. However, limited reports on the vector for zoonotic malaria exist owing to difficulties in detecting parasite DNA in Anopheles mosquito vectors. Herein, we demonstrate for the first time that several Anopheles mosquitoes contain simian malaria parasite DNA using droplet digital PCR (ddPCR), a highly sensitive PCR method. An entomological survey was conducted to identify simian malaria vector species at Phra Phothisat Temple (PPT), central Thailand, recognized for a high prevalence of simian malaria in wild cynomolgus macaques. A total of 152 mosquitoes from six anopheline species were collected and first analyzed by a standard 18S rRNA nested-PCR analysis for malaria parasite which yielded negative results in all collected mosquitoes. Later, ddPCR was used and could detect simian malaria parasite DNA, i.e. Plasmodium cynomolgi, in 25 collected mosquitoes. And this is the first report of simian malaria parasite DNA detection in Anopheles sawadwongporni. This finding proves that ddPCR is a powerful tool for detecting simian malarial parasite DNA in Anopheles mosquitoes and can expand our understanding of the zoonotic potential of malaria transmission between monkeys and humans.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Reação em Cadeia da Polimerase , Anopheles/parasitologia , Animais , Reação em Cadeia da Polimerase/métodos , Malária/transmissão , Malária/epidemiologia , Malária/parasitologia , Malária/diagnóstico , Mosquitos Vetores/parasitologia , Tailândia/epidemiologia , RNA Ribossômico 18S/análise , RNA Ribossômico 18S/genética , Plasmodium/isolamento & purificação , Plasmodium/genética , Macaca fascicularis/parasitologia , DNA de Protozoário/análise , Humanos , Sensibilidade e Especificidade
4.
BMC Public Health ; 24(1): 317, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287308

RESUMO

BACKGROUND: Zoonotic malaria is a growing public health threat in the WHO Southeast Asia (SEA) and Western Pacific (WP) regions. Despite vector-control measures, the distribution of Macaque fascicularis and M. nemestrina, and Anopheles mosquitoes carrying non-human simian malaria parasites poses challenges to malaria elimination. The systematic review assesses the literature on knowledge and malaria-preventive practices in zoonotic malaria-affected areas across the WHO SEA and WP, aiming to identify challenges for malaria control. METHODS: Peer-reviewed articles published in English, Malay and Indonesian between January 2010 and December 2022 were searched in OVID Medline, Scopus, Web of Science, and Google Scholar. Studies of any design-excluding reviews, conference proceedings, and reports from all WHO SEA and WP countries vulnerable to zoonotic malaria-were included. Backwards-reference screening and thematic analysis were conducted. RESULTS: Among 4,174 initially searched articles, 22 peer-reviewed articles met the inclusion criteria. An additional seven articles were identified through backwards-reference screening, resulting in a total of 29 articles for this review. Half of these studies were conducted in Cambodia, Myanmar, Malaysia, and Thailand, mainly in forests and remote communities. The review highlighted inconsistencies in the operationalization of knowledge, and five major themes were identified related to knowledge: causation and transmission, symptoms, treatment, severity and complications, and malaria prevention. While participants generally had some understanding of malaria causation/transmission, minority and indigenous ethnic groups demonstrated limited knowledge and held misconceptions, such as attributing malaria to drinking dirty water. Preventive practices included traditional and non-traditional or modern methods-with a preference for traditional approaches to avoid mosquito bites. Challenges to malaria control included feasibility, cost, and access to healthcare services. CONCLUSION: This review provides insights into knowledge, local understandings, and preventive practices related to malaria in the WHO SEA and WP regions. The findings highlight the need for future research to explore the knowledge of at-risk communities regarding zoonotic malaria, their perceive threat of the disease and factors exposing them to zoonotic malaria. New strategies must be developed for zoonotic malaria programs tailored to local contexts, emphasizing the significance of community participation, health education, and socio-behavioural change initiatives. It is important to consider the interconnectedness of human health, environmental and non-human primates conservation. Socio-cultural nuances should also be carefully considered in the design and implementation of these programs to ensure their effect tailored to local contexts.


Assuntos
Antimaláricos , Malária , Animais , Humanos , Antimaláricos/uso terapêutico , Mosquitos Vetores , Sudeste Asiático , Camboja
5.
Parasitology ; 150(13): 1167-1177, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37929579

RESUMO

Of the 5 human malarial parasites, Plasmodium falciparum and Plasmodium vivax are the most prevalent species globally, while Plasmodium malariae, Plasmodium ovale curtisi and Plasmodium ovale wallikeri are less prevalent and typically occur as mixed-infections. Plasmodium knowlesi, previously considered a non-human primate (NHP) infecting species, is now a cause of human malaria in Malaysia. The other NHP Plasmodium species, Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium inui, Plasmodium simium, Plasmodium coatneyi and Plasmodium fieldi cause malaria in primates, which are mainly reported in southeast Asia and South America. The non-knowlesi NHP Plasmodium species also emerged and were found to cross-transmit from their natural hosts (NHP) ­ to human hosts in natural settings. Here we have reviewed and collated data from the literature on the NHPs-to-human-transmitting non-knowlesi Plasmodium species. It was observed that the natural transmission of these NHP parasites to humans had been reported from 2010 onwards. This study shows that: (1) the majority of the non-knowlesi NHP Plasmodium mixed species infecting human cases were from Yala province of Thailand; (2) mono/mixed P. cynomolgi infections with other human-infecting Plasmodium species were prevalent in Malaysia and Thailand and (3) P. brasilianum and P. simium were found in Central and South America.


Assuntos
Malária , Plasmodium knowlesi , Animais , Humanos , Malária/parasitologia , Primatas , Sudeste Asiático , Plasmodium vivax
7.
Parasit Vectors ; 16(1): 267, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550692

RESUMO

BACKGROUND: Indonesia is home to many species of non-human primates (NHPs). Deforestation, which is still ongoing in Indonesia, has substantially reduced the habitat of NHPs in the republic. This has led to an intensification of interactions between NHPs and humans, which opens up the possibility of pathogen spillover. The aim of the present study was to determine the prevalence of malarial parasite infections in NHPs in five provinces of Indonesia in 2022. Species of the genus Anopheles that can potentially transmit malarial pathogens to humans were also investigated. METHODS: An epidemiological survey was conducted by capturing NHPs in traps installed in several localities in the five provinces, including in the surroundings of a wildlife sanctuary. Blood samples were drawn aseptically after the NHPs had been anesthetized; the animals were released after examination. Blood smears were prepared on glass slides, and dried blood spot tests on filter paper. Infections with Plasmodium spp. were determined morphologically from the blood smears, which were stained with Giemsa solution, and molecularly through polymerase chain reaction and DNA sequencing using rplU oligonucleotides. The NHPs were identified to species level by using the mitochondrial cytochrome c oxidase subunit I gene and the internal transcribed spacer 2 gene as barcoding DNA markers. Mosquito surveillance included the collection of larvae from breeding sites and that of adults through the human landing catch (HLC) method together with light traps. RESULTS: Analysis of the DNA extracted from the dried blood spot tests of the 110 captured NHPs revealed that 50% were positive for Plasmodium, namely Plasmodium cynomolgi, Plasmodium coatneyi, Plasmodium inui, Plasmodium knowlesi and Plasmodium sp. Prevalence determined by microscopic examination of the blood smears was 42%. Species of the primate genus Macaca and family Hylobatidae were identified by molecular analysis. The most common mosquito breeding sites were ditches, puddles and natural ponds. Some of the Anopheles letifer captured through HLC carried sporozoites of malaria parasites that can cause the disease in primates. CONCLUSIONS: The prevalence of malaria in the NHPs was high. Anopheles letifer, a potential vector of zoonotic malaria, was identified following its collection in Central Kalimantan by the HLC method. In sum, the potential for the transmission of zoonotic malaria in several regions of Indonesia is immense.


Assuntos
Anopheles , Malária , Plasmodium knowlesi , Animais , Humanos , Indonésia/epidemiologia , Mosquitos Vetores , Malária/epidemiologia , Malária/veterinária , Malária/parasitologia , Plasmodium knowlesi/genética , Primatas , Macaca , Anopheles/parasitologia
8.
BMC Public Health ; 23(1): 1316, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430300

RESUMO

BACKGROUND: The control of Plasmodium knowlesi malaria remains challenging due to the presence of macaque monkeys and predominantly outdoor-biting Anopheles mosquitoes around human settlements. This study aims to explore the barriers and facilitators related to prevention of mosquito bites among rural communities living in Sabah, Malaysia using the participatory visual method, photovoice. METHODS: From January through June 2022, 26 participants were recruited from four villages in Kudat, Sabah, using purposive sampling. Participants were male and female villagers, aged > 18 years old. After photovoice training in the villages, participants documented facilitators of and barriers related to avoiding mosquito bites using their own smartphone cameras, and provided narratives for their photos. Twelve Focus Group Discussions (FGDs) sessions in three rounds were held to share and discuss the photos, and to address challenges to the avoidance of mosquito bites. All discussions were conducted in the Sabah Malay dialect, and were video and audio recorded, transcribed, and analyzed using reflexive thematic analysis. The Ideation Model, a meta-theoretical model of behaviour change, underpinned this study. RESULTS: The most common types of barriers identified by participants included (I) intrapersonal factors such as low perceived threat of malaria, (II) livelihood and lifestyle activities consisting of the local economy and socio-cultural activities, and (III) physical and social environment. The facilitators were categorized into (I) intrapersonal reasons, including having the opportunity to stay indoors, especially women who are housewives, (II) social support by the households, neaighbours and healthcare workers, and (III) support from healthcare services and malaria awareness program. Participants emphasized the importance of stakeholder's support in implementing feasible and affordable approaches to P. knowlesi malaria control. CONCLUSION: Results provided insights regarding the challenges to preventing P. knowlesi malaria in rural Kudat, Sabah. The participation of communities in research was valuable in expanding knowledge of local challenges and highlighting possible ways to overcome barriers. These findings may be used to improve strategies for zoonotic malaria control, which is critical for advancing social change and minimizing health disparities in malaria prevention.


Assuntos
Mordeduras e Picadas de Insetos , Malária , Plasmodium knowlesi , Animais , Humanos , Feminino , Masculino , Adolescente , Malásia , População Rural , Malária/prevenção & controle
9.
Malar J ; 22(1): 166, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237418

RESUMO

BACKGROUND: Many rural communities in Malaysian Borneo and Southeast Asia are at risk of Plasmodium knowlesi malaria. Multiple factors contribute to infection, however, a deep understanding of illness causation and prevention practices among at-risk communities remains limited. This study aims to document local knowledge on malaria causation and preventive practices of rural communities in Sabah, Malaysia, using photovoice-a participatory research method. METHODS: From January to June 2022, a photovoice study was conducted with rural communities in Matunggong subdistrict, Malaysia, to explore their experiences with and local knowledge of non-human primate malaria and prevention practices. The study included (1) an introductory phase in which participants were introduced to the photovoice method; (2) a documentation phase in which participants captured and narrated photos from their communities; (3) a discussion phase in which participants discussed photos and relevant topics through a series of three focus group discussions (FGDs) per village; and (4) a dissemination phase where selected photos were shared with key stakeholders through a photo exhibition. A purposively selected sample of 26 participants (adults > 18 years old, male, and female) from four villages participated in all phases of the study. The study activities were conducted in Sabah Malay dialect. Participants and the research team contributed to data review and analyses. RESULTS: Rural communities in Sabah, Malaysia possess local knowledge that attributes non-human primate malaria to natural factors related to the presence of mosquitoes that bite humans and which carry "kuman-malaria" or malaria parasite. Participants revealed various preventive practises ranging from traditional practises, including burning dried leaves and using plants that produce foul odours, to non-traditional approaches such as aerosols and mosquito repellents. By engaging with researchers and policymakers, the participants or termed as co-researchers in this study, showcased their ability to learn and appreciate new knowledge and perspectives and valued the opportunity to share their voices with policymakers. The study successfully fostered a balance of power dynamics between the co-researchers, research team members and policymakers. CONCLUSION: There were no misconceptions about malaria causation among study participants. The insights from study participants are relevant because of their living experience with the non-human malaria. It is critical to incorporate rural community perspectives in designing locally effective and feasible malaria interventions in rural Sabah, Malaysia. Future research can consider adapting the photovoice methodology for further research with the community toward building locally tailored-malaria strategies.


Assuntos
Malária , Plasmodium knowlesi , Adulto , Animais , Humanos , População Rural , Bornéu , Malária/prevenção & controle , Malária/parasitologia , Sudeste Asiático , Malásia/epidemiologia
10.
Travel Med Infect Dis ; 53: 102580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37088361

RESUMO

Plasmodium knowlesi has been reported as an emerging infection throughout the Southeast Asian region, especially in the Malaysian state of Sabah, where it accounts for the majority of the malaria cases reported. This is in contrast to Europe, where imported P. knowlesi is a rarely reported infection. We present a case of P. knowlesi infection in a Danish woman returning from a short trip to Malaysian Borneo. Microscopy of blood smears revealed 0.8% infected erythrocytes, but due to the atypical morphological presentation, a conclusive species identification was made by molecular methods. Plasmodium knowlesi is a potentially fatal infection and taking the increasing travel activity into consideration after the coronavirus disease 2019 (COVID-19) pandemic, P. knowlesi should be a differential diagnosis in patients with travel-associated illness returning from highly endemic Southeast Asian areas.


Assuntos
COVID-19 , Malária , Parasitos , Plasmodium knowlesi , Animais , Feminino , Humanos , Bornéu , Plasmodium knowlesi/genética , Viagem , COVID-19/diagnóstico , Malária/diagnóstico , Malária/epidemiologia , Dinamarca
11.
Malar J ; 21(1): 373, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474243

RESUMO

BACKGROUND: In the last decade Plasmodium knowlesi has been detected in humans throughout South East Asia. The highest risk groups for this infection are males, adults and those performing forest-related work. Furthermore, asymptomatic cases of P. knowlesi malaria have been reported including among women and children. METHODS: Pubmed, Scopus and the Web of Science databases for literature describing asymptomatic P. knowlesi malaria published between 2010 and 2020 were searched. A systematic literature review was conducted to identify studies reporting the prevalence and incidence of laboratory confirmed asymptomatic P. knowlesi cases in humans, their clinical and demographic characteristics, and methods used to diagnose these cases. RESULTS: By analysing over 102 papers, thirteen were eligible for this review. Asymptomatic P. knowlesi infections have been detected in 0.03%-4.0% of the population depending on region, and infections have been described in children as young as 2 years old. Various different diagnostic methods were used to detect P. knowlesi cases and there were differing definitions of asymptomatic cases in these studies. The literature indicates that regionally-differing immune-related mechanisms may play a part on the prevalence of asymptomatic P. knowlesi. CONCLUSION: Differing epidemiological characteristics of asymptomatic P. knowlesi malaria in different regions reinforces the need to further investigate disease transmission mechanics. Effective public health responses to changes in P. knowlesi epidemiology require proactive intervention and multisectoral collaboration.


Assuntos
Doenças Transmissíveis Emergentes , Plasmodium knowlesi , Criança , Humanos , Feminino , Pré-Escolar
12.
Front Microbiol ; 13: 1022828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386653

RESUMO

Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.

13.
Parasit Vectors ; 15(1): 258, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850777

RESUMO

BACKGROUND: The Indonesian Republic plans to relocate its capital from Jakarta to East Kalimantan, Borneo Island, in the next few years. This relocation may be associated with deforestation, decreased biodiversity, and an increased risk of emerging zoonotic infections, including Plasmodium knowlesi malaria. The Malaysian part of Borneo Island is one of the main hotspots of P. knowlesi malaria. METHODS: Considering this risk, we evaluated the transmission dynamics of P. knowlesi in the Indonesian Archipelago based on a literature search and extensive review of data from the Indonesian Ministry of Health. RESULTS: We report that 545 P. knowlesi cases were documented in Indonesia, mainly in the Aceh and North Sumatra provinces, with 95% of these occurring in the last 4 years. CONCLUSIONS: The main P. knowlesi vectors are present in the area of the future capital, requiring strengthened surveillance to reduce the risk of emerging cases in a rapidly growing population.


Assuntos
Malária , Plasmodium knowlesi , Animais , Humanos , Bornéu , Indonésia/epidemiologia , Malária/epidemiologia , Malásia/epidemiologia , Zoonoses/epidemiologia
14.
One Health ; 14: 100389, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35686151

RESUMO

The emergence of zoonotic malaria in different parts of the world, including Indonesia poses a challenge to the current malaria control and elimination program that target global malaria elimination at 2030. The reported cases in human include Plasmodium knowlesi, P. cynomolgi and P. inui, in South and Southeast Asian region and P. brazilianum and P. simium in Latin America. All are naturally found in the Old and New-world monkeys, macaques spp. This review focuses on the currently available data that may represent primate malaria as an emerging challenge of zoonotic malaria in Indonesia, the distribution of non-human primates and the malaria parasites it carries, changes in land use and deforestation that impact the habitat and intensifies interaction between the non-human primate and the human which facilitate spill-over of the pathogens. Although available data in Indonesia is very limited, a growing body of evidence indicate that the challenge of zoonotic malaria is immense and alerts to the need to conduct mitigation efforts through multidisciplinary approach involving environmental management, non-human primates conservation, disease management and vector control.

15.
Parasite ; 29: 32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674419

RESUMO

Macaques, Macaca fascicularis, are a known reservoir of Plasmodium knowlesi, the agent of simian malaria which is the predominant zoonotic species affecting humans in Malaysia and other Southeast Asian countries. Recently, a naturally acquired human infection of another simian malaria parasite, P. cynomolgi has been reported. Thus, it is crucial to study the distribution of simian Plasmodium infections with particular attention to the macaques. Four hundred and nineteen (419) long-tailed macaques (Macaca fascicularis) were trapped in selected areas where human cases of P. knowlesi and P. cynomolgi have been reported. Nested polymerase chain reaction (PCR) was conducted to identify the Plasmodium spp., and circumsporozoite protein (CSP) genes of P. knowlesi samples were sequenced. Plasmodium cynomolgi infection was shown to be the most prevalent among the macaque population (68.4%). Although 50.6% of analyzed samples contained single infections either with P. knowlesi, P. cynomolgi, P. inui, P. coatneyi, or P. fieldi, mixed infections with double, triple, quadruple, and all 5 species were also detected. Infection with P. cynomolgi and P. knowlesi were the highest among Malaysian macaques in areas where humans and macaques are in close contact. The risk of zoonotic infection in these areas needs to be addressed since the number of zoonotic malaria cases is on the rise. With the elimination of human malaria, the risk of humans being infected with simian malaria is very high and steps should be taken to mitigate this issue.


Title: Plasmodium spp. chez les macaques, Macaca fascicularis, en Malaisie, et leur rôle potentiel dans la transmission zoonotique du paludisme. Abstract: Les macaques, Macaca fascicularis, sont un réservoir connu de Plasmodium knowlesi, l'agent du paludisme simien qui est l'espèce zoonotique prédominante affectant les humains en Malaisie et dans d'autres pays d'Asie du Sud-Est. Récemment, une infection humaine acquise naturellement par un autre parasite du paludisme simien, P. cynomolgi, a été signalée. Ainsi, il est crucial d'étudier la distribution des infections simiennes à Plasmodium avec une attention particulière pour les macaques. Quatre cent dix-neuf (419) macaques à longue queue (Macaca fascicularis) ont été piégés dans des zones sélectionnées où des cas humains de P. knowlesi et P. cynomolgi avaient été signalés. La réaction en chaîne par polymérase (PCR) nichée a été menée pour identifier les Plasmodium spp. et les gènes de la protéine circumsporozoïte (CSP) des échantillons de P. knowlesi ont été séquencés. L'infection à P. cynomolgi s'est avérée la plus répandue parmi la population de macaques (68,4 %). Bien que 50,6 % des échantillons analysés montraient des infections simples avec soit P. knowlesi, P. cynomolgi, P. inui, P. coatneyi ou P. fieldi, des infections mixtes avec deux, trois, quatre ou même les cinq espèces ont également été détectées. L'infection par P. cynomolgi et P. knowlesi était la plus élevée parmi les macaques malais dans les zones où les humains et les macaques sont en contact étroit. Le risque d'infection zoonotique dans ces zones doit être pris en compte car le nombre de cas de paludisme zoonotique est en augmentation. Avec l'élimination du paludisme humain, le risque d'être infecté par le paludisme simien est très élevé et des mesures doivent être prises pour atténuer ce problème.


Assuntos
Malária , Plasmodium knowlesi , Animais , Macaca fascicularis/parasitologia , Malária/epidemiologia , Malária/parasitologia , Malária/veterinária , Malásia/epidemiologia , Plasmodium knowlesi/genética , Zoonoses/epidemiologia
18.
Ecohealth ; 19(2): 233-245, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35553290

RESUMO

Several vector-borne pathogens of primates have potential for human spillover. An example is the simian malaria Plasmodium knowlesi which is now a major public health problem in Malaysia. Characterization of exposure to mosquito vectors is essential for assessment of the force of infection within wild simian populations, however few methods exist to do so. Here we demonstrate the use of thermal imaging and mosquito magnet independence traps (MMIT) to assess the abundance, diversity and infection rates in mosquitoes host seeking near long-tailed macaque (Macaca fasicularis) sleeping sites in the Lower Kinabatangan Wildlife Sanctuary, Malaysian Borneo. The primary Plasmodium knowlesi vector, Anopheles balabacensis, was trapped at higher abundance near sleeping sites than control trees. Although none of the An. balabacensis collected (n = 15) were positive for P. knowlesi by PCR screening, two were infected with another simian malaria Plasmodium inui. Analysis of macaque stools from sleeping sites confirmed a high prevalence of Plasmodium infection, suspected to be P. inui. Recently, natural transmission of P. inui has been detected in humans and An. cracens in Peninsular Malaysia. The presence of P. inui in An. balabacensis here and previously in human-biting collections highlight its potential for spillover from macaques to humans in Sabah. We advocate the use of MMITs for non-invasive sampling of mosquito vectors that host seek on wild simian populations.


Assuntos
Malária , Plasmodium knowlesi , Animais , Bornéu , Humanos , Macaca fascicularis , Malária/epidemiologia , Mosquitos Vetores
19.
J Physiol Anthropol ; 41(1): 14, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413881

RESUMO

Plasmodium knowlesi malaria infection in humans has been reported throughout southeast Asia. The communities at risk are those living in areas where Macaque monkeys and Anopheles mosquito are present. Zoonotic malaria control is challenging due to the presence of the reservoir host and the possibility of human-vector-human transmission. Current control measures, including insecticide-treated nets (ITNs) and indoor residual spraying (IRS), are insufficient to address this threat due to gaps in protection associated with outdoor and early evening vector biting and social and economic activities, such as agricultural and forest work. Understanding the challenges faced by affected communities in preventing mosquito bites is important for reducing disease transmission. This opinion paper discusses opportunities to improve P. knowlesi malaria control through understanding the challenges faced by communities at risk and increasing community engagement and ownership of control measures. The paper highlights this issue by describing how the concept of reimagining malaria can be adapted to zoonotic malaria control measures including identifying current gaps in vector control, understanding interactions between environmental, economic, and human behavioral factors, and increasing community participation in and ownership of control measures.


Assuntos
Anopheles , Inseticidas , Malária , Plasmodium knowlesi , Animais , Humanos , Malária/prevenção & controle , Mosquitos Vetores
20.
Artigo em Inglês | MEDLINE | ID: mdl-35409824

RESUMO

The increasing incidence of P. knowlesi malaria infection among humans is a public health threat. This zoonotic disease is challenging to eliminate owing to the presence of animal reservoirs. Understanding the factors such as the community's belief, social context, drivers, and barriers can provide insights into malaria preventive behavior. It is crucial to improve the current preventive measures. This study aims to achieve consensus among malaria experts based on evidence from literature reviews and experts' opinions on possible factors influencing malaria preventive behavior among communities exposed to P. knowlesi malaria infection. A modified Delphi study protocol was developed to gather experts' consensus on the study framework to explore the factors influencing preventive behavior among communities exposed to P. knowlesi malaria infection. The framework is adapted from the ideation model, and it is integrated with other relevant theories and extensive literature reviews. We will use the modified Delphi protocol to reach a consensus. The experts will respond to each questionnaire item and a related open-ended questionnaire. Consensus is predetermined at more than 70% agreement on the items. We will use descriptive statistics and thematic analysis to analyze the data. All experts will remain anonymous to maintain the characteristics of a traditional Delphi study.


Assuntos
Malária , Plasmodium knowlesi , Animais , Consenso , Técnica Delphi , Malária/epidemiologia , Malária/prevenção & controle , Zoonoses/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA