Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.405
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Biomaterials ; 312: 122712, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39098305

RESUMO

Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.


Assuntos
Lipossomos , MicroRNAs , Fotoquimioterapia , Fármacos Fotossensibilizantes , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Animais , Humanos , Lipossomos/química , MicroRNAs/genética , MicroRNAs/metabolismo , Fotoquimioterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Feminino , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Camundongos , Aptâmeros de Nucleotídeos/química , Preparações de Ação Retardada/química , Interferência de RNA , Peixe-Zebra
2.
Biomaterials ; 312: 122745, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39098306

RESUMO

Stimulator of interferon genes (STING) agonists have shown promise in cancer treatment by stimulating the innate immune response, yet their clinical potential has been limited by inefficient cytosolic entry and unsatisfactory pharmacological activities. Moreover, aggressive tumors with "cold" and immunosuppressive microenvironments may not be effectively suppressed solely through innate immunotherapy. Herein, we propose a multifaceted immunostimulating nanoparticle (Mn-MC NP), which integrates manganese II (Mn2+) coordinated photosensitizers (chlorin e6, Ce6) and STING agonists (MSA-2) within a PEGylated nanostructure. In Mn-MC NPs, Ce6 exerts potent phototherapeutic effects, facilitating tumor ablation and inducing immunogenic cell death to elicit robust adaptive antitumor immunity. MSA-2 activates the STING pathway powered by Mn2+, thereby promoting innate antitumor immunity. The Mn-MC NPs feature a high drug-loading capacity (63.42 %) and directly ablate tumor tissue while synergistically boosting both adaptive and innate immune responses. In subsutaneous tumor mouse models, the Mn-MC NPs exhibit remarkable efficacy in not only eradicating primary tumors but also impeding the progression of distal and metastatic tumors through synergistic immunotherapy. Additionally, they contribute to preventing tumor recurrence by fostering long-term immunological memory. Our multifaceted immunostimulating nanoparticle holds significant potential for overcoming limitations associated with insufficient antitumor immunity and ineffective cancer treatment.


Assuntos
Imunoterapia , Manganês , Nanopartículas , Animais , Imunoterapia/métodos , Manganês/química , Nanopartículas/química , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Humanos , Porfirinas/química , Porfirinas/farmacologia , Clorofilídeos , Neoplasias/terapia , Neoplasias/imunologia , Fotoquimioterapia/métodos , Imunidade Inata/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
3.
J Environ Sci (China) ; 150: 188-201, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306395

RESUMO

To improve the activity of Co/Al2O3 catalysts in selective catalytic oxidation of ammonia (NH3-SCO), valence state and size of active centers of Al2O3-supported Co catalysts were adjusted by conducting H2 reduction pretreatment. The NH3-SCO activity of the adjusted 2Co/Al2O3 catalyst was substantially improved, outperforming other catalysts with higher Co-loading. Fresh Co/Al2O3 catalysts exhibited multitemperature reduction processes, enabling the control of the valence state of the Co-active centers by adjusting the reduction temperature. Changes in the state of the Co-active centers also led to differences in redox capacity of the catalysts, resulting in different reaction mechanisms for NH3-SCO. However, in situ diffuse reflectance infrared Fourier transform spectra revealed that an excessive O2 activation capacity caused overoxidation of NH3 to NO and NO2. The NH3-SCO activity of the 2Co/Al2O3 catalyst with low redox capacity was successfully increased while controlling and optimizing the N2 selectivity by modulating the active centers via H2 pretreatment, which is a universal method used for enhancing the redox properties of catalysts. Thus, this method has great potential for application in the design of inexpensive and highly active catalysts.


Assuntos
Óxido de Alumínio , Amônia , Cobalto , Oxirredução , Amônia/química , Catálise , Óxido de Alumínio/química , Cobalto/química , Modelos Químicos , Poluentes Atmosféricos/química
4.
J Environ Sci (China) ; 150: 54-65, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306427

RESUMO

In this study, supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate (PMS) which successfully degrade bisphenol F (BPF). Among the supported catalysts (i.e., Pd/SiO2, Pd/CeO2, Pd/TiO2 and Pd/Al2O3), Pd/TiO2 exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content. Pd/TiO2 prepared by the deposition method leads to high Pd dispersion, which are the key factors for efficient BPF degradation. The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed. Density functional theory (DFT) calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles. The catalytic activities are strongly dependent on the structural features of the catalysts. Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.


Assuntos
Compostos Benzidrílicos , Paládio , Peróxidos , Fenóis , Paládio/química , Fenóis/química , Catálise , Compostos Benzidrílicos/química , Peróxidos/química , Modelos Químicos , Poluentes Químicos da Água/química , Adsorção
5.
J Environ Sci (China) ; 150: 704-718, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306441

RESUMO

Catalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement. Unfortunately, this method is significantly hindered in practical applications by the low efficiency and difficult recovery of the catalysts in a powdery form. Herein, a three-dimensional (3D) framework of Fe-incorporated Ni3S2 nanosheets in-situ grown on Ni foam (Fe-Ni3S2@NF) was fabricated by a facile two-step hydrothermal process and applied to trigger peroxymonosulfate (PMS) oxidation of organic compounds in water. A homogeneous growth environment enabled the uniform and scalable growth of Fe-Ni3S2 nanosheets on the Ni foam. Fe-Ni3S2@NF possessed outstanding activity and durability in activating PMS, as it effectively facilitated electron transfer from organic pollutants to PMS. Fe-Ni3S2@NF initially supplied electrons to PMS, causing the catalyst to undergo oxidation, and subsequently accepted electrons from organic compounds, returning to its initial state. The introduction of Fe into the Ni3S2 lattice enhanced electrical conductivity, promoting mediated electron transfer between PMS and organic compounds. The 3D conductive Ni foam provided an ideal platform for the nucleation and growth of Fe-Ni3S2, accelerating pollutant abatement due to its porous structure and high conductivity. Furthermore, its monolithic nature simplified the catalyst recycling process. A continuous flow packed-bed reactor by encapsulating Fe-Ni3S2@NF catalyst achieved complete pollutant abatement with continuous operation for 240 h, highlighting its immense potential for practical environmental remediation. This study presents a facile synthesis method for creating a novel type of monolithic catalyst with high activity and durability for decontamination through Fenton-like processes.


Assuntos
Ferro , Níquel , Oxirredução , Peróxidos , Poluentes Químicos da Água , Níquel/química , Ferro/química , Poluentes Químicos da Água/química , Peróxidos/química , Catálise , Nanoestruturas/química , Transporte de Elétrons
6.
Bioact Mater ; 43: 129-144, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39386218

RESUMO

Construction of a cancer nanovaccine that can simultaneously activate immune cells and exert efficient tumor treatment still remains a challenge. Herein, we showcase a proof-of-concept demonstration of an advanced therapeutic nanovaccine formulation based on poly(N-vinylcaprolactam) nanogels (NGs) which were loaded with manganese dioxide (MnO2), the sonosensitizer chlorin e6 (Ce6), and the immune adjuvant cyclic GMP-AMP (cGAMP). The gels were furthermore coated with apoptotic cancer cell membranes (AM). On the one hand, the AM promoted the recognition of NGs by antigen presenting cells (APCs) in lymph nodes due to their enhanced immunogenicity, then the loaded Mn and cGAMP could mature APCs via stimulator of interferon genes (STING) activation for triggering immunity to prevent tumor growth. On the other hand, the NGs could selectively release Mn2+ for hydroxyl radical production and Ce6 to generate single oxygen under ultrasound irradiation of tumors, respectively, thereby exerting local chemodynamic/sonodynamic therapy to induce immunogenic cell death (ICD). Moreover, the Mn2+ could also activate STING in tumors to synergize with ICD for potentiated immune responses. Overall, the biomimetic NG-based therapeutic nanovaccine could directly evoke immune system, and also conduct local tumor treatment to further activate ICD, thus realizing a full-cycle immunomodulation (tumor killing for ICD/antigen production, and tumor cells/APCs immune activation) to tackle bilateral tumor growth.

7.
Environ Sci Ecotechnol ; 23: 100492, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39398413

RESUMO

Electrochemical nitrate reduction to ammonia (ENRA) is gaining attention for its potential in water remediation and sustainable ammonia production, offering a greener alternative to the energy-intensive Haber-Bosch process. Current research on ENRA is dedicated to enhancing ammonia selectively and productivity with sophisticated catalysts. However, the performance of ENRA and the change of catalytic activity in more complicated solutions (i.e., nitrate-polluted groundwater) are poorly understood. Here we first explored the influence of Ca2+ and bicarbonate on ENRA using commercial cathodes. We found that the catalytic activity of used Ni or Cu foam cathodes significantly outperforms their pristine ones due to the in situ evolution of new catalytic species on used cathodes during ENRA. In contrast, the nitrate conversion performance with nonactive Ti or Sn cathode is less affected by Ca2+ or bicarbonate because of their original poor activity. In addition, the coexistence of Ca2+ and bicarbonate inhibits nitrate conversion by forming scales (CaCO3) on the in situ-formed active sites. Likewise, ENRA is prone to fast performance deterioration in treating actual groundwater over continuous flow operation due to the presence of hardness ions and possible organic substances that quickly block the active sites toward nitrate reduction. Our work suggests that more work is required to ensure the long-term stability of ENRA in treating natural nitrate-polluted water bodies and to leverage the environmental relevance of ENRA in more realistic conditions.

8.
J Environ Sci (China) ; 149: 512-523, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181663

RESUMO

Oxygen activation leading to the generation of reactive oxygen species (ROS) is essential for photocatalytic environmental remediation. The limited efficiency of O2 adsorption and reductive activation significantly limits the production of ROS when employing C3N4 for the degradation of emerging pollutants. Doping with metal single atoms may lead to unsatisfactory efficiency, due to the recombination of photogenerated electron-hole pairs. Here, Mn and S single atoms were introduced into C3N4, resulting in the excellent photocatalytic performances. Mn/S-C3N4 achieved 100% removal of bisphenol A, with a rate constant 11 times that of pristine C3N4. According to the experimental results and theoretical simulations, S-atoms restrict holes, facilitating the photo-generated carriers' separation. Single-atom Mn acts as the O2 adsorption site, enhancing the adsorption and activation of O2, resulting the generation of ROS. This study presents a novel approach for developing highly effective photocatalysts that follows a new mechanism to eliminate organic pollutants from water.


Assuntos
Oxigênio , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Oxigênio/química , Catálise , Manganês/química , Compostos Benzidrílicos/química , Nitrilas/química , Adsorção , Espécies Reativas de Oxigênio , Recuperação e Remediação Ambiental/métodos , Fenóis/química
9.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003084

RESUMO

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Assuntos
Cádmio , Compostos de Ferro , Compostos de Magnésio , Silicatos , Poluentes Químicos da Água , Cádmio/química , Poluentes Químicos da Água/química , Compostos de Magnésio/química , Silicatos/química , Compostos de Ferro/química , Adsorção , Modelos Químicos , Purificação da Água/métodos
10.
Angew Chem Int Ed Engl ; : e202416550, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352753

RESUMO

Developing new enzyme-immobilization systems to stabilize their dynamic structures and meanwhile enhance their catalytic activity is of great significance but very challenging. Herein, we design and fabricate a class of robust mesoporous covalent organic frameworks (COFs) via Michael addition-elimination reaction. It is found that highly crystalline COFs can be produced in 10 min, which is attributed to the promoting effect of the intramolecular hydrogen bond activation. The COFs rich in hydroxyl groups can be facilely post-modified by epibromohydrin to covalently immobilize enzymes with both high loading and activity. Furthermore, we create a solar-driven photothermal-promoted strategy by introducing photoactive azo groups to COF carriers, which can boost the enzyme catalytic performance (lipase) with much higher conversion of various racemic substrates and chiral resolution upon solar light irradiation. The heterogeneous biocatalysts also demonstrate exceptional reusability and stability. This work provides a green and energy-efficient approach to facilitate the scale application of enzyme-immobilized biocatalysts.

11.
Transcription ; : 1-15, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353089

RESUMO

Genotoxic stress resulting from DNA damage is resolved through a signaling cascade known as the DNA Damage Response (DDR). The repair of damaged DNA is essential for cell survival, often requiring the DDR to attenuate other cellular processes such as the cell cycle, DNA replication, and transcription of genes not involved in DDR. The complex relationship between DDR and transcription has only recently been investigated. Transcription can facilitate the DDR in response to double-strand breaks (DSBs) and stimulate nucleotide excision repair (NER). However, transcription may need to be reduced to prevent potential interference with the repair machinery. In this review, we discuss various mechanisms that regulate transcription repression in response to different types of DNA damage, categorizing them by their range and duration of effect. Finally, we explore various models of transcription recovery following DNA damage-induced repression.

12.
Talanta ; 282: 126974, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353218

RESUMO

Total organic carbon (TOC) is a crucial indicator of organic pollutants, widely used in environmental water quality monitoring and risk assessment. Conventional TOC detection methods often require high temperatures, complex equipment, and inefficient oxidation processes, limiting their field application due to time consumption, intricate operations, and limited sensitivity. Therefore, we developed a novel approach for TOC measurement using catalytic oxidation vapor generation coupled with miniaturized point discharge optical emission spectrometry (µPD-OES). This method employs urchin-like Co3O4 microspheres to convert organic pollutants to carbon dioxide during persulfate catalytic oxidation, followed by collection and quantification via carbon atomic emission line (λ = 193.0 nm). Standard or sample solutions were acidified with phosphoric acid and purged with Ar before quantification. Under optimal conditions, the proposed method achieved a detection limit of 0.01 mg L-1, offering precision (RSD, n = 11) better than 3.7 %. The feasibility of the system was tested using a certified reference material (GBW(E)082053) and environmental water samples, achieving satisfactory recoveries (98-102 %). This method provides high oxidation efficiency, sensitivity, and accuracy, while also reducing the demand for expensive and bulky instruments and minimizing energy consumption, making it suitable for rapid, sensitive field analysis of TOC.

13.
Cell Mol Biol Lett ; 29(1): 128, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354345

RESUMO

BACKGROUNDS: Acute transplant rejection is a major component of poor prognoses for organ transplantation. Owing to the multiple complex mechanisms involved, new treatments are still under exploration. Endometrial regenerative cells (ERCs) have been widely used in various refractory immune-related diseases, but the role of ERC-derived exosomes (ERC-Exos) in alleviating transplant rejection has not been extensively studied. Signaling lymphocyte activation molecule family 6 (SLAMF6) plays an important role in regulating immune responses. In this study, we explored the main mechanism by which ERC-Exos loaded with siSLAMF6 can alleviate allogeneic transplant rejection. METHODS: C57BL/6 mouse recipients of BALB/c mouse kidney transplants were randomly divided into four groups and treated with exosomes. The graft pathology was evaluated by H&E staining. Splenic and transplanted heart immune cell populations were analyzed by flow cytometry. Recipient serum cytokine profiles were determined by enzyme-linked immunosorbent assay (ELISA). The proliferation and differentiation capacity of CD4+ T cell populations were evaluated in vitro. The α-2,6-sialylation levels in the CD4+ T cells were determined by SNA blotting. RESULTS: In vivo, mice treated with ERC-siSLAMF6 Exo achieved significantly prolonged allograft survival. The serum cytokine profiles of the recipients were significantly altered in the ERC-siSLAMF6 Exo-treated recipients. In vitro, we found that ERC-siSLAMF6-Exo considerably downregulated α-2,6-sialyltransferase (ST6GAL1) expression in CD4+ T cells, and significantly reduced α-2,6-sialylation levels. Through desialylation, ERC-siSLAMF6 Exo therapy significantly decreased CD4+ T cell proliferation and inhibited CD4+ T cell differentiation into Th1 and Th17 cells while promoting regulatory T cell (Treg) differentiation. CONCLUSIONS: Our study indicated that ERC-Exos loaded with siSLAMF6 reduce the amount of sialic acid connected to α-2,6 at the end of the N-glycan chain on the CD4+ T cell surface, increase the number of therapeutic exosomes endocytosed into CD4+ T cells, and inhibit the activation of T cell receptor signaling pathways, which prolongs allograft survival. This study confirms the feasibility of using ERC-Exos as natural carriers combined with gene therapy, which could be used as a potential therapeutic strategy to alleviate allograft rejection.


Assuntos
Endométrio , Exossomos , Rejeição de Enxerto , Transplante de Coração , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Exossomos/metabolismo , Rejeição de Enxerto/imunologia , Feminino , Camundongos , Endométrio/metabolismo , Aloenxertos , Citocinas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Sobrevivência de Enxerto
14.
Front Immunol ; 15: 1459842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355252

RESUMO

The objective of this study was to analyze complement activation in antiphospholipid antibody (aPL)-positive patients without other systemic autoimmune rheumatic diseases, using C3/C4 and cell-bound complement activation products (CB-CAPs) (B-lymphocytes [BC4d], erythrocytes [EC4d], and platelets [PC4d]). Persistently aPL-positive patients with or without aPL-related clinical manifestations (thrombotic APS [TAPS], microvascular APS [MAPS], obstetric APS, thrombocytopenia [TP], and/or hemolytic anemia [HA]) were enrolled in a single center study. Blood and clinical data were collected at baseline; a subgroup of patients completed 6- or 12-month follow-up. At baseline, 4/31 (13%) patients had decreased C3/C4, while 7/29 (24%) had elevated BC4d, 11/33 (33%) EC4d, and 12/32 (38%) PC4d. Based on different aPL profiles, all patients with decreased C3/C4 or elevated BC4d, EC4d, and PC4d had triple aPL or isolated lupus anticoagulant positivity. Based on different aPL clinical phenotypes, the number of patients with strongly positive EC4d and PC4d were proportionally higher in those with MAPS/TP/HA, compared to TAPS or no APS. Compared to baseline, the frequencies of BC4d, EC4d, and PC4d positivity were not significantly different in the subgroup of patients during their 6- or 12-month follow-up. There was a weak correlation between C3/C4 and CB-CAPs, especially for PC4d. In summary, complement activation in aPL-positive patients varies based on aPL profiles and clinical phenotypes. Given the higher percentage of aPL-positive patients with abnormal CB-CAPs, compared to C3/C4, and the poor inverse correlation between CB-CAPs and C3/C4, our study generates the hypothesis that CB-CAPs have a role in assessing disease activity and thrombosis risk in aPL-positive patients.


Assuntos
Anticorpos Antifosfolipídeos , Síndrome Antifosfolipídica , Ativação do Complemento , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Anticorpos Antifosfolipídeos/sangue , Anticorpos Antifosfolipídeos/imunologia , Adulto , Ativação do Complemento/imunologia , Síndrome Antifosfolipídica/imunologia , Síndrome Antifosfolipídica/sangue , Plaquetas/imunologia , Eritrócitos/imunologia , Doenças Reumáticas/imunologia , Doenças Reumáticas/sangue , Complemento C4/metabolismo , Idoso , Linfócitos B/imunologia , Complemento C3/imunologia , Complemento C3/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/sangue
15.
Netw Neurosci ; 8(3): 902-925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355436

RESUMO

Functional magnetic resonance imaging (fMRI) studies most commonly use cluster-based inference to detect local changes in brain activity. Insufficient statistical power and disproportionate false-positive rates reportedly hinder optimal inference. We propose a structural connectivity-guided clustering framework, called topological cluster statistic (TCS), that enhances sensitivity by leveraging white matter anatomical connectivity information. TCS harnesses multimodal information from diffusion tractography and functional imaging to improve task fMRI activation inference. Compared to conventional approaches, TCS consistently improves power over a wide range of effects. This improvement results in a 10%-50% increase in local sensitivity with the greatest gains for medium-sized effects. TCS additionally enables inspection of underlying anatomical networks and thus uncovers knowledge regarding the anatomical underpinnings of brain activation. This novel approach is made available in the PALM software to facilitate usability. Given the increasing recognition that activation reflects widespread, coordinated processes, TCS provides a way to integrate the known structure underlying widespread activations into neuroimaging analyses moving forward.


Neuroimaging studies often encounter challenges in reliable inference of statistical maps due to limited statistical power. This article introduces TCS, a novel method that integrates anatomical connectivity data from diffusion tractography into cluster-based inference techniques. Our findings demonstrate that TCS enhances statistical power, improves the detection of spatially disjoint localized activations, and identifies the underlying network linking distant inferred active regions. By elucidating the coordinated network supporting inferred effects, TCS enables data-driven interpretation of inference results. The availability of TCS as a publicly accessible tool offers a promising avenue for future neuroimaging research to leverage anatomical connectivity for enhanced inference and interpretation.

17.
Hum Immunol ; 85(6): 111150, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357468

RESUMO

BACKGROUND: It is reported that G protein-coupled receptor 84 (GPR84) can participate in inflammation and immune regulation to repress anti-tumor responses. However, the function of GPR84 in lung cancer (LC) and its potential molecular mechanisms are still largely unknown. METHODS: Bioinformatics and molecular experiments were employed to assess the expression of GPR84 in LC. The pathways enriched by GPR84 were analyzed by the Kyoto Encyclopedia of Genes and Genomes. Bioinformatics prediction identified the potential upstream regulatory factors of GPR84, which were verified through dual luciferase and chromatin immunoprecipitation experiments. Cell viability was measured by methyl thiazolyl tetrazolium assay. The expression levels of key proteins related to the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway such as JAK2, p-JAK2, p-STAT3, and STAT3 were detected by western blot. Macrophages were co-cultured with LC cells. Flow cytometry was employed to examine the proportion of mannose receptor-positive cells. The expression levels of M2 polarization marker genes chitinase-like protein 3, arginase-1, and found in inflammatory zone 1 were measured by quantitative reverse transcription polymerase chain reaction. We applied an enzyme-linked immunosorbent assay to determine levels of cytokines (interleukin-10 and transforming growth factor beta) to evaluate the M2 macrophage polarization. RESULTS: GPR84 was highly expressed in LC and substantially enriched in the JAK-STAT pathway. GPR84 facilitated the M2 polarization of macrophages in LC. Adding the JAK-STAT pathway inhibitor weakened the promoting effect of GPR84 overexpression on M2 macrophage polarization. Furthermore, GPR84 also had an upstream regulatory factor lamin B1 (LMNB1). Knocking down LMNB1 blocked the JAK-STAT signaling pathway to repress M2 macrophage polarization in LC, while overexpression of GPR84 reversed the impact of LMNB1 knockdown on macrophage polarization. CONCLUSION: The project suggested that the LMNB1/GPR84 axis can facilitate M2 polarization of macrophages in LC by triggering the JAK-STAT pathway. Targeting LMNB1/GPR84 or blocking the JAK-STAT pathway may be a novel approach for LC diagnosis and treatment.

18.
J Pathol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360360

RESUMO

Hunner-type interstitial cystitis (HIC) is a chronic inflammatory disease of the urinary bladder with an unknown etiology. We conducted comprehensive immunogenomic profiling of bladder specimens obtained by biopsy and cystectomy from 37 patients with HIC. Next-generation RNA sequencing demonstrated abundant plasma cell infiltration with frequent light chain restriction in HIC-affected bladder tissue. Subsequent analysis of the B-cell receptor repertoire revealed spatial and temporal expansion of B-cell clones. The extent of B-cell clonal expansion was significantly correlated with the gene expression levels of TNFSF13 and TNFSF13B, which encode APRIL and BAFF, respectively. These findings indicate that APRIL and BAFF are the key regulators of clonal B-cell expansion in HIC and might serve as therapeutic targets in this debilitating disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

19.
Mol Pharm ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360744

RESUMO

Using the time-temperature-transformation diagrams, we demonstrated a correlation between molecular mobility and crystallization in amorphous solid dispersions of nifedipine (NIF) with each polyvinylpyrrolidone vinyl acetate (PVPVA64) and polyvinyl caprolactam polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus). The behavior was compared with the NIF dispersions prepared with each polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) [Lalge et al., Mol. Pharmaceutics 2023, 20(3), 1806-1817]. Each system was characterized by a unique temperature at which the crystallization onset time was the shortest. Below this temperature, a coupling was observed between the α-relaxation time determined by dielectric spectroscopy and crystallization onset time. Above this temperature, the activation barrier for crystallization had a more significant role than molecular mobility. In the solid state, PVP and PVPVA64 dispersion exhibited higher resistance to crystallization than HPMCAS and Soluplus. The role of polymers in inhibiting crystal growth in nucleated systems was discerned by monitoring crystallization following wetting of the amorphous dispersion with the dissolution medium. PVPVA64 and Soluplus dispersions exhibited higher resistance to crystal growth than PVP and HPMCAS.

20.
Front Med (Lausanne) ; 11: 1454980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359922

RESUMO

Liver fibrosis is a complex process driven by various factors and is a key feature of chronic liver diseases. Its essence is liver tissue remodeling caused by excessive accumulation of collagen and other extracellular matrix. Activation of hepatic stellate cells (HSCs), which are responsible for collagen production, plays a crucial role in promoting the progression of liver fibrosis. Abnormal expression of signaling pathways, such as the TGF-ß/Smads pathway, contributes to HSCs activation. Recent studies have shed light on these pathways, providing valuable insights into the development of liver fibrosis. Here, we will review six signaling pathways such as TGF-ß/Smads that have been studied more in recent years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA