Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.225
Filtrar
1.
J Exp Biol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092490

RESUMO

Stress-induced increases in cortisol can stimulate or inhibit brain cell proliferation, but the mechanisms behind these opposing effects are unknown. We tested the hypothesis that 11ß-hydroxysteroid dehydrogenase type 2 (Hsd11b2), a glucocorticoid-inactivating enzyme expressed in neurogenic regions of the adult zebrafish brain, mitigates cortisol-induced changes to brain cell proliferation using one of three stress regimes: a single 1-min air exposure (acute stress), two air exposures spaced 24 h apart (repeat acute stress), or social subordination (chronic stress). Plasma cortisol was significantly elevated 15 min after air exposure and recovered within 24 h after acute and repeat acute stress, whereas subordinate fish exhibited significant and sustained elevations relative to dominant fish for 24 h. Following acute stress, brain hsd11b2 transcript abundance was significantly lower 24 h after a single air exposure but was unchanged by repeat acute stress or social subordination. A sustained increase in brain Hsd11b2 protein levels occurred after acute stress, but not after repeat or chronic stress. Following acute and repeat acute stress, brain pcna transcript abundance exhibited a prolonged elevation, but was unaffected by social subordination. Interestingly, the number of telencephalic BrdU+ cells increased in fish after a single air exposure but was unchanged by repeat acute stress. Following acute and repeat acute stress, fish expressed lower brain gr and mr transcript abundance while subordinate fish exhibited no changes. Taken together, these results demonstrate stressor-specific regulation of Hsd11b2 in the zebrafish brain that could modulate rates of cortisol catabolism contributing to observed differences in brain cell proliferation.

2.
Cogn Neurodyn ; 18(4): 2077-2093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104672

RESUMO

Young immature granule cells (imGCs) appear via adult neurogenesis in the hippocampal dentate gyrus (DG). In comparison to mature GCs (mGCs) (born during development), the imGCs exhibit two competing distinct properties such as high excitability (increasing activation degree) and low excitatory innervation (reducing activation degree). We develop a spiking neural network for the DG, incorporating both the mGCs and the imGCs. The mGCs are well known to perform "pattern separation" (i.e., a process of transforming similar input patterns into less similar output patterns) to facilitate pattern storage in the hippocampal CA3. In this paper, we investigate the effect of the young imGCs on pattern separation of the mGCs. The pattern separation efficacy (PSE) of the mGCs is found to vary through competition between high excitability and low excitatory innervation of the imGCs. Their PSE becomes enhanced (worsened) when the effect of high excitability is higher (lower) than the effect of low excitatory innervation. In contrast to the mGCs, the imGCs are found to perform "pattern integration" (i.e., making association between dissimilar patterns). Finally, we speculate that memory resolution in the hippocampal CA3 might be optimally maximized via mixed cooperative encoding through pattern separation and pattern integration.

3.
Eur J Neurosci ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126378

RESUMO

The subventricular zone (SVZ) is one of the neurogenic regions of the adult mammalian brain. Neural stem cells (NSCs) in the SVZ have certain key features: they express glial fibrillary acidic protein (GFAP), proliferate slowly, have a radial glia-like (RG-L) morphology, and are in contact with the cerebrospinal fluid (CSF). NSCs have been isolated by FACS to analyse them, but their morphology has not been systematically examined. To address this knowledge gap, we sparsely labelled RG-L cells in the SVZ of neonatal mice by introducing via electroporation a plasmid expressing fluorescent protein under the control of the GFAP promoter. We then classified RG-L cells into three types (RG-L1, 2, and 3) based on their morphologies. RG-L1 cells had a basal process with some branches and numerous fine processes. RG-L2 cells had a basal process, but fewer branches and fine processes than RG-L1 cells. RG-L3 cells had one basal process that was almost free of branches and fine processes. Importantly, regardless of the cell type, about half of their somata resided on the basal side of the SVZ. Based on changes in their proportions during postnatal development and their expression of GFAP and cell proliferation markers at the adult stage, we speculated that NSCs change their morphologies during development/maturation and not all NSCs must always be in the apical SVZ or in contact with the CSF. Our results indicate that in addition to expression of markers for NSCs, the morphology is a critical feature to identify NSCs.

4.
Proc Natl Acad Sci U S A ; 121(28): e2400213121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954546

RESUMO

The brain's neuroreparative capacity after injuries such as ischemic stroke is partly contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here, we report a mouse genetic tool (the ROSA26iDTR mouse line) for noninvasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss in both aged and young adult brains, accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at 1 mo postablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts (NBs) following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the middle cerebral artery occlusion model of ischemic stroke, NB migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.


Assuntos
Plexo Corióideo , Ventrículos Laterais , Neurogênese , Animais , Plexo Corióideo/metabolismo , Neurogênese/fisiologia , Camundongos , Ventrículos Laterais/metabolismo , Ventrículos Laterais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Masculino , Movimento Celular , Ventrículos Cerebrais/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(28): e2400596121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968119

RESUMO

In adult songbirds, new neurons are born in large numbers in the proliferative ventricular zone in the telencephalon and migrate to the adjacent song control region HVC (acronym used as proper name) [A. Reiner et al., J. Comp. Neurol. 473, 377-414 (2004)]. Many of these new neurons send long axonal projections to the robust nucleus of the arcopallium (RA). The HVC-RA circuit is essential for producing stereotyped learned song. The function of adult neurogenesis in this circuit has not been clear. A previous study suggested that it is important for the production of well-structured songs [R. E. Cohen, M. Macedo-Lima, K. E. Miller, E. A. Brenowitz, J. Neurosci. 36, 8947-8956 (2016)]. We tested this hypothesis by infusing the neuroblast migration inhibitor cyclopamine into HVC of male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) to block seasonal regeneration of the HVC-RA circuit. Decreasing the number of new neurons in HVC prevented both the increase in spontaneous electrical activity of RA neurons and the improved structure of songs that would normally occur as sparrows enter breeding condition. These results show that the incorporation of new neurons into the adult HVC is necessary for the recovery of both electrical activity and song behavior in breeding birds and demonstrate the value of the bird song system as a model for investigating adult neurogenesis at the level of long projection neural circuits.


Assuntos
Neurogênese , Prosencéfalo , Vocalização Animal , Animais , Neurogênese/fisiologia , Prosencéfalo/fisiologia , Prosencéfalo/citologia , Vocalização Animal/fisiologia , Masculino , Pardais/fisiologia , Neurônios/fisiologia , Regeneração Nervosa/fisiologia
6.
Chem Biol Interact ; 399: 111145, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39002876

RESUMO

Imidacloprid (IMI) is a widely used neonicotinoid insecticide that poses risks for developmental neurotoxicity in mammals. The present study investigated the effects of maternal exposure to IMI on behaviors and adult neurogenesis in the hippocampal dentate gyrus (DG) of rat offspring. Dams were exposed to IMI via diet (83, 250, or 750 ppm in diet) from gestational day 6 until day 21 post-delivery on weaning, and offspring were maintained until adulthood on postnatal day 77. In the neurogenic niche, 750-ppm IMI decreased numbers of late-stage neural progenitor cells (NPCs) and post-mitotic immature granule cells by suppressing NPC proliferation and ERK1/2-FOS-mediated synaptic plasticity of granule cells on weaning. Suppressed reelin signaling might be responsible for the observed reductions of neurogenesis and synaptic plasticity. In adulthood, IMI at ≥ 250 ppm decreased neural stem cells by suppressing their proliferation and increasing apoptosis, and mature granule cells were reduced due to suppressed NPC differentiation. Behavioral tests revealed increased spontaneous activity in adulthood at 750 ppm. IMI decreased hippocampal acetylcholinesterase activity and Chrnb2 transcript levels in the DG on weaning and in adulthood. IMI increased numbers of astrocytes and M1-type microglia in the DG hilus, and upregulated neuroinflammation and oxidative stress-related genes on weaning. In adulthood, IMI increased malondialdehyde level and number of M1-type microglia, and downregulated neuroinflammation and oxidative stress-related genes. These results suggest that IMI persistently affected cholinergic signaling, induced neuroinflammation and oxidative stress during exposure, and increased sensitivity to oxidative stress after exposure in the hippocampus, causing hyperactivity and progressive suppression of neurogenesis in adulthood. The no-observed-adverse-effect level of IMI for offspring behaviors and hippocampal neurogenesis was determined to be 83 ppm (5.5-14.1 mg/kg body weight/day).


Assuntos
Hipocampo , Exposição Materna , Neonicotinoides , Células-Tronco Neurais , Neurogênese , Nitrocompostos , Efeitos Tardios da Exposição Pré-Natal , Proteína Reelina , Animais , Neurogênese/efeitos dos fármacos , Gravidez , Feminino , Neonicotinoides/toxicidade , Ratos , Nitrocompostos/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/citologia , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Inseticidas/toxicidade , Masculino , Proliferação de Células/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos
7.
EMBO Rep ; 25(8): 3678-3706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39080439

RESUMO

Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.


Assuntos
Hipocampo , Homeostase , Proteínas de Membrana , Células-Tronco Neurais , Neurogênese , Fator de Transcrição STAT5 , Animais , Neurogênese/genética , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Hipocampo/metabolismo , Hipocampo/citologia , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Knockout , Convulsões/metabolismo , Convulsões/genética , Giro Denteado/metabolismo , Giro Denteado/citologia , Transdução de Sinais , Proliferação de Células
8.
Pharmacol Biochem Behav ; 243: 173839, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079561

RESUMO

Puberty is a critical period of emotional development and neuroplasticity. However, most studies have focused on early development, with limited research on puberty, particularly the parental presence. In this study, four groups were established, and pubertal maternal presence (PMP) was assessed until postnatal days 21 (PD21), 28 (PD28), 35 (PD35), and 42 (PD42), respectively. The social interaction and anxiety behaviors, as well as the expression of oxytocin (OT) in the paraventricular nucleus (PVN) and supraoptic nucleus (SON), and the number of new generated neurons and the expression of estrogen receptor alpha (ERα) in the dentate gyrus (DG) were assessed. The results suggest that there is a lot of physical contact between the mother and offspring from 21 to 42 days of age, which reduces anxiety in both female and male offspring in adulthood; for example, the PMP increased the amount of time mice spent in the center area in the open field experiment and in the bright area in the light-dark box experiment. PMP increased OT expression in the PVN and SON and the number of newly generated neurons in the DG. However, there was a sexual difference in ERα, with ERα increasing in females but decreasing in males. In conclusion, PMP reduces the anxiety of offspring in adulthood, increases OT in the PVN and SON, and adult neurogenesis; ERα in the DG may be involved in this process.

9.
Cells ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891031

RESUMO

Apolipoprotein E (ApoE) is a lipid carrier in both the peripheral and the central nervous systems (CNSs). Lipid-loaded ApoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and brain injury repair. In the brain, ApoE is produced predominantly by astrocytes, but it is also abundantly expressed in most neurons of the CNS. In this study, we addressed the role of ApoE in the hippocampus in mice, focusing on its role in response to radiation injury. To this aim, 8-week-old, wild-type, and ApoE-deficient (ApoE-/-) female mice were acutely whole-body irradiated with 3 Gy of X-rays (0.89 Gy/min), then sacrificed 150 days post-irradiation. In addition, age-matching ApoE-/- females were chronically whole-body irradiated (20 mGy/d, cumulative dose of 3 Gy) for 150 days at the low dose-rate facility at the Institute of Environmental Sciences (IES), Rokkasho, Japan. To seek for ApoE-dependent modification during lineage progression from neural stem cells to neurons, we have evaluated the cellular composition of the dentate gyrus in unexposed and irradiated mice using stage-specific markers of adult neurogenesis. Our findings indicate that ApoE genetic inactivation markedly perturbs adult hippocampal neurogenesis in unexposed and irradiated mice. The effect of ApoE inactivation on the expression of a panel of miRNAs with an established role in hippocampal neurogenesis, as well as its transcriptional consequences in their target genes regulating neurogenic program, have also been analyzed. Our data show that the absence of ApoE-/- also influences synaptic functionality and integration by interfering with the regulation of mir-34a, mir-29b, and mir-128b, leading to the downregulation of synaptic markers PSD95 and synaptophysin mRNA. Finally, compared to acute irradiation, chronic exposure of ApoE null mice yields fewer consequences except for the increased microglia-mediated neuroinflammation. Exploring the function of ApoE in the hippocampus could have implications for developing therapeutic approaches to alleviate radiation-induced brain injury.


Assuntos
Apolipoproteínas E , Hipocampo , MicroRNAs , Radiação Ionizante , Animais , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Camundongos , Feminino , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos da radiação , Neurogênese/efeitos da radiação , Irradiação Corporal Total , Exposição à Radiação/efeitos adversos , Giro Denteado/metabolismo , Giro Denteado/efeitos da radiação , Giro Denteado/patologia
10.
Cell ; 187(15): 4030-4042.e13, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38908367

RESUMO

Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.


Assuntos
Envelhecimento , Metilação de DNA , Telomerase , Telomerase/metabolismo , Telomerase/genética , Humanos , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Senescência Celular , Regiões Promotoras Genéticas , DNA Metiltransferase 3B , Encéfalo/metabolismo , Telômero/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Fator de Transcrição AP-1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neurogênese
11.
Elife ; 122024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833278

RESUMO

Adult-born granule cells (abGCs) project to the CA2 region of the hippocampus, but it remains unknown how this circuit affects behavioral function. Here, we show that abGC input to the CA2 of adult mice is involved in the retrieval of remote developmental memories of the mother. Ablation of abGCs impaired the ability to discriminate between a caregiving mother and a novel mother, and this ability returned after abGCs were regenerated. Chemogenetic inhibition of projections from abGCs to the CA2 also temporarily prevented the retrieval of remote mother memories. These findings were observed when abGCs were inhibited at 4-6 weeks old, but not when they were inhibited at 10-12 weeks old. We also found that abGCs are necessary for differentiating features of CA2 network activity, including theta-gamma coupling and sharp wave ripples, in response to novel versus familiar social stimuli. Taken together, these findings suggest that abGCs are necessary for neuronal oscillations associated with discriminating between social stimuli, thus enabling retrieval of remote developmental memories of the mother by their adult offspring.


Assuntos
Neurônios , Animais , Camundongos , Neurônios/fisiologia , Memória/fisiologia , Região CA2 Hipocampal/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL
12.
Neurosci Lett ; 836: 137878, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38862088

RESUMO

Alzheimer's disease (AD) is an approaching, progressive public health crisis which presently lacks an effective treatment. Various non-invasive novel therapies like repetitive transcranial magnetic stimulation have shown potential to improve cognitive performance in AD patients. In the present study, the effect of extremely low intensity magnetic field (MF) stimulation on neurogenesis and cortical electrical activity was explored. Adult Wistar rats were divided into Sham, AD and AD + MF groups. Streptozotocin (STZ) was injected intracerebroventricularly, at a dose of 3 mg/kg body weight for developing AD model. The AD rats were then exposed to MF (17.96 µT) from 8th day of STZ treatment until 15th day, followed by cognitive assessments and electrocortical recording. In brain tissue samples, cresyl violet staining and BrdU immunohistochemistry were done. MF exposure, improved passive avoidance and recognition memory, attenuated neuronal degeneration and enhanced cell proliferation (BrdU positive cells) in comparison to AD rats. It also significantly restores delta wave power from frontal lobe. Our results suggest that early-stage MF exposure could be an asset for AD research and open new avenues in slowing down the progression of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Ratos Wistar , Estreptozocina , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/fisiopatologia , Estreptozocina/toxicidade , Estreptozocina/administração & dosagem , Masculino , Ratos , Neurogênese/efeitos da radiação , Magnetoterapia/métodos , Encéfalo , Proliferação de Células
13.
Neurobiol Dis ; 199: 106572, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901782

RESUMO

Within the adult mouse subventricular zone (SVZ), neural stem cells (NSCs) produce neuroblasts and oligodendrocyte precursor cells (OPCs). T3, the active thyroid hormone, influences renewal and commitment of SVZ progenitors. However, how regulators of T3 availability affect these processes is less understood. Using Mct8/Dio2 knockout mice, we investigated the role of MCT8, a TH transporter, and DIO2, the T3-generating enzyme, in regulating adult SVZ-neurogliogenesis. Single-cell RNA-Seq revealed Mct8 expression in various SVZ cell types in WT mice, while Dio2 was enriched in neurons, astrocytes, and quiescent NSCs. The absence of both regulators in the knockout model dysregulated gene expression, increased the neuroblast/OPC ratio and hindered OPC differentiation. Immunostainings demonstrated compromised neuroblast migration reducing their supply to the olfactory bulbs, impairing interneuron differentiation and odor discrimination. These findings underscore the pivotal roles of MCT8 and DIO2 in neuro- and oligodendrogenesis, offering targets for therapeutic avenues in neurodegenerative and demyelinating diseases.


Assuntos
Ventrículos Laterais , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos , Células-Tronco Neurais , Neurogênese , Animais , Neurogênese/fisiologia , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Tronco Neurais/metabolismo , Ventrículos Laterais/metabolismo , Iodotironina Desiodinase Tipo II , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Diferenciação Celular/fisiologia , Simportadores/genética , Simportadores/metabolismo , Bulbo Olfatório/metabolismo , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/metabolismo
14.
Front Neurosci ; 18: 1416460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887368

RESUMO

Contrary to humans, adult hippocampal neurogenesis in rodents is not controversial. And in the last three decades, multiple studies in rodents have deemed adult neurogenesis essential for most hippocampal functions. The functional relevance of new neurons relies on their distinct physiological properties during their maturation before they become indistinguishable from mature granule cells. Most functional studies have used very young animals with robust neurogenesis. However, this trait declines dramatically with age, questioning its functional relevance in aging animals, a caveat that has been mentioned repeatedly, but rarely analyzed quantitatively. In this meta-analysis, we use data from published studies to determine the critical functional window of new neurons and to model their numbers across age in both mice and rats. Our model shows that new neurons with distinct functional profile represent about 3% of the total granule cells in young adult 3-month-old rodents, and their number decline following a power function to reach less than 1% in middle aged animals and less than 0.5% in old mice and rats. These low ratios pose an important logical and computational caveat to the proposed essential role of new neurons in the dentate gyrus, particularly in middle aged and old animals, a factor that needs to be adequately addressed when defining the relevance of adult neurogenesis in hippocampal function.

15.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791161

RESUMO

Adult neurogenesis in the dentate gyrus (DG) is impaired during Alzheimer's disease (AD) progression. Curcumin has been reported to reduce cell apoptosis and stimulate neurogenesis. This study aimed to investigate the influence of curcumin on adult neurogenesis in AD mice and its potential mechanism. Two-month-old male C57BL/6J mice were injected with soluble ß-amyloid (Aß1-42) using lateral ventricle stereolocalization to establish AD models. An immunofluorescence assay, including bromodeoxyuridine (BrdU), doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), was used to detect hippocampal neurogenesis. Western blot and an enzyme-linked immunosorbent assay (ELISA) were used to test the expression of related proteins and the secretion of brain-derived neurotrophic factor (BDNF). A Morris water maze was used to detect the cognitive function of the mice. Our results showed that curcumin administration (100 mg/kg) rescued the impaired neurogenesis of Aß1-42 mice, shown as enhanced BrdU+/DCX+ and BrdU+/NeuN+ cells in DG. In addition, curcumin regulated the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) -mediated glycogen synthase kinase-3ß (GSK3ß) /Wingless/Integrated (Wnt)/ß-catenin pathway and cyclic adenosine monophosphate response element-binding protein (CREB)/BDNF in Aß1-42 mice. Inhibiting Wnt/ß-catenin and depriving BDNF could reverse both the upregulated neurogenesis and cognitive function of curcumin-treated Aß1-42 mice. In conclusion, our study indicates that curcumin, through targeting PI3K/Akt, regulates GSK3ß/Wnt/ß-catenin and CREB/BDNF pathways, improving the adult neurogenesis of AD mice.


Assuntos
Doença de Alzheimer , Curcumina , Neurogênese , Via de Sinalização Wnt , Animais , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , beta Catenina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Curcumina/farmacologia , Modelos Animais de Doenças , Proteína Duplacortina/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
16.
Exp Brain Res ; 242(7): 1709-1719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806710

RESUMO

Exercise can induce beneficial improvements in cognition. However, the effects of different modes and intensities of exercise have yet to be explored in detail. This study aimed to identify the effects of different exercise modes (aerobic and resistance) and intensities (low and high) on cognitive performance, adult hippocampal neurogenesis and synaptic plasticity in mice. A total of 40 C57BL/6J mice were randomised into 5 groups (n = 8 mice per group): control, low-intensity aerobic exercise, high-intensity aerobic exercise, low-intensity resistance exercise, and high-intensity resistance exercise. The aerobic exercise groups underwent treadmill training, while the resistance exercise groups underwent ladder climbing training. At the end of the exercise period, cognitive performance was assessed by the Y-maze and Barnes maze. In addition, adult hippocampal neurogenesis was evaluated immunohistochemically by 5-bromo-2'-deoxyuridine (BrdU)/ neuronal nuclei (NeuN) co-labeling. The levels of synaptic plasticity-related proteins in the hippocampus, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95), were analyzed by western blotting. Our results showed no significant differences in cognitive performance among the groups. However, high-intensity aerobic exercise significantly increased hippocampal adult neurogenesis relative to the control. A trend towards increased adult neurogenesis was observed in the low-intensity aerobic group compared to the control group. No significant changes in synaptic plasticity were observed among all groups. Our results indicate that high-intensity aerobic exercise may be the most potent stimulator of adult hippocampal neurogenesis.


Assuntos
Cognição , Hipocampo , Camundongos Endogâmicos C57BL , Neurogênese , Plasticidade Neuronal , Condicionamento Físico Animal , Sinaptofisina , Animais , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Condicionamento Físico Animal/fisiologia , Camundongos , Masculino , Cognição/fisiologia , Sinaptofisina/metabolismo , Aprendizagem em Labirinto/fisiologia , Proteína 4 Homóloga a Disks-Large/metabolismo
17.
EMBO Mol Med ; 16(6): 1228-1253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789599

RESUMO

In the injured brain, new neurons produced from endogenous neural stem cells form chains and migrate to injured areas and contribute to the regeneration of lost neurons. However, this endogenous regenerative capacity of the brain has not yet been leveraged for the treatment of brain injury. Here, we show that in healthy brain chains of migrating new neurons maintain unexpectedly large non-adherent areas between neighboring cells, allowing for efficient migration. In instances of brain injury, neuraminidase reduces polysialic acid levels, which negatively regulates adhesion, leading to increased cell-cell adhesion and reduced migration efficiency. The administration of zanamivir, a neuraminidase inhibitor used for influenza treatment, promotes neuronal migration toward damaged regions, fosters neuronal regeneration, and facilitates functional recovery. Together, these findings shed light on a new mechanism governing efficient neuronal migration in the adult brain under physiological conditions, pinpoint the disruption of this mechanism during brain injury, and propose a promising therapeutic avenue for brain injury through drug repositioning.


Assuntos
Encéfalo , Movimento Celular , Neuraminidase , Neurônios , Neuraminidase/metabolismo , Neuraminidase/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Zanamivir/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Siálicos/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Adesão Celular/efeitos dos fármacos , Humanos , Masculino
18.
Mol Neurobiol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816676

RESUMO

The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.

19.
Aging Cell ; 23(7): e14165, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757355

RESUMO

Impaired mitochondrial function is a hallmark of aging and a major contributor to neurodegenerative diseases. We have shown that disrupted mitochondrial dynamics typically found in aging alters the fate of neural stem cells (NSCs) leading to impairments in learning and memory. At present, little is known regarding the mechanisms by which neural stem and progenitor cells survive and adapt to mitochondrial dysfunction. Using Opa1-inducible knockout as a model of aging and neurodegeneration, we identify a decline in neurogenesis due to impaired stem cell activation and progenitor proliferation, which can be rescued by the mitigation of oxidative stress through hypoxia. Through sc-RNA-seq, we identify the ATF4 pathway as a critical mechanism underlying cellular adaptation to metabolic stress. ATF4 knockdown in Opa1-deficient NSCs accelerates cell death, while the increased expression of ATF4 enhances proliferation and survival. Using a Slc7a11 mutant, an ATF4 target, we show that ATF4-mediated glutathione production plays a critical role in maintaining NSC survival and function under stress conditions. Together, we show that the activation of the integrated stress response (ISR) pathway enables NSCs to adapt to metabolic stress due to mitochondrial dysfunction and metabolic stress and may serve as a therapeutic target to enhance NSC survival and function in aging and neurodegeneration.


Assuntos
Sobrevivência Celular , Mitocôndrias , Células-Tronco Neurais , Células-Tronco Neurais/metabolismo , Mitocôndrias/metabolismo , Animais , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Estresse Fisiológico , Estresse Oxidativo
20.
Front Cell Neurosci ; 18: 1396780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746080

RESUMO

Introduction: Deep brain stimulation (DBS) is a highly effective treatment option in Parkinson's disease. However, the underlying mechanisms of action, particularly effects on neuronal plasticity, remain enigmatic. Adult neurogenesis in the subventricular zone-olfactory bulb (SVZ-OB) axis and in the dentate gyrus (DG) has been linked to various non-motor symptoms in PD, e.g., memory deficits and olfactory dysfunction. Since DBS affects several of these non-motor symptoms, we analyzed the effects of DBS in the subthalamic nucleus (STN) and the entopeduncular nucleus (EPN) on neurogenesis in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats. Methods: In our study, we applied five weeks of continuous bilateral STN-DBS or EPN-DBS in 6-OHDA-lesioned rats with stable dopaminergic deficits compared to 6-OHDA-lesioned rats with corresponding sham stimulation. We injected two thymidine analogs to quantify newborn neurons early after DBS onset and three weeks later. Immunohistochemistry identified newborn cells co-labeled with NeuN, TH and GABA within the OB and DG. As a putative mechanism, we simulated the electric field distribution depending on the stimulation site to analyze direct electric effects on neural stem cell proliferation. Results: STN-DBS persistently increased the number of newborn dopaminergic and GABAergic neurons in the OB but not in the DG, while EPN-DBS does not impact neurogenesis. These effects do not seem to be mediated via direct electric stimulation of neural stem/progenitor cells within the neurogenic niches. Discussion: Our data support target-specific effects of STN-DBS on adult neurogenesis, a putative modulator of non-motor symptoms in Parkinson's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA