Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112525, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38941668

RESUMO

BACKGROUND: Airway epithelial barrier dysfunction has been proved to contribute to the development of type 2 inflammation of asthma. Interleukin (IL)-37 is a negative regulator of immune responses and allergic airway inflammation. However, whether IL-37 has any effect on airway epithelial barrier has been unknown. METHODS: We evaluated the role of IL-37 in both mouse model and cultured 16HBE cells. Histology and ELISA assays were used to evaluate airway inflammation. FITC-dextran permeability assay was used to evaluate the airway epithelial barrier function. Immunofluorescence, western blot and quantitative Real-Time PCR (RT-PCR) were used to evaluate the distribution and expression of tight junction proteins. RT-PCR and Ca2+ fluorescence measurement were used to evaluate the mRNA expression and activity of store-operated calcium entry (SOCE). RESULTS: IL-37 inhibited house dust mite (HDM)-induced airway inflammation and decreased the levels of IgE in serum and type 2 cytokines in bronchoalveolar lavage fluid (BALF) compared to asthmatic mice. IL-37 protected against HDM-induced airway epithelial barrier dysfunction, including reduced leakage of FITC-dextran, enhanced expression of TJ proteins, and restored the membrane distribution of TJ proteins. Moreover, IL-37 decreased the level of IL-33 in the BALF of asthmatic mice and the supernatants of HDM-treated 16HBE cells. IL-37 decreased the peak level of Ca2+ fluorescence induced by thapsigargin and HDM, and inhibited the mRNA expression of Orai1, suggesting an inhibiting effect of IL-37 on SOCE in airway epithelial cells. CONCLUSION: IL-37 plays a protective role in airway inflammation and HDM-induced airway epithelial barrier dysfunction by inhibiting SOCE.


Assuntos
Asma , Cálcio , Interleucina-1 , Pyroglyphidae , Animais , Feminino , Humanos , Camundongos , Asma/imunologia , Asma/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Cálcio/metabolismo , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Interleucina-1/metabolismo , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Pyroglyphidae/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo
2.
Allergy ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868934

RESUMO

BACKGROUND AND OBJECTIVE: The updated World Health Organization (WHO) air quality guideline recommends an annual mean concentration of fine particulate matter (PM2.5) not exceeding 5 or 15 µg/m3 in the short-term (24 h) for no more than 3-4 days annually. However, more than 90% of the global population is currently exposed to daily concentrations surpassing these limits, especially during extreme weather conditions and due to transboundary dust transport influenced by climate change. Herein, the effect of respirable

3.
Artigo em Chinês | MEDLINE | ID: mdl-38538246

RESUMO

Pyroptosis is a novel form of programmed cell death mediated by cleavage of Gasdermin family proteins by activated caspases, which plays an important role in the control of acute and chronic diseases. Asthma is a chronic inflammatory airway disease with varying degrees of airflow obstruction. The airway epithelial barrier plays an important role in initiating host defenses and controlling immune responses. Accumulating evidence suggests that pyroptosis is involved in the impairment of airway epithelial barrier function and abnormal immune regulation in asthma. This article aims to review the latest regulatory mechanism of pyroptosis involved in airway epithelial barrier injury in asthma under various environmental exposure factors, and to provide a new method for targeted therapy of asthma.


Assuntos
Asma , Piroptose , Humanos , Inflamassomos/metabolismo , Apoptose , Caspases
4.
Chin Med ; 19(1): 32, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413976

RESUMO

OBJECT: Bufei Yishen formula (BYF), a traditional Chinese medicine alleviates COPD symptoms and suppresses airway epithelial inflammation. In this study, we determined whether BYF protects the airway epithelial barrier from destruction in COPD rats. METHODS: The protective effects of BYF on the airway epithelial barrier were examined in a rat COPD model. BEAS-2B epithelial cells were exposed to cigarette smoke extract (CSE) to determine the effect of BYF on epithelial barrier function. Transcriptomic and network analyses were conducted to identify the protective mechanisms. RESULTS: Oral BYF reduced the severity of COPD in rats by suppressing the decline in lung function, pathological changes, inflammation, and protected airway epithelial barrier function by upregulating apical junction proteins, including occludin (OCLN), zonula occludens (ZO)-1, and E-cadherin (E-cad). BYF treatment reduced epithelial permeability, and increased TEER as well as the apical junction proteins, OCLN, ZO-1, and E-cad in BEAS-2B cells exposed to CSE. Furthermore, 58 compounds identified in BYF were used to predict 421 potential targets. In addition, the expression of 572 differentially expressed genes (DEGs) was identified in CSE-exposed BEAS-2B cells. A network analysis of the 421 targets and 572 DEGs revealed that BYF regulates multiple pathways, of which the Sirt1, AMPK, Foxo3, and autophagy pathways may be the most important with respect to protective mechanisms. Moreover, in vitro experiments confirmed that nobiletin, one of the active compounds in BYF, increased apical junction protein levels, including OCLN, ZO-1, and E-cad. It also increased LC3B and phosphorylated AMPK levels and decreased the phosphorylation of FoxO3a. CONCLUSIONS: BYF protects the airway epithelial barrier in COPD by enhancing autophagy through regulation of the SIRT1/AMPK/FOXO3 signaling pathway.

5.
Phytomedicine ; 118: 154980, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499344

RESUMO

BACKGROUND: Airway epithelial barrier dysfunction is highly related to the pathogenesis of chronic obstructive pulmonary disease (COPD). Effective-component combination (ECC) derived from Bufei Yishen formula (BYF) is an effective treatment regimen for patients with COPD and has previously been found to attenuate COPD and airway epithelial inflammation in rats. PURPOSE: To determine the mechanism underlying the protective effects of ECC-BYF against the disruption of the airway epithelial barrier in COPD. METHODS: The protective effects of ECC-BYF on the airway epithelial barrier were investigated in a rat COPD model. BEAS-2B epithelial cells were stimulated with cigarette smoke extract (CSE) to determine the direct effects of ECC-BYF on epithelial barrier function and aryl hydrocarbon receptor (AHR)/ epidermal growth factor receptor (EGFR) signaling. RESULTS: The results revealed that ECC-BYF attenuated COPD in rats and maintained the airway epithelial barrier by upregulating the expression of apical junction proteins, including occludin (OCC), zonula occludens (ZO)-1, and E-cadherin (E-cad). In BEAS-2B cells, ECC-BYF decreased permeability, increased transepithelial electrical resistance, and prevented the decrease in OCC, ZO-1, and E-cad expression induced by CSE exposure. In addition, transcriptomics and network analysis revealed that the protective effects of ECC-BYF may be related to multiple signaling pathways, including ErbB, AHR, and PI3K-Akt-mTOR pathways. ECC-BYF treatment suppressed the protein levels of p-EGFR and p-ERK1/2 and mRNA levels of CYP1A1 in CSE-exposed BEAS-2B cells as well as the protein levels of p-EGFR, p-ERK1/2, and CYP1A1 in the lungs of rats with COPD. In BEAS-2B cells, the AHR agonist FICZ weakened the protective effect of ECC-BYF on the epithelial barrier by suppressing the increase in ZO-1 and OCC expression induced by ECC-BYF and preventing the inhibitory effects of ECC-BYF on EGFR phosphorylation. CONCLUSIONS: This is the first study to demonstrate the protective effect of ECC-BYF on airway epithelial barrier function. The underlying mechanism may be associated with the suppression of the AHR/EGFR pathway to promote apical junction protein adhesion.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Receptores de Hidrocarboneto Arílico , Ratos , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores ErbB/metabolismo , Células Epiteliais
6.
Front Allergy ; 4: 1181675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255542

RESUMO

Type I respiratory allergies to birch pollen and pollen from related trees of the order Fagales are increasing in industrialized countries, especially in the temperate zone of the Northern hemisphere, but the reasons for this increase are still debated and seem to be multifaceted. While the most important allergenic molecules of birch pollen have been identified and characterized, the contribution of other pollen components, such as lipids, non-allergenic immunomodulatory proteins, or the pollen microbiome, to the development of allergic reactions are sparsely known. Furthermore, what also needs to be considered is that pollen is exposed to external influences which can alter its allergenicity. These external influences include environmental factors such as gaseous pollutants like ozone or nitrogen oxides or particulate air pollutants, but also meteorological events like changes in temperature, humidity, or precipitation. In this review, we look at the birch pollen from different angles and summarize current knowledge on internal and external influences that have an impact on the allergenicity of birch pollen and its interactions with the epithelial barrier. We focus on epithelial cells since these cells are the first line of defense in respiratory disease and are increasingly considered to be a regulatory tissue for the protection against the development of respiratory allergies.

7.
Mol Immunol ; 157: 176-185, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044043

RESUMO

BACKGROUND: Cold exposure is a common factor to trigger asthma attacks. However, the underlying mechanism has not been thoroughly elucidated. We aimed to investigate the hypothesis that low temperature reduces occludin expression and compromises epithelial barrier function in airways, which in turn, results in asthma exacerbation. METHODS: We examined occludin expression in human bronchial epithelial cell line (Beas-2B) cells exposed to either 29 °C or 37 °C. The following drugs were administered prior to cold treatment: MG132 (a proteasome inhibitor), cycloheximide (a protein synthesis inhibitor), HC-067047 plus GSK2193874 (transient receptor potential vanilloid 4 [TRPV4] antagonists), or C4-ceramide (a glucocorticoid-inducible kinase [SGK1] activator). siNedd4-2 was transfected into Beas-2B cells to investigate the role that Nedd4-2 plays in mediating occludin instability induced by cold. In animal experiments, we treated ovalbumin (OVA)-induced asthmatic mice with a thermoneutral temperature of 30 °C or cold exposure (10 °C, 6 h/day) for 2 weeks. GSK2193874 or C4-ceramide was administered during the cold treatment. Occludin expression of the lung, pulmonary permeability, serum IgE levels, and lung inflammation were assessed. RESULTS: Low temperature treatment (29 °C) significantly reduced the expression of occludin in Beas-2B cells from 1 to 9 h, which was rescued upon treatment with MG132, HC-067047 plus GSK2193874, C4-ceramide, or Nedd4-2 knockdown. Low temperatures affected occludin stability through SGK1/Nedd4-2-dependent proteolysis. In vivo mice data revealed that cold exposure compromised the airway epithelial barrier function, decreased occludin expression, and exacerbated lung inflammation, which was attenuated by the GSK2193874 or C4-ceramide injection. CONCLUSION: We identified a potential mechanism underlying cold-induced asthma exacerbation involving Nedd4-2-mediated occludin proteolysis and airway epithelial barrier disruption.


Assuntos
Asma , Ocludina , Pneumonia , Animais , Humanos , Camundongos , Asma/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Ocludina/metabolismo , Pneumonia/metabolismo , Temperatura , Canais de Cátion TRPV/metabolismo
8.
Respir Res ; 24(1): 69, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879222

RESUMO

BACKGROUND: Airway epithelium is the first barrier against environmental insults, and epithelial barrier dysfunction caused by cigarette smoke (CS) is particularly relevant to chronic obstructive pulmonary disease (COPD) progression. Our study was to determine whether Azithromycin (AZI) ameliorates CS-induced airway epithelial barrier dysfunction and the underlying mechanisms. METHODS: Primary bronchial epithelial cells (PBECs), human bronchial epithelial cells (HBECs), Sprague Dawley rats and nuclear factor erythroid 2-related factor 2 (Nrf2)-/- mice were pretreated with AZI and subsequently exposed to CS. Transepithelial electronic resistance (TEER), junction proteins as well as pro-inflammatory cytokines and apoptosis markers were examined to assess epithelial barrier dysfunction. Metabolomics study was applied to explore the underlying mechanism of AZI. RESULTS: CS-induced TEER decline and intercellular junction destruction, accompanied with inflammatory response and cell apoptosis in PBECs were restored by AZI dose-dependently, which were also observed in CS-exposed rats. Mechanistically, GSH metabolism pathway was identified as the top differentially impacted pathway and AZI treatment upregulated the activities of glutamate cysteine ligase (GCL) and the contents of metabolites in GSH metabolic pathway. Furthermore, AZI apparently reversed CS-induced Nrf2 suppression, and similar effects on airway epithelial barrier dysfunction were also found for Nrf2 agonist tert-butylhydroquinone and vitamin C. Finally, deletion of Nrf2 in both HBECs and C57BL/6N mice aggravated CS-induced GSH metabolism imbalance to disrupt airway epithelial barrier and partially deprived the effects of AZI. CONCLUSION: These findings suggest that the clinical benefits of AZI for COPD management are related with the protection of CS-induced airway epithelial barrier dysfunction via activating Nrf2/GCL/GSH pathway, providing potential therapeutic strategies for COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Ratos , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Glutamato-Cisteína Ligase , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Ratos Sprague-Dawley , Transdução de Sinais , Glutationa/metabolismo
9.
Front Microbiol ; 14: 1106945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937308

RESUMO

Introduction: Rhinovirus (RV) infections constitute one of the main triggers of asthma exacerbations and an important burden in pediatric yard. However, the mechanisms underlying this association remain poorly understood. Methods: In the present study, we compared infections of in vitro reconstituted airway epithelia originating from asthmatic versus healthy donors with representative strains of RV-A major group and minor groups, RV-C, RV-B, and the respiratory enterovirus EV-D68. Results: We found that viral replication was higher in tissues derived from asthmatic donors for all tested viruses. Viral receptor expression was comparable in non-infected tissues from both groups. After infection, ICAM1 and LDLR were upregulated, while CDHR3 was downregulated. Overall, these variations were related to viral replication levels. The presence of the CDHR3 asthma susceptibility allele (rs6967330) was not associated with increased RV-C replication. Regarding the tissue response, a significantly higher interferon (IFN) induction was demonstrated in infected tissues derived from asthmatic donors, which excludes a defect in IFN-response. Unbiased transcriptomic comparison of asthmatic versus control tissues revealed significant modifications, such as alterations of cilia structure and motility, in both infected and non-infected tissues. These observations were supported by a reduced mucociliary clearance and increased mucus secretion in non-infected tissues from asthmatic donors. Discussion: Altogether, we demonstrated an increased permissiveness and susceptibility to RV and respiratory EV infections in HAE derived from asthmatic patients, which was associated with a global alteration in epithelial cell functions. These results unveil the mechanisms underlying the pathogenesis of asthma exacerbation and suggest interesting therapeutic targets.

10.
Free Radic Biol Med ; 202: 2-16, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965538

RESUMO

Acute lung injury (ALI) or its severe form, acute respiratory distress syndrome (ARDS) is a life-threatening illness without effective therapeutic interventions currently. Multiple lines of evidence indicated that overwhelming inflammatory responses and impaired epithelial barrier contributed to the pathogenesis of ALI/ARDS. Recently, dopamine (DA) system was identified to participate in various pulmonary diseases. Here, we discovered that dopamine D1-like receptors mainly expressed in macrophages and airway epithelial cells (AECs), which were downregulated by lipopolysaccharide (LPS) challenge in ALI mouse lung. SKF38393 (SKF) is a selective agonist for D1-like receptors and was demonstrated to inhibit excessive inflammatory responses and oxidative stress in THP-1 cell-derived macrophages and Beas-2B cells, as well as improve airway epithelial barrier dysfunction induced by LPS stimulation. Moreover, SKF administration could effectively decrease pulmonary inflammation, ameliorate tissue damage in the LPS-triggered ALI mice. The broad protective actions of SKF might be attributed to the activation of Nrf2 antioxidative system by use of the specific inhibitor, ML385. This study offers evidence of potent immunoregulatory activity of SKF in macrophages, AECs as well as ALI mouse model, which opens novel therapeutic avenues for the intervention of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Agonistas de Dopamina/efeitos adversos , Dopamina , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Macrófagos , Células Epiteliais/patologia , Síndrome do Desconforto Respiratório/patologia , Receptores de Dopamina D1 , Pulmão
11.
Environ Toxicol ; 38(5): 1133-1142, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36757011

RESUMO

BACKGROUND: The airway epithelium acts as a physical barrier to protect pulmonary airways against pathogenic microorganisms and toxic substances, such as cigarette smoke (CS), bacteria, and viruses. The disruption of the structural integrity and dysfunction of the airway epithelium is related to the occurrence and progression of chronic obstructive pulmonary disease. PURPOSE: The aim of this study is to compare the effects of CS, Klebsiella pneumoniae (KP), and their combination on airway epithelial barrier function. METHODS: The mice were exposed to CS, KP, and their combination from 1 to 8 weeks. After the cessation of CS and KP at Week 8, we observed the recovery of epithelial barrier function in mice for an additional 16 weeks. To compare the epithelial barrier function among different groups over time, the mice were sacrificed at Weeks 4, 8, 16, and 24 and then the lungs were harvested to detect the pulmonary pathology, inflammatory cytokines, and tight junction proteins. To determine the underlying mechanisms, the BEAS-2B cells were treated with an epidermal growth factor receptor (EGFR) inhibitor (AG1478). RESULTS: The results of this study suggested that the decreased lung function, increased bronchial wall thickness (BWT), elevated inflammatory factors, and reduced tight junction protein levels were observed at Week 8 in CS-induced mice and these changes persisted until Week 16. In the KP group, increased BWT and elevated inflammatory factors were observed only at Week 8, whereas in the CS + KP group, decreased lung function, lung tissue injury, inflammatory cell infiltration, and epithelial barrier impairment were observed at Week 4 and persisted until Week 24. To further determine the mechanisms of CS, bacteria, and their combination on epithelial barrier injury, we investigated the changes of EGFR and its downstream protein in the lung tissues of mice and BEAS-2B cells. Our research indicated that CS, KP, or their combination could activate EGFR, which can phosphorylate and activate ERK1/2, and this effect was more pronounced in the CS + KP group. Furthermore, the EGFR inhibitor AG1478 suppressed the phosphorylation of ERK1/2 and subsequently upregulated the expression of ZO-1 and occludin. In general, these results indicated that the combination of CS and KP caused more severe and enduring damage to epithelial barrier function than CS or KP alone, which might be associated with EGFR/ERK1/2 signaling. CONCLUSION: Epithelial barrier injury occurred earlier, was more severe, and had a longer duration when induced by the combination of CS and KP compared with the exposure to CS or KP alone, which might be associated with EGFR/ERK signaling.


Assuntos
Fumar Cigarros , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Células Epiteliais , Pulmão/patologia , Receptores ErbB/metabolismo , Nicotiana/metabolismo
12.
Regul Toxicol Pharmacol ; 135: 105265, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36198368

RESUMO

Pulmonary is a potential route for drug delivery and exposure to toxic chemicals. The human bronchial epithelial cell line Calu-3 is generally considered to be a useful in vitro model of pulmonary permeability by calculating the apparent permeability coefficient (Papp) values. Since in vitro experiments are time-consuming and labor-intensive, computational models for pulmonary permeability are desirable for accelerating drug design and toxic chemical assessment. This study presents the first attempt for developing quantitative structure-activity relationship (QSAR) models for addressing this goal. A total of 57 chemicals with Papp values based on Calu-3 experiments was first curated from literature for model development and testing. Subsequently, eleven descriptors were identified by a sequential forward feature selection algorithm to maximize the cross-validation performance of a voting regression model integrating linear regression and nonlinear random forest algorithms. With applicability domain adjustment, the developed model achieved high performance with correlation coefficient values of 0.935 and 0.824 for cross-validation and independent test, respectively. The preliminary results showed that computational models could be helpful for predicting Calu-3-based in vitro pulmonary permeability of chemicals. Future works include the collection of more data for further validating and improving the model.


Assuntos
Pulmão , Relação Quantitativa Estrutura-Atividade , Algoritmos , Células Epiteliais/metabolismo , Humanos , Permeabilidade
13.
Expert Opin Ther Targets ; 26(2): 119-132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35085478

RESUMO

INTRODUCTION: Endogenous inflammatory signaling molecules resulting from deregulated immune responses can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Therapeutically targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED: Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposing the existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION: IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves therapeutically targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.


Assuntos
Reposicionamento de Medicamentos , Mediadores da Inflamação , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo
14.
Virulence ; 12(1): 2296-2313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34482810

RESUMO

Airway epithelial cells are the first line of defense against respiratory pathogens. Porcine bacterial pathogens, such as Bordetella bronchiseptica, Actinobacillus pleuropneumoniae, Glaesserella (Haemophilus) parasuis, and Pasteurella multocida, breach this barrier to lead to local or systematic infections. Here, we demonstrated that respiratory bacterial pathogen infection disrupted the airway epithelial intercellular junction protein, E-cadherin, thus contributing to impaired epithelial cell integrity. E-cadherin knocking-out in newborn pig tracheal cells via CRISPR/Cas9 editing technology confirmed that E-cadherin was sufficient to suppress the paracellular transmigration of these porcine respiratory bacterial pathogens, including G. parasuis, A. pleuropneumoniae, P. multocida, and B. bronchiseptica. The E-cadherin ectodomain cleavage by these pathogens was probably attributed to bacterial HtrA/DegQ protease, but not host HtrA1, MMP7 and ADAM10, and the prominent proteolytic activity was further confirmed by a serine-to-alanine substitution mutation in the active center of HtrA/DegQ protein. Moreover, deletion of the htrA gene in G. parasuis led to severe defects in E-cadherin ectodomain cleavage, cell adherence and paracellular transmigration in vitro, as well as bacterial breaking through the tracheal epithelial cells, systemic invasion and dissemination in vivo. This common pathogenic mechanism shared by other porcine respiratory bacterial pathogens explains how these bacterial pathogens destroy the airway epithelial cell barriers and proliferate in respiratory mucosal surface or other systemic tissues.


Assuntos
Infecções Bacterianas , Caderinas , Infecções Respiratórias , Doenças dos Suínos , Actinobacillus pleuropneumoniae , Animais , Infecções Bacterianas/veterinária , Bordetella bronchiseptica , Caderinas/genética , Células Epiteliais/microbiologia , Haemophilus parasuis , Pasteurella multocida , Infecções Respiratórias/microbiologia , Infecções Respiratórias/veterinária , Suínos , Doenças dos Suínos/microbiologia
15.
Toxicol Lett ; 350: 62-70, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252507

RESUMO

The impact of fine particulate matter (PM2.5) on public health has received increasing attention. Through various biochemical mechanisms, PM2.5 alters the normal structure and function of the airway epithelium, causing epithelial barrier dysfunction. Src homology domain 2-containing protein tyrosine phosphatase 2 (Shp2) has been implicated in various respiratory diseases; however, its role in PM2.5-induced epithelial barrier dysfunction remains unclear. Herein, we assessed the regulatory effects of Shp2 on PM2.5-mediated epithelial barrier function and tight junction (TJ) protein expression in both mice and human pulmonary epithelial (16HBE) cells. We observed that Shp2 levels were upregulated and claudin-4 levels were downregulated after PM2.5 stimulation in vivo and in vitro. Mice were exposed to PM2.5 to induce acute lung injury, and disrupted epithelial barrier function, with decreased transepithelial electrical resistance (TER) and increased paracellular flux that was observed in 16HBE cells. In contrast, the selective inhibition or knockdown of Shp2 retained airway epithelial barrier function and reversed claudin-4 downregulation that triggered by PM2.5, and these effects may occur through the ERK1/2 MAPK signaling pathway. These data highlight an important role of Shp2 in PM2.5-induced airway epithelial barrier dysfunction and suggest a possible new course of therapy for PM2.5-induced respiratory diseases.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Células Epiteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Material Particulado/toxicidade , Proteínas de Junções Íntimas/metabolismo , Domínios de Homologia de src/efeitos dos fármacos , Animais , Células Epiteliais/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Proteínas de Junções Íntimas/efeitos dos fármacos
16.
Ecotoxicol Environ Saf ; 220: 112408, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111662

RESUMO

BACKGROUND: Epidemiologic evidence suggests that PM2.5 exposure aggravates asthma, but the molecular mechanisms are not fully discovered. METHODS: Ovalbumin (OVA)-induced mice exposed to PM2.5 were constructed. Pathological staining and immunofluorescence were performed in in vivo study. Gene set enrichment analysis (GSEA) was performed to identify the pathway involved in asthma severity by using U-BIOPRED data (human bronchial biopsies) and RNA-seq data (Beas-2B cells treated with PM2.5). Lentiviruses transfection, Real-time qPCR, immunofluorescence staining and trans-epithelial electrical resistance (TEER) measurement were performed for mechanism exploration in vitro. RESULTS: PM2.5 exposure aggravated airway inflammation and mucus secretion in OVA-induced mice. Based on transcriptome analysis of mild-to-severe asthma from human bronchial biopsies, gene set enrichment analysis (GSEA) showed that up-regulated reactive oxygen species (ROS) pathway gene set and down-regulated apical junction gene set correlated with asthma severity. Consistent with the analysis of mild-to-severe asthma, after PM2.5 exposure, the ROS pathway in Beas-2B cells was up-regulated with the down-regulation of apical junction. The expression levels of genes involved in the specific gene sets were validated by using qPCR. The mRNA levels of junction genes, ZO-1, E-cadherin and Occludin, were significantly decreased in cells exposed to PM2.5. Moreover, it confirmed that inhibition of ROS recovered the expression levels of E-cadherin, Occludin and ZO-1, and ameliorated inflammation and mucus secretion in airway in OVA-induced mice exposed to PM2.5. Meanwhile, ROS level was elevated by PM2.5. By checking trans-epithelial electrical resistance (TEER) value, we also found that epithelial barrier was damaged after PM2.5 exposure. Importantly, Stanniocalcin 2 (STC2) was identified as a key gene in regulation of epithelial barrier. It showed that STC2 expression was up-regulated by PM2.5, which was recovered by NAC as well. Over-expression of STC2 could decrease the expression levels of ZO-1, Occludin and E-cadherin. Contrarily, suppression of STC2 could increase the expression levels of ZO-1, Occludin and E-cadherin reduced by PM2.5. CONCLUSIONS: By using transcriptome analysis, we revealed that STC2 played a key role in PM2.5 aggravated airway dysfunction through regulation of epithelial barrier in OVA-induced mice.


Assuntos
Asma/induzido quimicamente , Modelos Animais de Doenças , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Material Particulado/efeitos adversos , Mucosa Respiratória/patologia , Animais , Asma/genética , Asma/metabolismo , Asma/patologia , Perfilação da Expressão Gênica , Glicoproteínas/genética , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Ovalbumina/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
17.
Front Pharmacol ; 12: 669403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177583

RESUMO

Background: The mechanisms underlying differences in the susceptibility to chronic obstructive pulmonary disease (COPD) exacerbations between patients are not well understood. Recent studies have shown that the patients with frequent COPD exacerbations is related to specific protein expression in lung tissue. Anterior gradient 3 (AGR3) is expressed in airway epithelial cells in the lung and proteomic analysis revealed that its expression is decreased in patients with frequent COPD exacerbations. Moreover, the loss of epithelial integrity might facilitate trans-epithelial permeability of pathogens in such patients. This study was performed to determine that AGR3 protein play a role in COPD frequency exacerbators. Methods: Human lung tissues were collected from current-smoking patients (Control; n = 15) as well as patients with infrequent COPD exacerbations (IFCOPD; n = 18) and frequent COPD exacerbations (FCOPD; n = 8). While AGR3 protein expression was measured by immunohistochemistry and western blotting, AGR mRNA expression was determined by real time quantitative polymerase chain reaction (RT-qPCR). Furthermore, adherent junctions (AJs) and tight junctions (TJs) protein expression in human lung tissues were measured by immunohistochemistry. The effects of cigarette smoke extract (CSE) on AJ and TJ protein and mRNA expression in BEAS-2B cells were assessed by western blotting and RT-qPCR. In addition, the effect of AGR3 overexpression and knockdown on AJ and TJ protein expression was determined. Results: AGR3 was mainly expressed in the airway epithelium and AGR3-positive products were localized in the cytoplasm. Western blotting and RT-qPCR results showed that AGR3 protein (p = 0.009) and mRNA (p = 0.04) expression in the FCOPD group was significantly lower than that in the IFCOPD group. Moreover, E-cadherin, occludin, and zonula occludens-1 (ZO-1) expression was lower in the FCOPD group than in the IFCOPD group. The protein and mRNA expression of E-cadherin, occludin, and ZO-1 was decreased within 24 h post-CSE exposure. AGR3 overexpression rescued CSE-induced downregulation of E-cadherin, occludin, and ZO-1. Conclusion: Difference in AGR3 expression in the lung tissue might be correlated with increased susceptibility to COPD exacerbation. AGR3 can prevent CSE-induced downregulation of E-cadherin, occludin, and ZO-1 in airway epithelial cells. Loss of AGR3 might promote viral and bacterial infection and induce immune inflammation to increase COPD exacerbation.

18.
Int Immunopharmacol ; 95: 107570, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773208

RESUMO

Cell-cell junctions are critical for the maintenance of cellular as well as tissue polarity and integrity. Dysfunction of airway epithelial barrier has been shown to be involved in the pathogenesis of acute lung injury (ALI). Yet the role of phosphatidylinositol 3-kinase delta (PI3Kδ) in dysregulation of airway epithelial barrier integrity in ALI has not been addressed. Mice were subjected to intratracheal instillation of lipopolysaccharide (LPS) to generate a ALI model. Two pharmacological inhibitors of PI3Kδ, IC87114 and AMG319, were respectively given to the mice. Expression of p110δ and its downstream substrate phospho-AKT (Ser473) was increased in LPS-exposed lungs. These increases were inhibited by IC87114 or AMG319. LPS led to pronounced lung injury that was accompanied by significant airway neutrophil recruitment and bronchial epithelial morphological alterations 72 h after exposure. We also found compromised expression of adherens junction protein E-cadherin and tight junction protein claudin-2 in the airway epithelial cells. Treatment with either IC87114 or AMG319 not only attenuated LPS-induced edema, lung injury and neutrophilc inflammation, reduced total protein concentration and IL-6, TNF-α secretion in BALF, but also restored epithelial E-cadherin and claudin-2 expression. In summary, our results showed that LPS can induce a delayed effect on airway epithelial barrier integrity that is mediated by PI3Kδ in a mouse model of ALI.


Assuntos
Lesão Pulmonar Aguda/imunologia , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Adenina/análogos & derivados , Adenina/farmacologia , Adenosina/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Caderinas/imunologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Claudinas/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Quinazolinas/farmacologia , Quinolinas/farmacologia
19.
Int Immunopharmacol ; 93: 107419, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33548580

RESUMO

BACKGROUND: Airway epithelial cells (AECs) act as the first barrier protecting against invasion of environment agents and maintain integrity of lung structure and function. Dysfunction of airway epithelial barrier has been shown to be involved in ALI/ARDS pathogenesis. Yet, the exact mechanism is still obscure. Our study evaluated whether the receptor for advanced glycation end products (RAGE) mediates impaired airway epithelial barrier in LPS-induced murine ALI model. METHODS: Male BALB/c mice were subjected to intratracheal instillation of LPS to generate an ALI model. Inhibitors of RAGE, FPS-ZM1 and Azeliragon were respectively given to the mice through intraperitoneal injection. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected for further analysis. RESULTS: LPS exposure led to markedly increased expression of RAGE and its ligands HMGB1, HSP70, S100b. Treatment of FPS-ZM1 or Azeliragon not only effectively descended the expression of RAGE and its ligands but also attenuated LPS-induced neutrophil-predominant airway inflammation and injury, decreased levels of IL-6, IL-1ß and TNF-α in BALF, alleviated increased alveolar-capillary permeability and pulmonary edema. LPS stimulation significantly impaired the integrity of airway epithelium, paralleled with dislocation of adheren junction (AJ) protein E-cadherin at cell-cell contacts and down-expression of both AJ and tight junction (TJ) proteins Claudin-2 and occludin, all of which were dramatically rescued by RAGE inhibition. CONCLUSION: RAGE signaling mediates airway epithelial barrier dysfunction in a LPS-induced ALI murine model.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Neutrófilos/imunologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Mucosa Respiratória/metabolismo , Junções Íntimas/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Caderinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Respiratória/patologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
20.
Am J Transl Res ; 13(1): 326-335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33527027

RESUMO

OBJECTIVE: PARK2, a Parkinson's disease-associated gene, functions as an E3 ubiquitin ligase regulating the degradation of proteins via ubiquitination. Our study was designed to explore its role in allergic asthma and the underlying mechanisms. METHODS: Airway epithelial cell line BEAS-2B was treated with house dust mite (HDM) to mimic allergic asthma in vitro. Lentivirus oePARK2 and siPARK2 were constructed to overexpress and knock down PARK2 expression, respectively. RT-qPCR, western blot, co-immunoprecipitation, and ubiquitination assay were performed to investigate the interaction between PARK2 and NLRP3. NLRP3 inflammasome activity, IL-1ß and IL-18 secretion, pyroptosis, and epithelial barrier integrity were detected to explore the role of PARK2 in allergic asthma. RESULTS: PARK2 expression was remarkably down-regulated in HDM-treated BEAS-2B cells. In BEAS-2B cells, NLRP3 protein was reduced by PARK2 overexpression and increased by PARK2 knockdown. Interestingly, PARK2 overexpression and knockdown didn't affect NLRP3 mRNA. Co-immunoprecipitation assay showed that PARK2 interacted with NLRP3. Proteasome inhibitor MG132 abolished PARK2 overexpression-induced down-regulation of NLRP3 protein. Ubiquitination assays showed that PARK2 overexpression enhanced the ubiquitination of NLRP3. Collectively, PARK2 negatively regulates NLRP3 protein via ubiquitination. In HDM-treated BEAS-2B cells, PARK2 overexpression repressed HDM-induced NLRP3 inflammasome activation, IL-1ß and IL-18 secretion, pyroptosis, and epithelial barrier dysfunction. In BEAS-2B cells, PARK2 knockdown promoted NLRP3 inflammasome activation, IL-1ß and IL-18 secretion, pyroptosis, and barrier impairment, while its effects were abrogated by NLRP3 inhibitor INF39. CONCLUSION: Our study demonstrates that PARK2 attenuates HDM-induced NLRP3 inflammasome activation, the release of inflammatory cytokines, pyroptosis, and barrier impairment in airway epithelial cells by ubiquitinating NLRP3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA