Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560195

RESUMO

Environmental pressures, such as temperature and light intensity, food, and genetic factors, can cause chicken eggs to develop abnormalities. The common types of internal egg abnormalities include bloody and damaged egg yolk. Spectrometers have been recently used in real-time abnormal egg detection research. However, there are very few studies on the optimization of measurement systems. This study aimed to establish optimum parameters for detecting of internal egg abnormalities (bloody and damaged-yolk eggs) using visible and near-infrared (Vis/NIR) spectrometry (192-1110 nm range) and multivariate data analysis. The detection performance using various system parameters, such as the types of light sources, the configuration of the light, and sensor positions, was investigated. With the help of collected data, a partial least-squares discriminant analysis (PLS-DA) model was developed to classify normal and abnormal eggs. The highest classification accuracy for the various system parameters was 98.7%. Three band selection methods, such as weighted regression coefficient (WRC), sequential feature selection (SFS), and successive projection algorithm (SPA) were used for further model optimization, to reduce the spectral bands from 1028 to less than 7. In conclusion the results indicate that the types of light sources and the configuration design of the sensor and illumination affect the detection accuracy for abnormal eggs.


Assuntos
Galinhas , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ovos/análise , Gema de Ovo , Análise Discriminante , Análise dos Mínimos Quadrados
2.
J Anim Sci Technol ; 64(5): 813-829, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36287780

RESUMO

Internal and external defects of eggs should be detected to prevent cross-contamination of intact eggs by abnormal eggs during storage. Emerging detection technologies for abnormal eggs were introduced as an alternative to human inspection. The advanced technologies could rapidly detect abnormal eggs. Abnormal egg detection technologies using acoustic response, machine vision, and spectroscopy have been commercialized in the poultry industry. Non-destructive egg quality assessment methods meanwhile could preserve the value of eggs and improve detection efficiency. In order to improve detection efficiency, it is essential to select a proper algorithm for classifying the types of abnormal eggs. This review deals with the performance of the detection technologies for various types of abnormal eggs in recently published resources. In addition, the discriminant methods and detection algorithms of abnormal eggs reported in the published literature were investigated. Although the majority of the studies were conducted on a laboratory scale, the developed detection technologies for internal and external defects in eggs were technically feasible to obtain the excellent detection accuracy. To apply the developed detection technologies to the poultry industry, it is necessary to achieve the detection rates required from the industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA