Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.089
Filtrar
1.
J Environ Sci (China) ; 150: 676-691, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306439

RESUMO

Scientific evidence sustains PM2.5 particles' inhalation may generate harmful impacts on human beings' health; therefore, their monitoring in ambient air is of paramount relevance in terms of public health. Due to the limited number of fixed stations within the air quality monitoring networks, development of methodological frameworks to model ambient air PM2.5 particles is primordial to providing additional information on PM2.5 exposure and its trends. In this sense, this work aims to offer a global easily-applicable tool to estimate ambient air PM2.5 as a function of meteorological conditions using a multivariate analysis. Daily PM2.5 data measured by 84 fixed monitoring stations and meteorological data from ERA5 (ECMWF Reanalysis v5) reanalysis daily based data between 2000 and 2021 across the United Kingdom were attended to develop the suggested approach. Data from January 2017 to December 2020 were employed to build a mathematical expression that related the dependent variable (PM2.5) to predictor ones (sea-level pressure, planetary boundary layer height, temperature, precipitation, wind direction and speed), while 2021 data tested the model. Evaluation indicators evidenced a good performance of model (maximum values of RMSE, MAE and MAPE: 1.80 µg/m3, 3.24 µg/m3, and 20.63%, respectively), compiling the current legislation's requirements for modelling ambient air PM2.5 concentrations. A retrospective analysis of meteorological features allowed estimating ambient air PM2.5 concentrations from 2000 to 2021. The highest PM2.5 concentrations relapsed in the Mid- and Southlands, while Northlands sustained the lowest concentrations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Reino Unido , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise , Tamanho da Partícula
2.
J Environ Sci (China) ; 148: 702-713, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095202

RESUMO

Chinese diesel trucks are the main contributors to NOx and particulate matter (PM) vehicle emissions. An increase in diesel trucks could aggravate air pollution and damage human health. The Chinese government has recently implemented a series of emission control technologies and measures for air quality improvement. This paper summarizes recent control technologies and measures for diesel truck emissions in China and introduces the comprehensive application of control technologies and measures in Beijing-Tianjin-Hebei and surrounding regions. Remote online monitoring technology has been adopted according to the China VI standard for heavy-duty diesel trucks, and control measures such as transportation structure adjustment and heavy pollution enterprise classification control continue to support the battle action plan for pollution control. Perspectives and suggestions are provided for promoting pollution control and supervision of diesel truck emissions: adhere to the concept of overall management and control, vigorously promote the application of systematic and technological means in emission monitoring, continuously facilitate cargo transportation structure adjustment and promote new energy freight vehicles. This paper aims to accelerate the implementation of control technologies and measures throughout China. China is endeavouring to control diesel truck exhaust pollution. China is willing to cooperate with the world to protect the global ecological environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Emissões de Veículos , Emissões de Veículos/análise , China , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Material Particulado/análise , Veículos Automotores
3.
Biofactors ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350641

RESUMO

Indoor air pollution is a recognized emerging threat, claiming millions of lives annually. People are constantly exposed to ambient and indoor air pollution. The latest research shows that people in developed countries spend up to 90% of their time indoors and almost 70% at home. Although impaired IAQ represents a significant health risk, it affects people differently, and specific populations are more vulnerable: children, the elderly, and people with respiratory illnesses are more sensitive to these environmental risks. Despite rather extensive research on IAQ, most of the current understanding about the subject, which includes pollution sources, indoor-outdoor relationships, and ventilation/filtration, is still quite limited, mainly because air quality monitoring in the EU is primarily focused on ambient air quality and regulatory requirements are lacking for indoor environments. Therefore, the EDIAQI project aims to improve guidelines and awareness for advancing the IAQ in Europe and beyond by allowing user-friendly access to information about indoor air pollution exposures, sources, and related risk factors. The solution proposed with EDIAQI consists of conducting a characterization of sources and routes of exposure and dispersion of chemical, biological, and emerging indoor air pollution in multiple cities in the EU. The project will deploy cost-effective/user-friendly monitoring solutions to create new knowledge on sources, exposure routes, and indoor multipollutant body burdens. The EDIAQI project brings together 18 organizations from 11 different European countries that provide interdisciplinary skills and expertise in various fields, including environmental science and technology, medicine, and toxicology, as well as policy design and public engagement.

4.
Mar Environ Res ; 202: 106765, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357203

RESUMO

All over the world, the oceans are the final destination of sewage transported by river estuaries, rainwater and other coastal discharges. The risks to human health related to direct contact with water and consumption of contaminated fish are well known, but little is known about the potential for atmospheric exposure to pollutants and pathogens from contaminated seawater. The release of microbial particles from the sea into the atmosphere occurs mainly by the eruption of rising bubbles through the sea surface microlayer (SML) or by sea spray. We investigated the heterotrophic bacteria density and relative abundance in SML and bioaerosols originated on the seafront of Fortaleza (Atlantic coastal zone, northeastern Brazil) influenced by wastewater disposal. There was a difference in the density of total heterotrophic bacteria (THB) according to the matrix analyzed during two seasons: the bacterial count was highest in the SML during the rainy season while the highest number of bacteria in bioaerosols samples was recorded during the dry season. Twenty-nine bacterial taxonomic groups were identified with variable abundance for both environments. These were the same in both matrices, with environmental variables influencing their abundance and composition. The contribution of the marine and continental environments in shaping the microbiota of the SML and coastal bioaerosols was clear, with the constant and representative presence of Enterobacteria standing out. The aerosolization of bacteria resulting from the discharge of untreated sewage is an important issue related to coastal environmental health and ecological safety.

5.
J Environ Manage ; 370: 122652, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39362163

RESUMO

To meet the goal of the Paris Agreement, China pledges to realize the "Dual Carbon" targets by 2060. As the capital of China, Beijing plays a leading role in becoming zero-emission or carbon neutral in the future. We project the pollutants emissions of building sector based on current strict clean air policies (PO scenario) and China's carbon neutrality target by 2060 (CN scenario) from 2019 to 2050. Results show that PM2.5 concentration will increase by 2.62 µg/m3 under PO scenario; under the CN scenario, ozone concentration will increase by 2.53 µg/m3 but PM2.5 concentration will reduce by 9.04 µg/m3. It is projected that China carbon neutrality goals could avoid 11.12% of PM2.5-related health burden; With strict clean air policies, health burdens of ozone (3.9%) and PM2.5 (4.1%) could be avoided, respectively. This study highlights the importance of achieving co-benefits of air quality and public health.

6.
Chemosphere ; 366: 143437, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353475

RESUMO

Emission reference materials (ERMs) are sought after to further control and improve indoor air quality. The impregnation of porous materials with volatile organic compounds (VOCs) is a promising approach to produce ERMs. Different VOCs were used to impregnate various porous materials (mainly zeolites, activated carbons and a metal organic framework). The influence of different methodological parameters and material properties were studied to optimize the impregnation procedure and to find the best material/VOC combination. The impregnation procedure remains quite irreproducible, nevertheless, very good ERM candidates were identified. Two materials (zeolite 4 and AC 1 impregnated with n-hexadecane) showed a very stable emission over 14 days (<10 % change). Another material (AC 1 impregnated with toluene) showed a declining emission profile but with a very good in-batch reproducibility and a storage stability of up to 12 months.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39377946

RESUMO

INTRODUCTION: Exposure to unfavorable environmental conditions during pregnancy, such as extreme heat and air pollution, has been linked to increased risk of stillbirth, defined as fetal mortality at or after 20 weeks' gestation, however no studies have examined its association with social vulnerability. We examined associations between county-level stillbirth rates, environmental risk factors for stillbirth, and social vulnerability in the United States. METHODS: This ecologic study linked county-level data from three nationwide datasets on stillbirths (National Vital Statistics System), environmental conditions (North American Land Data Assimilation System and Environmental Protection Agency), and social vulnerability (Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry Social Vulnerability Index). Poisson and negative binomial models were fit to the variables and produced rate ratios to estimate associations among stillbirth rates, environmental risk factors, and social vulnerability. RESULTS: Social vulnerability was positively associated withn stillbirth rates, annual average number of extreme heat days, and ambient concentration of particulate matter ≤ 2.5 µm in diameter (PM2.5). The average number of days that ozone and PM2.5 each exceeded regulatory standards were not associated with stillbirth rates or social vulnerability. A positive association between average annual PM2.5 concentration and stillbirth rates was detected; no other significant associations between environmental risk factors and stillbirth rates were observed. DISCUSSION: We found evidence of associations between social vulnerability and stillbirth rates, and between social vulnerability and environmental risk factors for stillbirth at the county level. Further research could inform understanding of how social vulnerability impacts the relationship between environmental exposures and stillbirth risk.

8.
Environ Sci Technol ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367835

RESUMO

Traffic-related air pollutants (TRAPs) emitted from vehicle tailpipes disperse into nearby microenvironments, posing potential exposure risks. Thus, accurately identifying the emission hotspots of TRAPs is essential for assessing potential exposure risks. We investigated the relationship between turbulent kinetic energy (TKE) and pollutant dispersion (D) through an integrated field measurement. A five-year near-road sampling campaign (5 min based) near a light-duty vehicle-restricted roadway and an on-road sampling campaign (5 s based) on isolated proving grounds were conducted. The D was first calculated based on vehicle emission and pollutant concentrations and then paired with TKE measurements. Here, 198 near-road and 377 on-road measurement pairs were collected. In the near-road measurements, TKE and D showed a positive relationship (R2 ≥ 0.69) with the vehicle flow rate, while they showed similar decay patterns and sensitivity to vehicle types in the on-road measurements. A relationship between TKE and D (TKE-D) was developed through these measurements, demonstrating a robust correlation (R2 ≥ 0.61) and consistent slope values (1.1-1.3). These findings provide field evidence for the positive association between TKE and D, irrespective of the measurement techniques or locations. The TKE-D relationship enables vehicle emission estimation with TKE as the sole input, facilitating the identification of emission hotspots with high spatiotemporal resolution.

9.
Chemosphere ; 366: 143445, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369745

RESUMO

Biomass burning is a global source of climate- and health-affecting emissions. The impacts of biomass burning emissions (BBE) are tied to their complex and variable chemical makeup. For instance, the nitrogen content of BBE influences their capacity to absorb light, and therefore affect the Earth's radiative budget. Factors such as temperature, biomass type, or air flow rate during the combustion all modify the composition of BBE, making accurate characterization challenging. Herein, for the first time, principal component analysis (PCA) was applied to emissions gathered during laboratory-based combustion of wood and cow dung biomass in a tube furnace. A thermal desorption two dimensional time-of-flight gas chromatography mass spectrometry (TD-GC × GC-ToF-MS) setup was employed to separate and identify chemical species. By combining these techniques with a feature selection algorithm, we determined that low temperature and air flow rate lead to greater feature separation on PCA scores plots. Of the 729 variables used to construct the plots, 61 were identified as significant. These species - including sugars such as d-Allose and melezitose, as well as tracers such as levoglucosan and guaiacol - significantly differentiated emissions from wood versus cow dung biomass, especially at lower temperatures. In particular, combustion of either fuel at 0.2 slpm and 500 °C, lead to 20 times the variability in levoglucosan peak area over more efficient furnace parameters. Chemical species evolved only from dung burning contained on average 0.595 nitrogen atoms versus 0.515 for wood, indicating that a higher nitrogen content of the base fuel may not necessarily translate into emission of unique nitrogen containing species, potentially causing the underestimation of dung burning impacts. Overall, TD-GC × GC-ToF-MS coupled to PCA reliably separated emissions from wood and dung biomass while simultaneously identifying significant chemical features, displaying the suitability of this combination of techniques towards characterizing complex BBE matrices in the future.

10.
J Environ Manage ; 370: 122745, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383746

RESUMO

Bacterial biofilm is a structured bacterial community enclosed within a three-dimensional polymeric matrix, governed by complex signaling pathways, including two-component systems, quorum sensing, and c-di-GMP, which regulate its development and resistance in challenging environments. The genetic configurations within biofilm empower bacteria to exhibit significant pollutant remediation abilities, offering a promising strategy to tackle diverse ecological challenges and expedite progress toward Sustainable Development Goals (SDGs). Biofilm-based technologies offer advantages such as high treatment efficiency, cost-effectiveness, and sustainability compared to conventional methods. They significantly contribute to agricultural improvement, soil fertility, nutrient cycling, and carbon sequestration, thereby supporting SDG 1 (No poverty), SDG 2 (Zero hunger), SDG 13 (Climate action), and SDG 15 (Life on land). In addition, biofilm facilitates the degradation of organic-inorganic pollutants from contaminated environments, aligning with SDG 6 (Clean water and sanitation) and SDG 14 (Life below water). Bacterial biofilm also has potential applications in industrial innovation, aligning SDG 7 (Affordable and clean energy), SDG 8 (Decent work and economic growth), and SDG 9 (Industry, innovation, and infrastructure). Besides, bacterial biofilm prevents several diseases, aligning with SDG 3 (Good health and well-being). Thus, bacterial biofilm-mediated remediation provides advanced opportunities for addressing environmental issues and progressing toward achieving the SDGs. This review explores the potential of bacterial biofilms in addressing soil pollution, wastewater, air quality improvement, and biodiversity conservation, emphasizing their critical role in promoting sustainable development.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39392579

RESUMO

Hotter-than-usual days are becoming more common, such that heat waves are expected to increase in intensity, frequency, duration, and spatial extent in Spain. Within this framework, this paper looks at the combined effects of extreme temperatures and air pollution in two cities in Spain, Córdoba and Valladolid, over the period 2006-2022. Synoptic patterns and air mass movement were analysed during the eleven coincident heat waves at both locations in order to study what impact orography and local meteorology have on ozone concentrations. Weak flow conditions were the most frequent synoptic pattern in the Iberian Peninsula during heat waves. Moreover, west and local circulations characterised the main air trajectories at low levels (500 m agl), while southwest maritime advections and African air mass transport were more frequent at higher levels (1500 and 3000 m agl) in Córdoba and Valladolid, respectively. On average, maximum ozone values were higher in Córdoba (105.1 µg m-3) than in Valladolid (80 µg m-3) and were strongly correlated with extreme temperatures at both locations (r up to 0.8, p-value < 0.05). Mean temperature in Córdoba was 31.9 °C, with the maximum value reaching 43.7 °C, while temperatures in Valladolid were lower (28.3 °C and 37.3 °C, respectively). Calculation and assessment of some indices helped to understand the impact of extreme events. Caution actions based on the Heat Index characterised heat wave periods. Moderate risk was the general Air Quality Health Index feature recorded and reached a very high risk of unhealthy air quality in the June 2022 event in Córdoba.

12.
Sci Total Environ ; : 176667, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39378942

RESUMO

Recently, air quality has become a major concern for policy makers around the world, which has led to the implementation of mitigation measures. In particular, in urban areas most measures affect the road transport sector, as this is one of the main contributors to air pollution in those areas. Recent studies have pointed out the need to determine the importance of external factors such as the meteorological conditions on the net effect on air quality of mitigation strategies. Due to the strong spatial variability of urban air pollution, high spatial resolution modelling is necessary. In this work, the impacts on emissions and nitrogen oxides (NOx) concentrations of several mitigation strategies on a real air pollution hot spot in southern Madrid (Spain) are simulated at microscale under different meteorological conditions. The results show that the meteorological conditions affect local NOx concentrations, and its net changes can be comparable to those due to emission reductions. In particular, meteorological conditions in 2019 induced higher NOx concentrations than in 2016, despite the local emissions were reduced by 50 % from 2016 to 2019. On the other hand, the impact of the implementation of a Low Emissions Zone (LEZ) on NOx concentrations is small and consistent with values found in other LEZs around Europe. However, this impact varies up to 70 % depending on the meteorological conditions. The impacts of a mitigation strategy are largely influenced by the meteorological conditions, and therefore the achievement of the target reduction of concentrations pursued by these measures will depend on the meteorological conditions.

13.
Environ Monit Assess ; 196(11): 1013, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365342

RESUMO

This study investigated the anomalous seasonal variations in particulate matter (PM) concentrations-specifically PM2.5 and PM10-in Padang City, Indonesia, situated within the Equatorial climate zone. A one-year dataset of half-hourly PM measurements from January to December 2023, collected by the Air Quality Monitoring System (AQMS) managed by the Environmental Agency of West Sumatra (DLH), was utilized. Maps of hotspots and air mass backward trajectories were used to identify possible transboundary emissions affecting Padang City. Despite the region experiencing nearly continuous rainfall, significant elevations in PM levels were observed during the typically drier months of August to October. Specifically, PM2.5 levels peaked at 36.57 µg/m3 and PM10 at 39.58 µg/m3 in October, significantly higher than in other months and indicating a substantial deviation from the typical expectations for equatorial climates. These results suggest that the high PM concentrations are not solely due to local urban emissions or normal seasonal variations but are also significantly influenced by transboundary smoke from peatland fires and agricultural burning in neighboring provinces such as Bengkulu, Riau, Jambi, and South Sumatra. Backward trajectory analysis further confirmed the substantial impact of regional activities on degradation of air quality in Padang City. The study underscores the need for integrated air quality management that includes both local and transboundary pollution sources. Enhanced monitoring, public engagement, and inter-regional collaboration are emphasized as crucial strategies for mitigating the adverse effects of PM pollution in equatorial regions like Padang City.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Estações do Ano , Indonésia , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Clima , Cidades
14.
Sci Rep ; 14(1): 23253, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370421

RESUMO

Road traffic is an important source of urban air pollutants. Due to increasingly strict controls of exhaust emissions from road traffic, their contribution to the total emissions has strongly decreased over time in high-income countries. In contrast, non-exhaust emissions from road vehicles are not yet legislated and now make up the major proportion of road traffic emissions in many countries. Brake wear, which occurs due to friction between brake linings and their rotating counterpart, is one of the main non-exhaust sources contributing to particle emissions. Since the focus of brake wear emission has largely been on particulate pollutants, little is currently known about gaseous emissions such as volatile organic compounds from braking and their fate in the atmosphere. This study investigates the oxidative ageing of gaseous brake wear emissions generated with a pin-on-disc tribometer, using an oxidation flow reactor. The results demonstrate, for the first time, that the photooxidation of gaseous brake wear emissions can lead to formation of secondary particulate matter, which could amplify the environmental impact of brake wear emissions.

15.
JMIR Form Res ; 8: e60147, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388233

RESUMO

BACKGROUND: Individuals are exposed to a variety of indoor residential toxins including volatile organic compounds and particulates. In adults with asthma, such exposures are associated with asthma symptoms, asthma exacerbations, and decreased lung function. However, data on these exposures and asthma-related outcomes are generally collected at different times and not in real time. The integration of multiple platforms to collect real-time data on environmental exposure, asthma symptoms, and lung function has rarely been explored. OBJECTIVE: This paper describes how adults with asthma perceive the acceptability and usability of three integrated devices: (1) residential indoor air quality monitor, (2) ecological momentary assessment (EMA) surveys delivered via a smartphone app, and (3) home spirometry, over 14 days. METHODS: Participants (N=40) with uncontrolled asthma were mailed the Awair Omni indoor air quality monitor, ZEPHYRx home spirometer, and detailed instructions required for the in-home monitoring. The air quality monitor, spirometer, and EMA app were set up and tested during a videoconference or phone orientation with a research team member. Midway through the 14-day data collection period, participants completed an interview about the acceptability of the study devices or apps, instructional materials provided, and the setup process. At the end of the 14-day data collection period, participants completed a modified System Usability Scale. A random sample of 20 participants also completed a phone interview regarding the acceptability of the study and the impact of the study on their asthma. RESULTS: Participants ranged in age from 26 to 77 (mean 45, SD 13.5) years and were primarily female (n=36, 90%), White (n=26, 67%), college graduates (n=25, 66%), and residing in a single-family home (n=30, 75%). Most indicated that the air quality monitor (n=23, 58%), the EMA (n=20, 50%), and the spirometer (n=17, 43%) were easy to set up and use. Challenges with the EMA included repetitive surveys, surveys arriving during the night, and technical issues. While the home spirometer was identified as a plausible means to evaluate lung function in real time, the interpretation of the readings was unclear, and several participants reported side effects from home spirometer use. Overall, the acceptability of the study and the System Usability Scale scores were high. CONCLUSIONS: The study devices were highly acceptable and usable. Participant feedback was instrumental in identifying technical challenges that should be addressed in future studies.


Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Avaliação Momentânea Ecológica , Espirometria , Humanos , Asma/diagnóstico , Feminino , Espirometria/instrumentação , Espirometria/métodos , Masculino , Pessoa de Meia-Idade , Adulto , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Inquéritos e Questionários , Idoso , Aplicativos Móveis/normas
16.
BMC Infect Dis ; 24(1): 1093, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358703

RESUMO

BACKGROUND: Influenza outbreaks have occurred frequently these years, especially in the summer of 2022 when the number of influenza cases in southern provinces of China increased abnormally. However, the exact evidence of the driving factors involved in the prodrome period is unclear, posing great difficulties for early and accurate prediction in practical work. METHODS: In order to avoid the serious interference of strict prevention and control measures on the analysis of influenza influencing factors during the COVID-19 epidemic period, only the impact of meteorological and air quality factors on influenza A (H3N2) in Xiamen during the non coronavirus disease 2019 (COVID-19) period (2013/01/01-202/01/24) was analyzed using the distribution lag non-linear model. Phylogenetic analysis of influenza A (H3N2) during 2013-2022 was also performed. Influenza A (H3N2) was predicted through a random forest and long short-term memory (RF-LSTM) model via actual and forecasted meteorological and influenza A (H3N2) values. RESULTS: Twenty nine thousand four hundred thirty five influenza cases were reported in 2022, accounting for 58.54% of the total cases during 2013-2022. A (H3N2) dominated the 2022 summer epidemic season, accounting for 95.60%. The influenza cases in the summer of 2022 accounted for 83.72% of the year and 49.02% of all influenza reported from 2013 to 2022. Among them, the A (H3N2) cases in the summer of 2022 accounted for 83.90% of all A (H3N2) reported from 2013 to 2022. Daily precipitation(20-50 mm), relative humidity (70-78%), low (≤ 3 h) and high (≥ 7 h) sunshine duration, air temperature (≤ 21 °C) and O3 concentration (≤ 30 µg/m3, > 85 µg/m3) had significant cumulative effects on influenza A (H3N2) during the non-COVID-19 period. The daily values of PRE, RHU, SSD, and TEM in the prodrome period of the abnormal influenza A (H3N2) epidemic (19-22 weeks) in the summer of 2022 were significantly different from the average values of the same period from 2013 to 2019 (P < 0.05). The minimum RHU value was 70.5%, the lowest TEM value was 16.0 °C, and there was no sunlight exposure for 9 consecutive days. The highest O3 concentration reached 164 µg/m3. The range of these factors were consistent with the risk factor range of A (H3N2). The common influenza A (H3N2) variant genotype in 2022 was 3 C.2a1b.2a.1a. It was more accurate to predict influenza A (H3N2) with meteorological forecast values than with actual values only. CONCLUSION: The extreme weather conditions of sustained low temperature and wet rain may have been important driving factors for the abnormal influenza A (H3N2) epidemic. A low vaccination rate, new mutated strains, and insufficient immune barriers formed by natural infections may have exacerbated this epidemic. Meteorological forecast values can aid in the early prediction of influenza outbreaks. This study can help relevant departments prepare for influenza outbreaks during extreme weather, provide a scientific basis for prevention strategies and risk warnings, better adapt to climate change, and improve public health.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , China/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Estações do Ano , Filogenia , Epidemias , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
17.
Sci Total Environ ; : 176631, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39370000

RESUMO

Air pollution poses a critical global challenge with severe environmental and human health implications. The associated health risks, including premature mortality, underscore the urgency of effective mitigation strategies. Many studies focus on control strategies without considering specific contaminant types, and there is a notable gap in research on cost-effective, eco-friendly methods, especially in countries facing substantial air pollution challenges. This study aims to fill this gap by providing a comprehensive review of various air pollutants and proposing optimal passive design strategies for mitigating them in building facades. Through a structural process and comparative analysis of existing literature, this study evaluates the cost, maintenance, applicability of retrofitting, and removal efficacy of three categories of control strategies: bio-filtration, adsorbents, and water-based approaches. The results confirm that biological air purification systems are more effective than other methods at reducing PM2.5, PM10, and VOCs. Moreover, the cost analysis confirms that the more costly approaches are photocatalytic filters and metal-organic frameworks derived from the adsorbent solutions. Thus, the study suggests applying cost-effective techniques like facade biofiltration, and water-based curtain façade in areas with high air pollution. In terms of the applicability of retrofitting, the results ascertain adsorbent strategies are the most effective for reducing air pollutants in existing buildings followed by water-based methods. Considering limitations associated with certain strategies, such as the high cost and regular maintenance, this study proposes five integrated strategies for the effective control and removal of pollutants from building exteriors. By addressing these gaps in knowledge and offering practical insights, this research contributes valuable guidance for architects, policymakers, and practitioners in developing sustainable, efficient solutions to combat indoor air pollution effectively.

18.
Sci Total Environ ; : 176824, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389139

RESUMO

Air quality models (AQMs) are pivotal in forecasting air quality and shaping pollution control strategies. Nonetheless, the effectiveness of AQMs is often compromised in many cities due to the absence of accurate local emission inventories. To address this gap, this study presents a novel AQM-ready emission inventory generation technique with iterative optimization ability for city-scale applications in China. An efficient emission processing tool was introduced in this study, which utilizes the High-Resolution Multi-resolution Emission Inventory for China (HR-MEIC) as input. Using environmental observations and a region map, the tool can justify emissions of different regions iteratively. With the iterative optimization method, the model performance can be notably improved even without local emissions. The optimization was realized by splitting model-ready emissions into different regions and adjusting the emissions using scale factors calculated with the modeling results and the observations of each region. This methodology was applied to the Eight Cities in the Chengdu Plain (CP8C), located in the western margin of Sichuan Basin with complex topography and meteorological conditions, southwestern China, monthly throughout 2023. Air quality modeling was carried out using Weather Forecast and Research Model (WRF) and the Community Multiscale Air Quality Model (CMAQ). The results showed that the optimization acquired a good performance after five cycles for PM2.5 and NO2, with correlation coefficients (R values) surging from 0.62 and 0.37 to 0.77 and 0.73, respectively, while their normalized mean bias (NMB) substantially decreased from 22.8 % and 100.4 % to 3.6 % and 3.3 %. The underestimation on O3 concentration was also improved by the optimization, although enhancements in O3 modeling remained modest. This technique provides an easy-to-copy method to generate reasonable AQM-ready emission files with open emission data and observation data, which would be beneficial for the cities' air quality forecast in cities without local emission inventories.

19.
China CDC Wkly ; 6(37): 972-974, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39347450

RESUMO

Hospital-acquired infection (HAI) is a significant global health concern, elevating the risks of morbidity and imposing a substantial socioeconomic burden. To enhance the management of HAI, particularly in the aftermath of the coronavirus disease 2019 (COVID-19) pandemic, the Guangdong Second Provincial General Hospital (GD2H) has launched a new system called Intelligent Forest Hospital (IFH). Leveraging advancements in artificial intelligence, 5G technology, and cloud networking, the IFH implements customized indoor air quality (IAQ) control strategies tailored to different medical settings. It utilizes various intelligent disinfection devices and air purification systems. The IFH features a dynamic 3D hospital model with real-time monitoring of crucial IAQ parameters and a risk assessment ranking for clinical departments, providing timely risk alerts, communication prompts, and automatic disinfection processes. The IFH aims to effectively mitigate HAI post-COVID-19 and other future pandemics, ensuring a safe and pleasant environment for patients, hospital staff, and visitors.

20.
Sci Total Environ ; 954: 176222, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299331

RESUMO

Although significant progress has been made in controlling emissions from stationary combustion sources in China over the past decade, understanding of condensable particulate matter (CPM) emissions from these sources and their impact on ambient PM2.5 remains limited. In this study, we established the source profiles and emission inventories of CPM from coal-fired industrial boilers (CFIBs), coal-fired power plants (CFPPs), and iron and steel industry (ISIs) for the Yangtze River Delta (YRD) region of China; furthermore, the air quality model (Community Multiscale Air Quality, CMAQ) was used to evaluate the impact of CPM emissions from these three types of stationary combustion sources on ambient PM2.5 during Feb. 2018, a month characterized by elevated PM2.5 concentrations. The results indicated that CPM emissions from these three sources in the YRD region before and after the implementation of the ultra-low emissions (ULE) policy amounted to 109,839 and 43,338 tons, respectively, with particularly high emission intensity along the Yangtze River. The implementation of CFPPs ULE policy was shown to reduce the impact of CPM emissions from these three stationary sources on monthly PM2.5 concentrations from 0.92 µg/m3 to 0.41 µg/m3 (with a maximum of 5.35 µg/m3). This reduction exceeded the 0.31 µg/m3 decrease in PM2.5 concentrations resulting from the emission reductions of conventional pollutants (FPM, SO2 and NOx). CPM emissions from these three stationary sources were found to increase the PM2.5 by 0.68 µg/m3 during pollution periods. The largest components of PM2.5 contributed by CPM emissions from stationary combustion sources were sulfate, organic carbon, and nitrate, accounting for 21.4 %, 21.1 %, and 18.2 %, respectively. Particularly, contributions from CPM emissions to PM2.5 varied by altitude, with a relatively large impact at altitudes between 220 and 460 m. Attention should be given to CPM emission control, with particular priority placed on implementing ULE measures for ISIs and CFIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA