Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Heliyon ; 10(16): e36213, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39247373

RESUMO

The prevalence of brown carbon (BrC) in the atmosphere has experienced a notable upsurge owing to human activities of anthropogenic origin. This study aims to examine the optical characteristics of BrC in both deionized (DI) water and organic solvents (OS), alongside the identification of BrC chromophores within the ambient atmosphere of Dhaka, Bangladesh. Particulate matter (PM) samples were collected on quartz filters using a low-volume sampler from December 2021 to May 2022 at Mukarram Hussain Khundker Bhaban, University of Dhaka. The concentration of BrC was measured using soot analyzer, optical properties of BrC were determined using UV-Vis spectrometer, and BrC chromophores were identified with GC-MS. Average concentration of BrC was 19.13 ± 5.71 µgm-3. The average of absorption coefficient (babs_365), mass absorption efficiency (MAE), absorption angstrom exponent (AAE), and refractive index (kabs_365) of BrC_DI have been observed to be 38.75 ± 21.90 Mm-1, 2.16 ± 1.42 m2 g-1, 1.51 ± 0.08, 0.06 ± 0.04, respectively. The absorption coefficient and MAE of BrC_OS are 1.3 and 1.36 times, respectively higher than that of BrC_DI. Thirty chromophores of BrC have been identified, predominantly consisting of oxygenated compounds. Derivatives of Bisphenol A (C27H44O2Si2) were detected in all samples of oxygenated compounds, primarily originating from the combustion of plastic and the incineration of e-waste. Additionally, compounds containing nitrogen and sulfur, such as C14H26N2O, C31H55N, and C31H49NO3S, were identified, largely attributed to biomass combustion and traffic emissions. These chromophores play a significant role in the absorption of solar radiation, thus influencing atmospheric photochemistry.

2.
Nano Lett ; 24(34): 10418-10425, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39158928

RESUMO

Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS2 QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS2 QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS2 QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.

3.
J Biomed Opt ; 29(8): 087001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39206122

RESUMO

Significance: A better understanding of diffusion reflection (DR) behavior may allow it to be used for more noninvasive applications, including the development of in vivo non-damaging techniques, especially for medical topical diagnosis and treatments. Aim: For a bilayer opaque substance where the attenuation of the upper layer is larger than the attenuation of the lower layer, the DR crossover point ( C p ) is location where the photons coming from the bottom layer start affecting the DR. We aim to study the dependency of the C p on absorption changes in different layers for constant scattering and top layer thickness. Approach: Monolayer and bilayer optical tissue-like phantoms were prepared and measured using a DR system. The results were compared with Monte Carlo simulations. Results: There is an agreement between the experiments and the simulations. C p correlates with the square root of the absorption coefficient ratio of the lower layer to the top layer. Conclusion: The experimental findings support and validate the theoretical prediction describing the dependency of the C p on the square root of the ratio of the layers' absorption coefficients. In addition, a secondary breaking point is suggested to be observed experimentally at the entrance to the noise area.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Difusão , Simulação por Computador , Espalhamento de Radiação , Bicamadas Lipídicas/química , Fótons
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124733, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39032235

RESUMO

To investigate the effect of CPPU (forchlorfenuron) on optical properties of strawberry during growth, the optical properties (absorption coefficient (µa) and reduced scattering coefficient (µs')) of strawberry treated with CPPU solutions at different concentrations (0, 2.5, 5.0 and 7.5 mg/L) were measured in white, color turning and red stages by using a single integrating sphere system over near-infrared wavelength range of 900-1700 nm. The physicochemical properties, i.e., single fruit weight, soluble solids content, firmness and moisture content, as well as microstructure of strawberry were also investigated. The results showed that in white stage, the µa of strawberry treated with 7.5 mg/L CPPU was significantly (p ≤ 0.05) lower than that of untreated strawberry at absorption peak of 1411 nm. In color turning stage, the µs' of strawberry treated with 5 mg/L CPPU was significantly lower than that of treated with 2.5 mg/L at absorption peaks of 975, 1197 and 1411 nm. In red stage, the µa of strawberry treated with 2.5 mg/L CPPU was significantly (p ≤ 0.05) different from that of treated with 7.5 mg/L at 1197 nm. The study indicates that the optical properties of strawberry were affected by CPPU, and it provides useful information for identifying CPPU treated strawberry.


Assuntos
Fragaria , Frutas , Compostos de Fenilureia , Fragaria/química , Fragaria/crescimento & desenvolvimento , Fragaria/efeitos dos fármacos , Frutas/química , Frutas/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/química , Piridinas/química , Piridinas/farmacologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Fenômenos Ópticos , Cor
5.
Sci Rep ; 14(1): 15033, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951568

RESUMO

The application of terahertz time-domain spectroscopy (THz-TDS) in the quantitative analysis of major minerals in Bayan Obo magnetite ore was explored. The positive correlation between the optical parameters of the original ore and its iron content is confirmed. The detections of three main iron containing minerals, including magnetite, pyrite, and hematite, were simulated using corresponding reagents. The random forest algorithm is used for quantitative analysis, and FeS2 is detected with precision of R2 = 0.7686 and MAE = 0.6307% in ternary mixtures. The experimental results demonstrate that THz-TDS can distinguish specific iron containing minerals and reveal the potential application value of this testing method in exploration and mineral processing fields.

6.
Micromachines (Basel) ; 15(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39064350

RESUMO

NiV2O6 thin films were grown on glass slides with varying thicknesses using nebulizer spray pyrolysis. The impact of thickness on the thin films' optical, structural, morphological, and electrical characteristics was systematically investigated. X-ray diffraction and micro-Raman analysis confirmed the formation of the triclinic NiV2O6 system. Surface morphology and roughness variations in the as-deposited NiV2O6 films were studied using scanning electron microscopy (SEM) and a profilometer. Optical properties, including optical band gap (Eg), extinction coefficient (k), absorption coefficient (α), and refractive index (n), were determined through optical reflectance and transmittance measurements. The optical energy gap of the as-deposited NiV2O6 films decreased from 2.02 eV to 1.58 eV with increased layer thickness. Furthermore, the photo-detectivity of the films demonstrated an enhancement corresponding to the prolonged spray time. The sensitivity values obtained for visible irradiation were 328, 511, and 433 for samples S1, S2, and S3, respectively. The obtained results can be imputed to the specific porous microstructure.

7.
ACS Appl Mater Interfaces ; 16(31): 41145-41156, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39047291

RESUMO

The frequency-dependent optical spectrum is pivotal for a broad range of applications from material characterization to optoelectronics and energy harvesting. Data-driven surrogate models, trained on density functional theory (DFT) data, have effectively alleviated the scalability limitations of DFT while preserving its chemical accuracy, expediting material discovery. However, prevailing machine learning (ML) efforts often focus on scalar properties such as the band gap, overlooking the complexities of optical spectra. In this work, we employ deep graph neural networks (GNNs) to predict the frequency-dependent complex-valued dielectric function across the infrared, visible, and ultraviolet spectra directly from the crystal structures. We explore multiple architectures for the spectral multioutput representation of the dielectric function and utilize various multifidelity learning strategies, such as transfer learning and fidelity embedding, to address the challenges associated with the scarcity of high-fidelity DFT data. Additionally, we model key solar cell absorption efficiency metrics, demonstrating that learning these parameters is enhanced when integrated through a learning bias within the learning of the frequency-dependent absorption coefficient. This study demonstrates that leveraging multioutput and multifidelity ML techniques enables accurate predictions of optical spectra from crystal structures, providing a versatile tool for rapidly screening materials for optoelectronics, optical sensing, and solar energy applications across an extensive frequency spectrum.

8.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999002

RESUMO

We examine the optical and electronic properties of a GaAs spherical quantum dot with a hydrogenic impurity in its center. We study two different confining potentials: (1) a modified Gaussian potential and (2) a power-exponential potential. Using the finite difference method, we solve the radial Schrodinger equation for the 1s and 1p energy levels and their probability densities and subsequently compute the optical absorption coefficient (OAC) for each confining potential using Fermi's golden rule. We discuss the role of different physical quantities influencing the behavior of the OAC, such as the structural parameters of each potential, the dipole matrix elements, and their energy separation. Our results show that modification of the structural physical parameters of each potential can enable new optoelectronic devices that can leverage inter-sub-band optical transitions.

9.
J Biophotonics ; 17(8): e202400123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925916

RESUMO

Knowledge of the optical parameters of tumors is important for choosing the correct laser treatment parameters. In this paper, optical properties and refraction indices of breast tissue in healthy mice and a 4T1 model mimicking human breast cancer have been measured. A significant decrease in both the scattering and refractive index of tumor tissue has been observed. The change in tissue morphology has induced the change in the slope of the scattering spectrum. Thus, the light penetration depth into tumor has increased by almost 1.5-2 times in the near infrared "optical windows." Raman spectra have shown lower lipid content and higher protein content in tumor. The difference in the optical parameters of the tissues under study makes it possible to reliably differentiate them. The results may be useful for modeling the distribution of laser radiation in healthy tissues and cancers for deriving optimal irradiation conditions in photodynamic therapy.


Assuntos
Fenômenos Ópticos , Análise Espectral Raman , Animais , Camundongos , Feminino , Humanos , Linhagem Celular Tumoral , Refratometria , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Camundongos Endogâmicos BALB C
10.
J Biophotonics ; 17(7): e202400128, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38863275

RESUMO

In photoacoustic tomography (PAT), acoustic inversion aims to recover the spatial distribution of light energy deposition within the imaging object from the signals captured by detectors. To achieve quantitative imaging, optical inversion is further employed to derive absorption coefficient (AC) images. However, limitations such as restricted detection angles and inherent noise lead to substantial artifacts and degradation in the quality of PAT images, consequently affecting the accuracy of optical inversion results. In this study, we propose a directional total variation constrained optical inversion model to reconstruct the AC image. By incorporating anatomy prior information into the optical inversion process, our method can effectively suppress artifacts in AC images while maintaining structural integrity. Simulation, phantom, and in vivo experimental results demonstrate that our method significantly improves the reconstructed AC image quality. Our method provides a reliable foundation for achieving high-quality quantitative PAT imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Técnicas Fotoacústicas , Tomografia , Técnicas Fotoacústicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Modelos Teóricos , Camundongos
11.
Sensors (Basel) ; 24(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38894316

RESUMO

We present a goniometer designed for capturing spectral and angular-resolved data from scattering and absorbing media. The experimental apparatus is complemented by a comprehensive Monte Carlo simulation, meticulously replicating the radiative transport processes within the instrument's optical components and simulating scattering and absorption across arbitrary volumes. Consequently, we were able to construct a precise digital replica, or "twin", of the experimental setup. This digital counterpart enabled us to tackle the inverse problem of deducing optical parameters such as absorption and scattering coefficients, along with the scattering anisotropy factor from measurements. We achieved this by fitting Monte Carlo simulations to our goniometric measurements using a Levenberg-Marquardt algorithm. Validation of our approach was performed using polystyrene particles, characterized by Mie scattering, supplemented by a theoretical analysis of algorithmic convergence. Ultimately, we demonstrate strong agreement between optical parameters derived using our novel methodology and those obtained via established measurement protocols.

12.
Polymers (Basel) ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794501

RESUMO

The paper investigates the possibility of fabricating a carbon nanotubes (CNT)-modified nanocomposite based on pyrolyzed polyacrylonitrile (PPAN). The layered structure of PPAN ensures the attachment of nanotubes (NT) to the polymer matrix, forming enhanced PPAN/CNT nanocomposites. We synthesized a PPAN/CNT polymer nanocomposite and investigated its mechanical, conductive, and electronic properties. Using the quantum chemical method density functional theory (DFT), we studied an interaction mechanism between PPAN and single-walled carbon nanotubes. We described the structural features and electron energy structure of the obtained systems. We found that the attachment of a CNT to the PPAN matrix increases tensile strength, electrical conductivity, and thermal stability in the complex. The obtained materials were exposed to electromagnetic radiation and the dielectric constant, reflection, transmission, and absorption coefficients were measured. The study demonstrates the possibility of using carbon nanotubes for reinforcing polyacrylonitrile polymer matrix, which can result in the development of an enhanced class of materials possessing the properties of both polymers and CNTs.

13.
Photoacoustics ; 38: 100609, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38745884

RESUMO

Quantitative photoacoustic tomography (qPAT) holds great potential in estimating chromophore concentrations, whereas the involved optical inverse problem, aiming to recover absorption coefficient distributions from photoacoustic images, remains challenging. To address this problem, we propose an extractor-attention-predictor network architecture (EAPNet), which employs a contracting-expanding structure to capture contextual information alongside a multilayer perceptron to enhance nonlinear modeling capability. A spatial attention module is introduced to facilitate the utilization of important information. We also use a balanced loss function to prevent network parameter updates from being biased towards specific regions. Our method obtains satisfactory quantitative metrics in simulated and real-world validations. Moreover, it demonstrates superior robustness to target properties and yields reliable results for targets with small size, deep location, or relatively low absorption intensity, indicating its broader applicability. The EAPNet, compared to the conventional UNet, exhibits improved efficiency, which significantly enhances performance while maintaining similar network size and computational complexity.

14.
Heliyon ; 10(7): e28612, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601601

RESUMO

In the present study, the sound absorption performance of inhomogeneous Micro-Perforated Panels (MPPs) with multiple cavities is investigated. Two models, a three-cavity system and a four-cavity system, are proposed and a numerical study is performed using MATLAB. The models are validated through experimental analysis in an impedance tube. The study meticulously varies the geometrical parameters, including pore diameter, thickness of the MPP, perforation ratio, and back-cavity length. It is found that MPPs with a greater number of sub-cavities have a better sound absorption coefficient than two-cavity systems. The results suggest that the back air cavity is predominantly responsible for multiple peaks, ensuring wideband sound absorption. It is also found that smaller perforation ratios for sub-cavities with larger pore diameters improve sound absorption performance in the lower frequency region. The study indicates that a pore diameter of less than 0.5 mm should be used for better sound absorption above the range of 800-850 Hz, and back cavity length has greater control than pore diameter between 850 Hz and 2000 Hz to make the curve smooth with less fluctuation. The findings have significant implications for the design of MPPs for real-world applications.

15.
J Chromatogr A ; 1722: 464907, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615560

RESUMO

Developing a reliable and effective quality evaluation system for traditional Chinese medicine (TCM) is both challenging and crucial for its advancement. This study employs fingerprinting techniques to establish precise and comprehensive quality control for TCM, taking Xuezhikang capsules as an example and aiming to facilitate the internationalization of TCM. The "double wavelength absorption coefficient ratio fingerprint" and "Reliability theory" are developed to determine the fingerprint peak purity and fingerprint reliability respectively. Subsequently, the dual-wavelength fusion fingerprint was obtained to avoid the limitations of a single wavelength. In addition, an electrochemical fingerprint (ECFP) was obtained to assess the similarity of electroactive components in the sample, and the Differential Scanning Calorimetry quantized fingerprint (DSC QFP) was introduced for thermal analysis. Fingerprint-efficacy correlations between PL-EC* and dual-wavelength fusion fingerprint (DWFFP) provided valuable insights that there are 76.6 % of the fingerprint compounds exhibited electroactivity. Finally, samples were classified into grades 1∼3 by combining DWFFP, ECFP and DSC QFP through the mean method, meeting the evaluation standard (SL-M > 0.9, PL-M between 80 % and 120 %). This study provides valuable information for ensuring the quality of TCM products, which represents a significant step forward in enhancing the reliability and authenticity of TCM products.


Assuntos
Varredura Diferencial de Calorimetria , Medicamentos de Ervas Chinesas , Técnicas Eletroquímicas , Medicina Tradicional Chinesa , Controle de Qualidade , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
16.
J Synchrotron Radiat ; 31(Pt 3): 456-463, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592971

RESUMO

This study introduces a novel iterative Bragg peak removal with automatic intensity correction (IBR-AIC) methodology for X-ray absorption spectroscopy (XAS), specifically addressing the challenge of Bragg peak interference in the analysis of crystalline materials. The approach integrates experimental adjustments and sophisticated post-processing, including an iterative algorithm for robust calculation of the scaling factor of the absorption coefficients and efficient elimination of the Bragg peaks, a common obstacle in accurately interpreting XAS data, particularly in crystalline samples. The method was thoroughly evaluated on dilute catalysts and thin films, with fluorescence mode and large-angle rotation. The results underscore the technique's effectiveness, adaptability and substantial potential in improving the precision of XAS data analysis. While demonstrating significant promise, the method does have limitations related to signal-to-noise ratio sensitivity and the necessity for meticulous angle selection during experimentation. Overall, IBR-AIC represents a significant advancement in XAS, offering a pragmatic solution to Bragg peak contamination challenges, thereby expanding the applications of XAS in understanding complex materials under diverse experimental conditions.

17.
Polymers (Basel) ; 16(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611260

RESUMO

New composites made of natural fiber polymers such as wasted date palm surface fiber (DPSF) and pineapple leaf fibers (PALFs) are developed in an attempt to lower the environmental impact worldwide and, at the same time, produce eco-friendly insulation materials. Composite samples of different compositions are obtained using wood adhesive as a binder. Seven samples are prepared: two for the loose natural polymers of PALF and DPSF, two for the composites bound by single materials of PALF and DPSF using wood adhesive as a binder, and three composites of both materials and the binder with different compositions. Sound absorption coefficients (SACs) are obtained for bound and hybrid composite samples for a wide range of frequencies. Flexural moment tests are determined for these composites. A thermogravimetric analysis test (TGA) and the moisture content are obtained for the natural polymers and composites. The results show that the average range of thermal conductivity coefficient is 0.042-0.06 W/(m K), 0.052-0.075 W/(m K), and 0.054-0.07 W/(m K) for the loose fiber polymers, bound composites, and hybrid composites, respectively. The bound composites of DPSF have a very good sound absorption coefficient (>0.5) for almost all frequencies greater than 300 Hz, followed by the hybrid composite ones for frequencies greater than 1000 Hz (SAC > 0.5). The loose fiber polymers of PALF are thermally stable up to 218 °C. Most bound and hybrid composites have a good flexure modulus (6.47-64.16 MPa) and flexure stress (0.43-1.67 Mpa). The loose fiber polymers and bound and hybrid composites have a low moisture content below 4%. These characteristics of the newly developed sustainable and biodegradable fiber polymers and their composites are considered promising thermal insulation and sound absorption materials in replacing synthetic and petrochemical insulation materials in buildings and other engineering applications.

18.
Materials (Basel) ; 17(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473459

RESUMO

To create materials that interact effectively with electromagnetic (EM) radiation, new nanosized substituted ferrites (NiZn)1-xMnxFe2O4 (x = 0, 0.5, and 1) anchored on the surface of multi-walled carbon nanotubes (CNTs) have been synthesized. The concentration of CNTs in the (NiZn)1-xMnxFe2O4/CNT system was from 0.05 to 0.07 vol. fractions. The dielectric and magnetic characteristics of both pristine (NiZn)1-xMnxFe2O4 ferrites and (NiZn)1-xMnxFe2O4/CNT composite systems were studied. The introduction of (NiZn)1-xMnxFe2O4/CNT composites into the amorphous epoxy matrix allows to tailor absorbing properties at the high-frequency by effectively shifting the maximum peak values of the absorption and reflection coefficient to a region of lower frequencies (20-30 GHz). The microwave adsorption properties of (NiZn)1-xMnxFe2O4/0.07CNT-ER (x = 0.5) systems showed that the maximum absorption bandwidth with reflection loss below -10 dB is about 11 GHz.

19.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478994

RESUMO

The geometric structure of the BAs/WTe2heterojunction was scrutinized by employingab initiocalculations grounded on density functional theory. Multiple configurations are constructed to determine the equilibrium state of the heterojunction with optimal stability. The results show that the H1-type heterojunction with interlayer distance of 3.92 Å exhibits exceptional stability and showcases a conventional Type-II band alignment, accompanied by a direct band gap measuring 0.33 eV. By applying external electric field and introducing strain, one can efficaciously modulate both the band gap and the quantity of charge transfer in the heterojunction, accompanied by the transition of band alignment from Type-II to Type-I, which makes it expected to achieve broader applications in light-emitting diodes, laser detectors and other fields. Ultimately, the heterojunction undergoes a transformation from a semiconducting to a metallic state. Furthermore, the outstanding optical characteristics inherent to each of the two monolayers are preserved, the BAs/WTe2heterojunction also serves to enhance the absorption coefficient and spectral range of the material, particularly within the ultraviolet spectrum. It merits emphasis that the optical properties of the BAs/WTe2heterojunction are capable of modification through the imposition of external electric fields and mechanical strains, which will expand its applicability and potential for future progression within the domains of nanodevices and optoelectronic apparatus.

20.
Photoacoustics ; 36: 100591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38322617

RESUMO

Atmospheric aerosols play a pivotal role in the earth-atmospheric system. Analyzing their optical properties, specifically absorption and scattering coefficients, is essential for comprehending the impact of aerosols on climate. When different optical properties of aerosols are individually measured using multiple devices, cumulative errors in the detection results inevitably occur. To address this challenge, based on photoacoustic spectroscopy (PAS) and integrating sphere (IS) scattering enhancement, a compact gas cell (PASIS-Cell) was developed. The PASIS-Cell comprises a dual-T-type photoacoustic cell (DTPAC) and an IS. IS is coupled with DTPAC through a transparent quartz tube, thereby enhancing the scattering signal without compromising the acoustic characteristics of DTPAC. Concurrently, DTPAC can realize high-performance photoacoustic detection of absorption signal. Experimental results demonstrate that PASIS-Cell can simultaneously invert atmospheric aerosol absorption and scattering coefficients, with a minimum detection limit of less than 1 Mm-1, showcasing its potential in the analysis of aerosol optical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA