Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.482
Filtrar
1.
BMC Genomics ; 25(1): 846, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251952

RESUMO

BACKGROUND: Squamosa promoter-binding protein-like (SPL) is a plant-specific transcription factor that is widely involved in the regulation of plant growth and development, including flower and grain development, stress responses, and secondary metabolite synthesis. However, this gene family has not been comprehensively evaluated in barley, the most adaptable cereal crop with a high nutritional value. RESULTS: In this study, a total of 15 HvSPL genes were identified based on the Hordeum vulgare genome. These genes were named HvSPL1 to HvSPL15 based on the chromosomal distribution of the HvSPL genes and were divided into seven groups (I, II, III, V, VI, VII, and VIII) based on the phylogenetic tree analysis. Chromosomal localization revealed one pair of tandem duplicated genes and one pair of segmental duplicated genes. The HvSPL genes exhibited the highest collinearity with the monocotyledonous plant, Zea mays (27 pairs), followed by Oryza sativa (18 pairs), Sorghum bicolor (16 pairs), and Arabidopsis thaliana (3 pairs), and the fewest homologous genes with Solanum lycopersicum (1 pair). The distribution of the HvSPL genes in the evolutionary tree was relatively scattered, and HvSPL proteins tended to cluster with SPL proteins from Z. mays and O. sativa, indicating a close relationship between HvSPL and SPL proteins from monocotyledonous plants. Finally, the spatial and temporal expression patterns of the 14 HvSPL genes from different subfamilies were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Based on the results, the HvSPL gene family exhibited tissue-specific expression and played a regulatory role in grain development and abiotic stress. HvSPL genes are highly expressed in various tissues during seed development. The expression levels of HvSPL genes under the six abiotic stress conditions indicated that many genes responded to stress, especially HvSPL8, which exhibited high expression under multiple stress conditions, thereby warranting further attention. CONCLUSION: In this study, 15 SPL gene family members were identified in the genome of Hordeum vulgare, and the phylogenetic relationships, gene structure, replication events, gene expression, and potential roles of these genes in millet development were studied. Our findings lay the foundation for exploring the HvSPL genes and performing molecular breeding of barley.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Hordeum/genética , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Cromossomos de Plantas/genética , Mapeamento Cromossômico , Duplicação Gênica
2.
Front Physiol ; 15: 1426169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318365

RESUMO

We investigated environmentally correlated abiotic stressor desiccation (D), heat (H), and starvation (S) in the generation of reactive oxygen and nitrogen species (RONS) using Drosophila melanogaster larvae as an experimental model, subjected to either individual stressors or exposed to a combinatorial form of stressors (D + H, H + S, and D + S). The study was also extended to find synergistic endpoints where the impacts of all three stressors (D + H + S) were exerted simultaneously. We estimated the lethal time (LT20) at specific doses using regression and probit analyses based on the larval survival. LT20 values were used as the base-level parameter for further oxidative stress experimental analysis work. First, all stressors led to the activation of a typical common oxidative stress-mediated response irrespective of the mode of exposure. As envisaged, D. melanogaster larvae exhibited a homeostatic stress tolerance mechanism, triggering an antioxidant defense mechanism, indicated by an elevated level of total antioxidant capacity and enhanced activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase. In all types of stress-exposed regimes, we found a negative impact of stressors on the activity of mitochondrial enzyme aconitase. Elevated levels of other oxidative stress markers, viz., lipid peroxidation, protein carbonyl content, and advanced oxidative protein products, were obvious although the increment was treatment-specific. Desiccation stress proved to be the most dominant stressor compared to heat and starvation. Among the combination of stressors, rather than a single stressor, D + H impacted more than other binary stress exposures. Focusing on the impact of singular versus combinatorial stress exposure on RONS generation, we observed an increase in the RONS level in both singular and combinatorial forms of stress exposure although the magnitude of the increment varied with the nature of stressors and their combinations. The present study indicated an "additive" effect when all three stressors (D + H + S) operate simultaneously, rather than a "synergistic" effect.

3.
Plant Cell Environ ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323026

RESUMO

Weeds are among the most significant factors contributing to decreases in crop yield and quality. Glufosinate, a nonselective, broad-spectrum herbicide, has been extensively utilized for weed control in recent decades. However, crops are usually sensitive to glufosinate. Therefore, the development of glufosinate-resistant crops is crucial for effective weed management in agriculture. In this study, we characterized a SQUAMOSA promoter-binding-like (SPL) factor, OsSPL8, which acts as a negative regulator of glufosinate resistance by inhibiting the transcription of OsGS1;1 and OsGS2 and consequently reducing GS activity. Furthermore, the loss of OsSPL8 function enhanced tolerance to drought and salt stresses. Transcriptomic comparisons between the gar18-3 mutant and wild type revealed that OsSPL8 largely downregulates stress-responsive genes and upregulates growth-related genes. We demonstrated that OsSPL8 directly regulates OsOMTN6 and OsNAC17, which influence drought tolerance. In addition, OsSPL8 directly represses the expression of salt stress tolerance-related genes such as OsHKT1.1 and OsTPP1. Collectively, our results demonstrate that OsSPL8 is a negative regulator of both glufosinate resistance and abiotic stress tolerance.

4.
Am J Bot ; : e16411, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323053

RESUMO

PREMISE: While some studies have found leaf variegation to reduce photosynthetic capacity, others showed that it can increase photosynthesis. Thus, what maintains variegation remains an open question. Two primary hypotheses-the anti-herbivory and abiotic heterogeneity hypotheses-have been posited, yet little empirical research explicitly investigates the maintenance of naturally occurring variegation. METHODS: We used field surveys, image analysis, and climatic associations to explore the anti-herbivory and abiotic heterogeneity hypotheses in 21 populations of Hexastylis heterophylla and H. shuttleworthii, both polymorphic for leaf variegation. We measured the frequency of variegated individuals, variegation intensity, and herbivory for each morph, assessed abiotic correlates with variegation, and measured photosynthetic efficiency. RESULTS: We found a strong elevational cline in leaf variegation strongly linked with abiotic heterogeneity; variegation was more common in lower-elevation populations characterized by higher temperatures, UV-B exposure, seasonal light change, and drier, more basic soils. Variegated and nonvariegated individuals experienced similar levels of herbivory. Morphs had similar photosynthetic quantum yields. However, nonvariegated leaves experienced more nonphotochemical quenching, an indication of photoinhibition, and had higher surface temperatures under high light. CONCLUSIONS: Our results suggest that variegation may serve as an adaptation to high temperatures and light conditions and can reduce photoinhibition in certain environmental contexts. Thus, abiotic factors can maintain variegation in wild populations and shape geographic clines in variegation.

5.
Arch Microbiol ; 206(10): 418, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325276

RESUMO

Grass endophytic fungi have garnered increasing attention as a prolific source of bioactive metabolites with potential application across various fields, including pharmaceticals agriculture and industry. This review paper aims to synthesize knowledge on the diversity, isolation, and bioactivity of metabolites produced by grass endophytic fungi. Additionally, this approach aids in the conservation of rare and endangered plant species. Advanced analytical techniques such as high-performance liquid chromatography, liquid chromatograpy-mass spectrometry and gas chromatography are discussed as critical tools for metabolite identification and characterization. The review also highlights significant bioactive metabolites discovered to date, emphasizing their antimicrobial, antioxidant, and insecticidal activities and plant growth regulation properties. Besides address the challenges and future prospects in harnessing grass endophytic fungi for sustainable biotenological applications. By consolidating recent advancements and identifying agaps in the current research, this paper provides a comprehensive overview of the potential grass endophytic fungi as a valuable resource for novel bioactive compounds.


Assuntos
Produtos Biológicos , Endófitos , Fungos , Poaceae , Endófitos/metabolismo , Fungos/metabolismo , Poaceae/microbiologia , Produtos Biológicos/metabolismo , Antioxidantes/metabolismo , Anti-Infecciosos/metabolismo , Inseticidas/metabolismo
6.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39227165

RESUMO

AIMS: This study identifies a unique glutathione S-transferase (GST) in extremophiles using genome, phylogeny, bioinformatics, functional characterization, and RNA sequencing analysis. METHODS AND RESULTS: Five putative GSTs (H0647, H0729, H1478, H3557, and H3594) were identified in Halothece sp. PCC7418. Phylogenetic analysis suggested that H0647, H1478, H0729, H3557, and H3594 are distinct GST classes. Of these, H0729 was classified as an iota-class GST, encoding a high molecular mass GST protein with remarkable features. The protein secondary structure of H0729 revealed the presence of a glutaredoxin (Grx) Cys-Pro-Tyr-Cys (C-P-Y-C) motif that overlaps with the N-terminal domain and harbors a topology similar to the thioredoxin (Trx) fold. Interestingly, recombinant H0729 exhibited a high catalytic efficiency for both glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB), with catalytic efficiencies that were 155- and 32-fold higher, respectively, compared to recombinant H3557. Lastly, the Halothece gene expression profiles suggested that antioxidant and phase II detoxification encoding genes are crucial in response to salt stress. CONCLUSION: Iota-class GST was identified in cyanobacteria. This GST exhibited a high catalytic efficiency toward xenobiotic substrates. Our findings shed light on a diversified evolution of GST in cyanobacteria and provide functional dynamics of the genes encoding the enzymatic antioxidant and detoxification systems under abiotic stresses.


Assuntos
Cianobactérias , Glutationa Transferase , Filogenia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Cianobactérias/genética , Cianobactérias/enzimologia , Cianobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Glutationa/metabolismo , Sequência de Aminoácidos , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutarredoxinas/química
7.
Bioresour Technol ; 413: 131511, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307477

RESUMO

This study investigates the biochemical methane potential (BMP) of microalgal biomass, introducing a novel cells disruption method using quartz powder (SiO2). A two-phase algae cultivation, involving nitrogen deprivation and salinity shifts, was employed to biochemically modify the biomass of two brackish green algae strains, Chlorella vulgaris and Monoraphidium contortum, enhancing their methane (CH4) production potential. Mechanical disruption of the algal cells further increased BMP, with C. vulgaris yielding 305 mL CH4/g volatile solids (VS) and M. contortum reaching 324 mL CH4/g VS, reflecting respective increases of 51 % and 86 %. The integration of this efficient mechanical cell disruption method with a simple, stress-based cultivation strategy presents significant potential for enhancing the methane yield of microalgal biomass.

8.
Vet World ; 17(8): 1765-1777, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39328459

RESUMO

Background and Aim: Climatic conditions significantly impact the life stages and distribution patterns of ticks and tick-borne diseases. South Africa's central plateau and various biomes offer a distinct landscape for studying the geography's effects. The study estimated tick species prevalence and the influential factors on their survival. Materials and Methods: Ticks were gathered from communal cattle in South African provinces including Limpopo (LP), Gauteng (GP), Mpumalanga (MP), KwaZulu-Natal (KZN), the Eastern Cape (EC), and the Free State (FS), from September 2020 to November 2022. Using data from South African weathercasts, the annual climate was assessed. Results: A total of 3,409 ticks were collected, with the highest infestation observed in KZN (45%), followed by LP (26%), EC (19%), GP (5%), MP (2%), and the FS (2%). The most prevalent tick species were Amblyomma hebraeum (55.1%), Rhipicephalus evertsi evertsi (13.9%) and Rhipicephalus (Boophilus), and decoloratus (11.9%). Other species included R. (Boophilus) microplus (10.85%), Hyalomma marginatum (4.8%), Rhipicephalus appendiculatus (1.4%), Harpalus rufipes (0.8%), Rhipicephalus exophthalmos (0.2%), Rhipicephalus glabroscutatus (0.2%), Rhipicephalus sanguineus (0.2%), Haemaphysalis silacea (0.5%), Ixodes pilosus (0.1%), and Rhipicephalus simus (0.1%). The infestations were most prevalent on farms in Pongola and KZN. The temperature fluctuated between 12°C and 35°C during data gathering, while humidity varied between 40% and 65%. Conclusion: This study showed that ticks survive optimally in warm temperatures and high humidity conditions. Livestock farms with high tick infestations may be associated with several risk factors. These practices could involve suboptimal grazing, insufficient acaricidal treatment, and detrimental effects resulting from traditional animal husbandry. Future research is needed to longitudinally evaluate the effects of climate change on tick populations, pathogen transmission, hosts, habitats, and human behavior, influencing potential exposure risks.

9.
Plant Dis ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320377

RESUMO

The gall oak (Quercus infectoria Oliv.) tree is one of the most important and valuable forestry species in the Northern Zagros forests in the west of Iran. Gall oak decline is considered to be one of the most important diseases currently affecting the oak Zagros forests in Iran. The main objective of the present study, conducted in the years 2021-2023, was to investigate the possible role of fungi as causative agents of gall oak dieback in the Zagros forests of Iran. Wood samples were taken from gall oak trees showing canker, dieback, and internal wood discoloration symptoms. Fungal isolates recovered from gall oak trees were identified based on cultural and morphological characteristics, as well as phylogenetic analyses using DNA sequencing of the internal transcribed spacer region of rDNA (ITS) and partial beta-tubulin (tub2). Achaetomium aegilopis, Alternaria tenuissima, Apiospora intestine, Botrytis cinerea, Coniochaeta sp., Coniothyrium palmarum, Coniothyrium sp., Cytospora rhodophila, Dialonectria episphaeria, Diatrype sp., Diatrypella macrospora, Endoconidioma populi, Fonsecazyma sp., Fusarium ipomoeae, Jattaea discrete, Kalmusia variispora, Microsphaeropsis olivacea, Neoscytalidium dimidiatum, Paecilomyces lecytidis, Paramicrosphaeropsis eriobotryae, Paramicrosphaeropsis ellipsoidea, and Seimatosporium pezizoides were identified from diseased trees. Pathogenicity tests were performed by artificial inoculation of excised branches of healthy gall oak trees under controlled conditions and evaluated after 35 days by measuring the discolored lesion length at the inoculation site. N. dimidiatum was the most virulent species and caused the longest wood necrosis within 35 days of inoculation. In the greenhouse test, only some species induced typical symptoms of canker. All isolated fungi are reported for the first time on gall oak trees in the world.

10.
J Genet Genomics ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322116

RESUMO

On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39322273

RESUMO

Helicases are involved in almost every nucleic acid metabolism process. Within this family, RecQ helicase proteins protect genome integrity across all organisms through DNA recombination, repair, and replication. This study focused on five Arabidopsis thaliana RecQ-like (AtRecQl) genes with diverse functionalities. Analysis of ProAtRecQl:GUS expression during vegetative and reproductive development stages revealed organ- and tissue-specific patterns. Changes in AtRecQls transcript levels in response to abiotic stressors suggest their involvement in diverse stimuli responses. Notably, germination and growth rates were lower in atrecql2 and atrecql3 mutants under various salt concentrations and cold conditions. These findings indicate that AtRecQl2 and AtRecQl3 act as positive regulators of abiotic stress tolerance during the germinative and postgerminative phases.

12.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39273675

RESUMO

Shaker potassium channel proteins are a class of voltage-gated ion channels responsible for K+ uptake and translocation, playing a crucial role in plant growth and salt tolerance. In this study, bioinformatic analysis was performed to identify the members within the Shaker gene family. Moreover, the expression patterns of rice Shaker(OsShaker) K+ channel genes were analyzed in different tissues and salt treatment by RT-qPCR. The results revealed that there were eight OsShaker K+ channel genes distributed on chromosomes 1, 2, 5, 6 and 7 in rice, and their promoters contained a variety of cis-regulatory elements, including hormone-responsive, light-responsive, and stress-responsive elements, etc. Most of the OsShaker K+ channel genes were expressed in all tissues of rice, but at different levels in different tissues. In addition, the expression of OsShaker K+ channel genes differed in the timing, organization and intensity of response to salt and chilling stress. In conclusion, our findings provide a reference for the understanding of OsShaker K+ channel genes, as well as their potential functions in response to salt and chilling stress in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Superfamília Shaker de Canais de Potássio , Oryza/genética , Oryza/metabolismo , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Temperatura Baixa , Tolerância ao Sal/genética , Filogenia , Estresse Fisiológico/genética , Resposta ao Choque Frio/genética , Estresse Salino/genética , Regiões Promotoras Genéticas
13.
PeerJ ; 12: e17912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282123

RESUMO

The increasing frequency and intensity of heatwaves driven by climate change significantly impact microbial communities in freshwater habitats, particularly eukaryotic microorganisms. Heterotrophic nanoflagellates are important bacterivorous grazers and play a crucial role in aquatic food webs, influencing the morphological and taxonomic structure of bacterial communities. This study investigates the responses of three flagellate taxa to heatwave conditions through single-strain and mixed culture experiments, highlighting the impact of both biotic and abiotic factors on functional redundancy between morphologically similar protist species under thermal stress. Our results indicate that temperature can significantly impact growth and community composition. However, density-dependent factors also had a significant impact. In sum, stabilizing effects due to functional redundancy may be pronounced as long as density-dependent factors play a minor role and can be overshadowed when flagellate abundances increase.


Assuntos
Água Doce , Água Doce/parasitologia , Mudança Climática , Temperatura Alta/efeitos adversos , Ecossistema
14.
Front Microbiol ; 15: 1434798, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282567

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically 20-25 nucleotides in length, that play a crucial role in regulating gene expression post-transcriptionally. They are involved in various biological processes such as plant growth, development, stress response, and hormone signaling pathways. Plants interact with microbes through multiple mechanisms, including mutually beneficial symbiotic relationships and complex defense strategies against pathogen invasions. These defense strategies encompass physical barriers, biochemical defenses, signal recognition and transduction, as well as systemic acquired resistance. MiRNAs play a central role in regulating the plant's innate immune response, activating or suppressing the transcription of specific genes that are directly involved in the plant's defense mechanisms against pathogens. Notably, miRNAs respond to pathogen attacks by modulating the balance of plant hormones such as salicylic acid, jasmonic acid, and ethylene, which are key in activating plant defense mechanisms. Moreover, miRNAs can cross boundaries into fungal and bacterial cells, performing cross-kingdom RNA silencing that enhances the plant's disease resistance. Despite the complex and diverse roles of miRNAs in plant defense, further research into their function in plant-pathogen interactions is essential. This review summarizes the critical role of miRNAs in plant defense against pathogens, which is crucial for elucidating how miRNAs control plant defense mechanisms.

15.
Mol Biol Rep ; 51(1): 991, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287846

RESUMO

Ubiquitination is an essential biological process that is vital for maintaining cellular activity and plays a critical role in precisely regulating protein levels within cells. The SINA (seven in absentia) protein belongs to the RING-type E3 ubiquitin ligase, which is one of the key enzymes involved in the process of ubiquitination. However, there have been few reports on the genome-wide identification of SINA gene family and the functional analysis of its specific genes, particularly in leguminous plants. In this study, a total of 20 MtSINA genes were identified from the genomes of Medicago truncatula, and classified into three subfamilies. These genes are distributed on 7 of 8 chromosomes with chromosome preference. The gene structures of most MtSINA genes are quite similar, and all MtSINA proteins contain conserved RING and SINA functional domains. Moreover, various cis-regulatory elements related to abiotic stress and hormone signals were found in the promoters of MtSINA genes. The expression profile indicates that a majority of MtSINA genes exhibit a significant response to abiotic stress. Furthermore, the study characterized the function of MtSINAL7 in plants and discovered its pivotal role in improving plant stress resistance. In summary, this study provides a new insight into the potential functions of MtSINA genes in Medicago truncatula.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Família Multigênica , Proteínas de Plantas , Estresse Fisiológico , Medicago truncatula/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Filogenia , Genoma de Planta/genética , Cromossomos de Plantas/genética , Regiões Promotoras Genéticas/genética , Ubiquitinação/genética , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética
16.
Vavilovskii Zhurnal Genet Selektsii ; 28(5): 536-553, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39280845

RESUMO

Common wheat is one of the most important food crops in the world. Grain harvests can be increased by reducing losses from diseases and environmental stresses. The tertiary gene pool, including Thinopyrum spp., is a valuable resource for increasing genetic diversity and wheat resistance to fungal diseases and abiotic stresses. Distant hybridization between wheat and Thinopyrum spp. began in the 1920s in Russia, and later continued in different countries. The main results were obtained using the species Th. ponticum and Th. intermedium. Additionally, introgression material was created based on Th. elongatum, Th. bessarabicum, Th. junceiforme, Agropyron cristatum. The results of introgression for resistance to diseases (leaf, stem, and stripe rusts; powdery mildew; Fusarium head blight; and Septoria blotch) and abiotic stresses (drought, extreme temperatures, and salinity) to wheat was reviewed. Approaches to improving the agronomic properties of introgression breeding material (the use of irradiation, ph-mutants and compensating Robertsonian translocations) were described. The experience of long-term use in the world of a number of genes from the tertiary gene pool in protecting wheat from leaf and stem rust was observed. Th. ponticum is a nonhost for Puccinia triticina (Ptr) and P. graminis f. sp. tritici (Pgt) and suppresses the development of rust fungi on the plant surface. Wheat samples with the tall wheatgrass genes Lr19, Lr38, Sr24, Sr25 and Sr26 showed defence mechanisms similar to nonhosts resistance. Their influence led to disruption of the development of surface infection structures and fungal death when trying to penetrate the stomata (prehaustorial resistance or stomatal immunity). Obviously, a change in the chemical properties of fungal surface structures of races virulent to Lr19, Lr24, Sr24, Sr25, and Sr26 leads to a decrease in their adaptability to the environment. This possibly determined the durable resistance of cultivars to leaf and stem rusts in different regions. Alien genes with a similar effect are of interest for breeding cultivars with durable resistance to rust diseases and engineering crops with the help of molecular technologies.

17.
Plant Physiol Biochem ; 216: 109133, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39326225

RESUMO

Waterlogging stress negatively affects plant growth and survival. However, the ability of Zanthoxylum armatum, a valuable tree species, to tolerate and adapt to waterlogging stress remains poorly understood. Here we report how alcohol dehydrogenase 1 (ZaADH1) confers waterlogging stress tolerance in Z. armatum. ZaADH1 expression was induced after waterlogging treatment. ZaADH1 overexpression increased waterlogging stress by modulating the metabolite levels of the ADH enzyme, soluble sugar, and trehalose, promoting glycolysis and carbohydrate metabolism. The overexpression of ZaADH1 in Arabidopsis thaliana increased the total plant area and chlorophyll content, thereby increasing resistance to waterlogging stress. Physiological and overexpression transcriptome analyses in A. thaliana indicated that ZaADH1 overexpressing lines generated more carbohydrates to meet energy demands, employing a "static" strategy to increase tolerance to waterlogging stress, which confirms the conservation of the ADH1 response to waterlogging stress and represents a potential crucial measure for improving waterlogging tolerance in Z. armatum.

18.
Biochem Biophys Res Commun ; 733: 150693, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39326257

RESUMO

The GRAS gene is an important specific transcription factor in plants, which has multiple functions such as signal transduction, cell morphogenesis and stress response. Although it is widely distributed in plants and has been characterized in several species, however, information about the GRAS family in Taraxacum kok-saghyz Rodin remains unknown. Here, TkGRAS family members were identified and analyzed for molecular characterization, tissue expression patterns and induced expression patterns. A total of 64 GRAS family members were identified at the genome-wide level, which could be categorized into 14 subfamilies by phylogenetic analysis. Most TkGRASs were intronless and had essentially the same gene structure in the same subfamily. Meanwhile, there were multiple response elements found in the promoters of TkGRASs. Tissue expression patterns and induced expression patterns showed that TkGRASs were expressed in different tissues and induced by abiotic stresses. Notably, the expression level of TkGRAS20 was up-regulated under different stresses, suggesting that this gene plays a pivotal role in the stress response. TkGRAS20 showed transcriptional activity in yeast cells and localized in the nucleus and plasma membrane. In conclusion, our study provided valuable insights into the genetic mechanisms underlying stress tolerance in TKS, and several key genes may be used for genetic breeding to improve stress tolerance.

19.
Curr Issues Mol Biol ; 46(9): 9844-9855, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39329937

RESUMO

The processing body (P-Body) is a membrane-less organelle with stress-resistant functions. Under stress conditions, cells preferentially translate mRNA that favors the stress response, resulting in a large number of transcripts unfavorable to the stress response in the cytoplasm. These non-translating mRNAs aggregate with specific proteins to form P-Bodies, where they are either stored or degraded. The protein composition of P-Bodies varies depending on cell type, developmental stage, and external environmental conditions. This review primarily elucidates the protein composition in plants and the assembly of P-Bodies, and focuses on the mechanisms by which various proteins within the P-Bodies of plants regulate mRNA decapping, degradation, translational repression, and storage at the post-transcriptional level in response to ethylene signaling and abiotic stresses such as drought, high salinity, or extreme temperatures. This overview provides insights into the role of the P-Body in plant abiotic stress responses.

20.
Chemosphere ; 365: 143397, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313079

RESUMO

Phytoremediation, the use of plants to remove heavy metals from polluted environments, has been extensively studied. However, abiotic stresses such as drought, salt, and high temperatures can limit plant growth and metal uptake, reducing phytoremediation efficiency. High levels of HMs are also toxic to plants, further decreasing phytoremediation efficacy. This manuscript explores the potential of microbial-assisted and chelation-supported approaches to improve phytoremediation under abiotic stress conditions. Microbial assistance involves the use of specific microbes, including fungi that can produce siderophores. Siderophores bind essential metal ions, increasing their solubility and bioavailability for plant uptake. Chelation-supported methods employ organic acids and amino acids to enhance soil absorption and supply of essential metal ions. These chelating agents bind HMs ions, reducing their toxicity to plants and enabling plants to better withstand abiotic stresses like drought and salinity. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of heavy metal and abiotic stresses. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of HMs and abiotic stresses.These strategies represent a significant advancement in phytoremediation technology, potentially expanding its applicability to more challenging environmental conditions. In this review, we examined how microbial-assisted and chelation-supported techniques can enhance phytoremediation a method that uses plants to remove heavy metals from contaminated sites. These approaches not only boost plant growth and metal uptake but also alleviate the toxic effects of HMs and abiotic stresses like drought and salinity. By doing so, they make phytoremediation a more viable and effective solution for environmental remediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA