Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687494

RESUMO

Injection molding is a method commonly used to manufacture plastic products. This technology makes it possible to obtain products of specially designed shape and size. In addition, the developed mold allows for repeated and repeatable production of selected plastic parts. Over the years, this technology grew in importance, and nowadays, products produced by injection molding are used in almost every field of industry. This paper is a review and provides information on recent research reports in the field of modern injection molding techniques. Selected plastics most commonly processed by this technique are discussed. Next, the chosen types of this technique are presented, along with a discussion of the parameters that affect performance and process flow. Depending on the proposed method, the influence of various factors on the quality and yield of the obtained products was analyzed. Nowadays, the link between these two properties is extremely important. The work presented in the article refers to research aimed at modifying injection molding methods enabling high product quality with high productivity at the same time. An important role is also played by lowering production costs and reducing the negative impact on the environment. The review discusses modern injection molding technologies, the development of which is constantly progressing. Finally, the impact of the technology on the ecological environment is discussed and the perspectives of the process were presented.

2.
Expert Opin Drug Deliv ; 19(9): 1115-1131, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36062366

RESUMO

INTRODUCTION: Microneedles (MNs) have undergone great advances in transdermal drug delivery, and commercialized MN applications are currently available in vaccination and cosmetic products. Despite the development of MN technologies, common limitations of MN products still exist. Typical MN patches are applied to target tissues, where the substrate of an MN patch must remain until the drug is delivered, which reduces patients' compliance and hinders the applicability of the MN technique to many diseases in various tissues. MN research is ongoing to solve this issue. AREAS COVERED: Most recent MNs developed by combining various biomaterials with appropriate fabrication processes are detachable MNs (DeMNs). Because of advances in biomaterials and fabrication techniques, various DeMNs have been rapidly developed. In this review, we discuss four types of DeMN: substrate-separable, multi-layered, crack-inducing, and shell DeMN. These DeMNs deliver various therapeutic agents ranging from small- and large-molecular-weight drugs to proteins and even stem cells for regeneration therapy. Furthermore, DeMNs are applied to skin as well as non-transdermal tissues. EXPERT OPINION: It has become increasingly evident that novel MN technologies can be expected in terms of designs, fabrication methods, materials, and even possible application sites given the recent advances in DeMNs.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Administração Cutânea , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos/métodos , Humanos , Microinjeções , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA