RESUMO
Biomass feedstocks are promising candidates of renewable clean energy. The development and utilization of biological energy is in line with the concept of sustainable development and circular economy. As an important platform chemical, γ-valerolactone (GVL) is often used as green solvent and biofuel additive. Regarding this, the efficient synthesis of GVL from biomass derivative furfural (FF) has attracted wide attention recently, However, suitable catalyst with appropriate acid-base sites is required due to the complex reaction progress. In this Mini Review, the research progress of catalytic synthesis of GVL from furfural by Zr/Hf-based catalysts was reviewed. The different effects of Lewis acid-base and Brønsted acid sites in the catalysts on each steps in the reaction process were discussed firstly. Then the effects of regulation of acid-base sites in the catalysts was also studied. Finally, the advantages and challenges of Zr/Hf-based catalysts in FF converted to GVL system were proposed.
RESUMO
Peroxymonosulfate (PMS)-based advanced oxidation processes (PMS-AOPs) as an efficient strategy for organic degradation are highly dependent on catalyst design and structured active sites. However, the identification of the active sites and their relationship with reaction mechanisms for organic degradation are not fully understood for a composite catalyst due to the complex structure. Herein, we developed a family of Co encapsulated in N-doped carbons (Co-PCN) with tailored types and contents of active sites via manipulated pyrolysis for PMS activation and ciprofloxacin (CIP) degradation, focusing on the correlation of active sites to generated reactive species and degradation routes of organics. The structure-function relationships between the different active sites in Co-PCN catalysts and reactive oxygen species (ROS), as well as bond breaking position of CIP, were revealed through regression analysis and density functional theory calculation. Co-Nx, O-CâO, CâO, graphitic N, and defects in Co-PCN stimulate the generation of 1O2 for oxidizing the C-C bond in the piperazine ring of CIP into CâO. The substitution of F by OH and hydroxylation of the piperazine ring might be induced by SO4â¢- and â¢OH, whose formation was affected by C-O, Co(0), Co-Nx, graphitic N, and defects. The findings provided new insights into reaction mechanisms in PMS-AOP systems and rational design of catalysts for ROS-oriented degradation of pollutants.
Assuntos
Carbono , Peróxidos , Domínio Catalítico , CiprofloxacinaRESUMO
Serine peptidases of the prolyl oligopeptidase (POP) family are of substantial therapeutic importance because of their involvement in diseases such as diabetes, cancer, neurological diseases, and autoimmune disorders. Proper annotation and knowledge of substrate specificity mechanisms in this family are highly valuable. Although endopeptidase, dipeptidyl peptidase, tripeptidyl peptidase, and acylaminoacyl peptidase activities have been reported previously, here we report the first instance of carboxypeptidase activity in a POP family member. We determined the crystal structures of this carboxypeptidase, an S9C subfamily member from Deinococcus radiodurans, in its active and inactive states at 2.3-Å resolution, providing an unprecedented view of assembly and disassembly of the active site mediated by an arginine residue. We observed that this residue is poised to bind substrate in the active structure and disrupts the catalytic triad in the inactive structure. The assembly of the active site is accompanied by the ordering of gating loops, which reduces the effective size of the oligomeric pore. This prevents the entry of larger peptides and constitutes a novel mechanism for substrate screening. Furthermore, we observed structural adaptations that enable its carboxypeptidase activity, with a unique loop and two arginine residues in the active site cavity orienting the peptide substrate for catalysis. Using these structural features, we identified homologs of this enzyme in the POP family and confirmed the presence of carboxypeptidase activity in one of them. In conclusion, we have identified a new type within POP enzymes that exhibits not only unique activity but also a novel substrate-screening mechanism.