RESUMO
Efficient CC bond cleavage and the complete oxidation of alcohols are key to improving the efficiency of renewable energy utilization. Herein, we successfully prepare porous Fe-doped hexagonal close-packed (hcp)-PtBi/face-centered cubic (fcc)-Pt heterostructured nanoplates with abundant grain/phase interfaces (h-PtBi/f-Pt@Fe1.7 PNPs) via a simple solvothermal method. The open porous structure, abundant grain/phase interface and stacking fault defects, and the synergistic effect between intermetallic hcp-PtBi and fcc-Pt make h-PtBi/f-Pt@Fe1.7 PNPs an effective electrocatalyst for the glycerol oxidation reaction (GOR) in direct glycerol fuel cells (DGFCs). Notably, the h-PtBi/f-Pt@Fe1.7 PNPs exhibit an excellent mass activity of 7.6 A mgPt-1 for GOR, 4.75-fold higher than that of commercial Pt black in an alkaline medium. Moreover, the h-PtBi/f-Pt@Fe1.7 PNPs achieve higher power density (125.8 mW cm-2) than commercial Pt/C (81.8 mW cm-2) in a single DGFC. The h-PtBi/f-Pt@Fe1.7 PNPs can also effectively catalyze the electrochemical oxidation of 1-propanol (17.1 A mgPt-1), 1,2-propanediol (7.2 A mgPt-1), and 1,3-propanediol (5.2 A mgPt-1). The in-situ Fourier-transform infrared spectra further reveal that the CC bond of glycerol, 1-propanol, 1,2-propanediol, and 1,3-propanediol was dissociated for the complete oxidation by the h-PtBi/f-Pt@Fe1.7 PNPs. This study provides a new class of porous Pt-based heterostructure nanoplates and insight into the intrinsic activity of different C3 alcohols.
RESUMO
Phase change absorbents based on amine chemical absorption for CO2 capture exhibit energy-saving potential, but generally suffer from difficulties in CO2 regeneration. Alcohol, characterized as a protic reagent with a low dielectric constant, can provide free protons to the rich phase of the absorbent, thereby facilitating CO2 regeneration. In this investigation, N-aminoethylpiperazine (AEP)/sulfolane/H2O was employed as the liquid-liquid phase change absorbent, with alcohol serving as the regulator. First, appropriate ion pair models were constructed to simulate the solvent effect of the CO2 products in different alcohol solutions. The results demonstrated that these ion pair products reached the maximum solvation-free energy (ΔEsolvation) in the rich phase containing ethanol (EtOH). Desorption experiment results validated that the inclusion of EtOH led to a maximum regeneration rate of 0.00763 mol/min, thus confirming EtOH's suitability as the preferred regulator. Quantum chemical calculations and 13C NMR characterization were performed, revealing that the addition of EtOH resulted in the partial conversion of AEP-carbamate (AEPCOO-) into a new product known as ethyl carbonate (C2H5OCOO-), which enhanced the regeneration reactivity. In addition, the decomposition paths of different CO2 products were simulated visually, and every reaction's activation energy (ΔEact) was calculated. Remarkably, the ΔEact for the decomposition of C2H5OCOO- (9.465 kJ/mol) was lower than that of the AEPCOO- (26.163 kJ/mol), implying that CO2 was more likely to be released. Finally, the regeneration energy consumption of the alcohol-regulated absorbent was estimated to be only 1.92 GJ/ton CO2, which had excellent energy-saving potential.
Assuntos
Dióxido de Carbono , Dióxido de Carbono/química , Etanol/química , Modelos QuímicosRESUMO
Volatile organic compounds (VOCs), a byproduct of mold metabolism, have garnered increasing interest because the VOCs can be used to detect food early contamination. So far, the use of VOCs as indicators of rice mildew, specifically caused by Aspergillus tubingensis and Penicillium oxalicum, and the mechanisms of their generation are not well investigated. This study examines the VOCs produced by these molds during paddy storage, utilizing headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). We further elucidate the mechanisms underlying the formation of these VOCs through a comparative transcriptomic analysis. The VOCs characteristic to A. tubingensis and P. oxalicum, identified with a VIP value > 1 in the partial least squares discriminant analysis (PLS-DA) model, are primarily alkenes. Our transcriptome analysis uncovers key metabolic pathways in both molds, including energy metabolism and pathways related to volatile substance formation, and identifies differentially expressed genes associated with alkane and alcohol formation.
Assuntos
Aspergillus , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Oryza , Penicillium , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Penicillium/genética , Penicillium/metabolismo , Oryza/microbiologia , Oryza/química , Aspergillus/genética , Aspergillus/metabolismo , Doenças das Plantas/microbiologia , Transcriptoma , Microextração em Fase SólidaRESUMO
Unsaturated alcohols are a class of Biogenic volatile organic compounds (BVOCs) emitted in large quantities by plants when damaged or under adverse environmental conditions, and studies on their atmospheric degradation at night are still lacking. We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols, E-2-penten-1-ol, Z-2-hexen-1-ol and Z-3-hepten-1-ol, with NO3 radicals (NO3â¢) during the night. The rate constants of these reactions were (11.7 ± 1.76) × 10-13, (8.55 ± 1.33) × 10-13 and (6.08 ± 0.47) × 10-13 cm3/(molecule·s) at 298K and 760 Torr, respectively. In contrast, the reaction rate of similar substances with ozone was about 10-18 cm3/(molecule·s), which indicates that the reaction with NO3⢠is the main oxidation pathway for unsaturated alcohols at night. Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO3â¢, and the total small molecule aldehydes and ketones yields can reach between 45%-60%. They mainly originate from the breakage of alkoxy radicals, and different breakage sites determine different product distributions. In addition, the SOA yields of the three unsaturated alcohols with NO3⢠were 7.1% ± 1.0%, 12.5% ± 1.9% and 30.0% ± 4.5%, respectively, which were much higher than those of similarly structured substances with O3 or OH radicals (â¢OH). The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol (SOA) of the three unsaturated alcohols are dimeric compounds containing several nitrate groups, which are formed through the polymerization of oxyalkyl radicals.
Assuntos
Poluentes Atmosféricos , Álcoois , Compostos Orgânicos Voláteis , Álcoois/química , Cinética , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/química , Nitratos/química , Modelos Químicos , Ozônio/química , Oxirredução , Atmosfera/químicaRESUMO
Avocado-derived polyhydroxylated fatty alcohols (PFAs), such as avocadene and avocadyne, have been recently identified as potent modulators of mitochondrial metabolism which selectively induce leukemia cell death and reverse pathologies associated with diet-induced obesity. However, avocadene and avocadyne bioaccessibility from avocado pulp is not reported; hence, this study aims to investigate if these PFAs are bioaccessible. Dynamic (TNO dynamic intestinal model-1 (TIM-1)) and static in vitro digestion of lyophilized Hass avocado pulp powder shows lipolytic gastrointestinal enzymes led to appreciable bioaccessibility of avocadene (55%) and avocadyne (50%). Furthermore, TIM-1 digestion of a 1:1 ratio of pure avocadene and avocadyne (avocatin B or AvoB) crystals formulated in an oil-in-water microemulsion has on average 15% higher bioaccessibility than the avocado pulp powder demonstrating both dosage forms as potential dietary sources of avocado PFAs. This research provides the impetus for further research on the nutritional significance of dietary long chain fatty alcohols.
Assuntos
Digestão , Álcoois Graxos , Persea , Persea/química , Persea/metabolismo , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Humanos , Disponibilidade Biológica , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Modelos Biológicos , Frutas/química , Frutas/metabolismoRESUMO
A series of 2-(trifluoromethyl)-4-hydroxyquinoline derivatives were designed and synthesized with introduction of the antibacterial fragment amino alcohols, and their antibacterial activity against plant phytopathogenic bacteria was evaluated for the development of quinoline bactericides. It is worth noting that compound Qa5 exhibited excellent antibacterial activity in vitro with a minimum inhibitory concentration (MIC) value of 3.12 µg/mL against Xanthomonas oryzae (Xoo). Furthermore, in vivo assays demonstrated that the protective efficacy of Qa5 against rice bacterial blight at 200 µg/mL (33.0%) was superior to that of the commercial agent bismerthiazol (18.3%), while the curative efficacy (35.0%) was comparable to that of bismerthiazol (35.7%). The antibacterial mechanisms of Qa5 indicated that it affected the activity of bacteria by inducing intracellular oxidative damage in Xoo and disrupting the integrity of the bacterial cell membrane. The above results demonstrated that the novel quinoline derivative Qa5 possessed excellent in vitro and in vivo antibacterial activity, indicating its potential as a novel green agricultural antibacterial agent.
RESUMO
Based on precolumn derivatization, an analytical method has been developed for the determination of six high boiling point polyhydric alcohols (HBPAs, b.p. > 300 â) in cosmetics and toothpaste, including erythritol, xylitol, Pro-Xylane-S, inositol, mannitol, and sorbitol. The water dispersion and oil in water samples were extracted by distilled water. The water in oil sample was firstly pre-dispersed with acetone, and then extracted by distilled water. The extract was concentrated to dry under nitrogen, and derivatized with acetic anhydride under the dispersion and catalysis of anhydrous pyridine. The derivatives were detected by gas chromatography-tandem mass spectrometry in the selected reaction monitoring mode, and quantified using arabinitol as internal standard. The experimental conditions such as the selection of columns, extraction procedures, and derivative conditions were optimized. This method was properly validated under the optimized conditions, and obtained excellent analytical features. Specifically, the correlation coefficients in the range of 0.02 â¼ 0.5â¯mg/L all exceed 0.992. The method limits of detection and quantification were 0.25 and 0.8â¯mg/kg, respectively. The average recoveries in toothpaste, cosmetics with oil in water and water in oil were 81.8 â¼ 107.1â¯%, with the relative standard deviation were 3.1 â¼ 7.2â¯%. The established method was successfully applied to commercial samples of different matrices, showing the advantages of simplicity, sensitivity, and good reproducibility, and can be used for the determination of HBPAs in cosmetics and toothpaste. The proposed methodology solves the problem that there is no detection method for HBPAs in cosmetics.
RESUMO
Using fluorinated mono-alcohols, in particular hexafluoro-isopropanol (HFIP), as a solvent can enhance chemical reaction rates in a spectacular manner. Previous work has shown evidence that this enhancement is related to the hydrogen-bond structure of these liquids. Here, we investigate the hydrogen-bond dynamics of HFIP and compare it to that of its non-fluorinated analog, isopropanol. Ultrafast infrared spectroscopy show that the dynamics of individual hydrogen-bonds is about twice as slow in HFIP as in isopropanol. Surprisingly, from dielectric spectroscopy we find the opposite behavior for the dynamics of hydrogen-bonded clusters: collective rearrangements are 3 times faster in HFIP than in isopropanol. This difference indicates that the hydrogen-bonded clusters in HFIP are smaller than in isopropanol. The differences in cluster size can be traced to changes in the hydrogen-bond donor and acceptor strengths upon fluorination. The smaller cluster size can boost reaction rates in HFIP by increasing the concentration of reactive, terminal OH-groups of the clusters, whereas the fast collective dynamics can increase the rate of formation of hydrogen bonds with the reactants. The longer lifetime of the individual hydrogen bonds in HFIP can enhance the stability of the hydrogen-bonded clusters, and so increase the probability of reactant-solvent hydrogen bonding.
RESUMO
The development of heterogeneous Fe catalysts is very attractive due to the ubiquitous, abundant, and inexpensive nature of Fe as a resource. However, Fe oxides are commonly inert as catalysts and hence, the design and fabrication of active Fe sites are essential. Herein, the fabrication of an active Fe cation pair site by simple reduction treatment of SiO2-supported FeOx (FeOx/SiO2) is presented. The active Fe cation pair site was formed by the removal of the oxygen atom between Fe cations of the FeOx on SiO2, namely oxygen vacancy formation, which is induced by temperature-controlled reduction treatment. 773 K reduction maximized the Fe cation pair sites without the decomposition of FeOx species, which was an effective catalytic one for the N-alkylation of amines mainly proceeded through Meerwein-Ponndorf-Verley (MPV) type reduction, which is achieved by the stabilization of six-membered ring transition state derived from imines and alcohols over the open active site of the Fe cation pair site.
RESUMO
Lentil (Lens culinaris Medikus) is a nutrient-rich, cool-season food legume that is high in protein, prebiotic carbohydrates, vitamins, and minerals. It is a staple food in many parts of the world, but crop performance is threatened by climate change, where increased temperatures and less predictable precipitation can reduce yield and nutritional quality. One mechanism that many plant species use to mitigate heat and drought stress is the production of disaccharides, oligosaccharides and sugar alcohols, collectively referred to as low molecular weight carbohydrates (LMWCs). Recent evidence indicates that lentil may also employ this mechanism - especially raffinose family oligosaccharides and sugar alcohols - and that these may be suitable targets for genomic-assisted breeding to improve crop tolerance to heat and drought stress. While the genes responsible for LMWC biosynthesis in lentil have not been fully elucidated, single nucleotide polymorphisms and putative genes underlying biosynthesis of LMWCs have been identified. Yet, more work is needed to confirm gene identity, function, and response to abiotic stress. This review i) summarizes the diverse evidence for how LMWCs are utilized to improve abiotic stress tolerance, ii) highlights current knowledge of genes that control LMWC biosynthesis in lentil, and iii) explores how LMWCs can be targeted using diverse genomic resources and markers to accelerate lentil breeding efforts for improved stress tolerance.
RESUMO
Carbon materials supported Fe-based catalysts possess great potential for the thermal-catalytic hydrogenation of CO2 into valuable chemicals, such as alkenes and oxygenates, due to the excellent active sites' accessibility, appropriate interaction between the active site and carbon support, as well as the excellent capacities in C-O bond activation and C-C bond coupling. Even though tremendous progress has been made to boost the CO2 hydrogenation performance of carbon-supported Fe-based catalysts, e.g., additives modification, the choice of different carbon materials (graphene or carbon nanotubes), electronic property tailoring, etc., the effect of carbon support porosity on the evolution of Fe-based active sites and the corresponding catalytic performance has been rarely investigated. Herein, a series of porous carbon samples with different porosities are obtained by the K2CO3 activation of petroleum pitch under different temperatures. Fe-based active sites and the alkali promoter Na are anchored on the porous carbon to study the effect of carbon support porosity on the physicochemical properties of Fe-based active sites and CO2 hydrogenation performance. Multiple characterizations clarify that the bigger meso/macro-pores in the carbon support are beneficial for the formation of the Fe5C2 crystal phase for C-C bond coupling, therefore boosting the synthesis of C2+ chemicals, especially C2+ alcohols (C2+OH), while the limited micro-pores are unfavorable for C2+ chemicals synthesis owing to the sluggish crystal phase evolution and reactants' inaccessibility. We wish our work could enrich the horizon for the rational design of highly efficient carbon-supported Fe-based catalysts.
RESUMO
The grafting of trialkoxysilanes is the most common method for the surface functionalization of silica gel, and it is usually carried out in the presence of toluene or other solvents such as acetonitrile or acetone. Here, we replaced these solvents with alcohols to afford silica materials containing alkoxy groups linked to the silicon atom. The grafting of N,N-dimethyl-3-amino- or 3-amino-propyltrimethoxysilane was carried out in the presence of several alcohols containing an unsubstituted alkyl chain (C7 and C14), a PEG functionalized chain, or an amino-substituted chain (N,N-dimethylamino, pyridyl). Materials were characterized via solid-state 13C- and 29Si CPMAS NMR and thermogravimetric analysis to prove that alcohols are not "innocent" solvents but take part in the reaction and lead to [RSi(OR1)-(OSi)2] systems where the OR1 group proceeds from the alcohol used in the synthesis. As a proof of concept, we briefly studied the catalytic activity of some of these materials with the aim of showing how different modifications can influence the course of a selected reaction. Finally, a quaternary ammonium salt (QAS)-based silica was prepared containing both an alkyl-QAS and an alkoxy-QAS linked to silicon atoms. This could represent an interesting approach for the development of new antifouling-based materials and, overall, the described strategy could be useful for the preparation of new organosilica materials.
RESUMO
Although covalent organic frameworks (COFs) accompanied by electrochemiluminescence (ECL) behavior have been introduced in recent years, they are still rarely applied for ECL-based enantioselective sensing, especially giving high recognition efficiency. In the current study, an achiral ionic COF comprised of the pyridinium unit is synthesized in the linkage of the carbon-nitrogen cation bond through the Zincke reaction. Interestingly, the synthesized ionic COF can generate clear ECL owing to the presence of electroactive species. Then, the ECL-active achiral COF is employed to absorb the chiral Co(III) complex for enantioselective sensing. As a result, the developed ECL sensor displays discriminative responses toward amino alcohol enantiomers. When the chiral Co(III) complex with (R)-configuration is used, the examined (S)-amino alcohols result in ECL enhancement, whereas (R)-amino alcohols lead to ECL quenching. The maximum ECL intensity ratio between (S)- and (R)-amino alcohols is up to 47.7. In addition, the recognition mechanism is investigated in detail. Finally, a good linear relation between enantiomeric composition and ECL intensity is developed and appropriate for the accurate analysis of the enantiomeric purities of unknown samples. In short, we believe that this study constructs an effective strategy to combine the respective advantages of COFs and ECL for high-efficiency enantioselective sensing.
RESUMO
The preparation of enantioenriched diarylmethanol derivatives is described using nickel-catalyzed electrochemical cross-couplings between various alkyl/aryl aldehydes and aryl iodides. Performed in an electrochemical cell equipped with an iron anode and a nickel cathode, this electrocatalytic variant led to the scalemic targeted products in the presence of 2,2-bis((4R,5S)-4,5-diphenyl-4,5-dihydrooxazol-2-yl)acetonitrile (L2), as enantiopure cyano-bis(oxazoline) ligand. X-ray structure analysis of a pre-catalyst, for instance the [Ni(II)(L2)2] complex, with L2 as an anionic bisoxazolinate ligand, confirms the chemical formulation of one nickel surrounded by two ligands. The redox behavior of the new Ni complexes generated in situ was first assessed by cyclic voltammetry showing a redox wave at ca. -1.5 V that can be assigned to the two-electron reduction of the Ni(II) center to the Ni(0) state. Oxidative addition between the electrogenerated Ni(0) complex and aryl iodide was evidenced. An intense current was observed in presence of a mixture of the two substrates pertaining an electrocatalytic process. Interestingly, we found that the sacrificial iron anode plays a crucial role in the catalytic mechanism.
RESUMO
Herein, we report an inexpensive first-row transition metal Ni heterogeneous catalytic system for the Csp3-mono alkylation of fluorene using alcohols as alkylating agents via borrowing hydrogen strategy. The catalytic protocol displayed versatility with high yields of the desired products using various types of primary alcohols, including aryl/hetero aryl methanols, and aliphatic alcohols as alkylating agents. The catalyst Ni NPs@N-C was synthesized via high-temperature pyrolysis strategy, using ZIF-8 as the sacrificial template. The Ni NPs@N-C catalyst was characterized by XPS, HR-TEM, HAADF-STEM, XRD and ICP-MS. The catalyst is stable even in the air at room temperature, displayed excellent activity and could be recycled 5 times without appreciable loss in its activity.
RESUMO
The batch processes of APIs/pharmaceutical synthesis are prone to suffer significant limitations, including longer process time, shortage of skilled manpower, laborious post-synthetic work-up, etc. To address the inherent limitations of batch processes, a novel approach was undertaken, resulting in the establishment and development of a visible light-assisted modular photo-flow reactor with a seamlessly integrated post-synthetic work-up procedure enabling the efficient synthesis of dihydropyranones from furfuryl alcohols. The reaction uses sun light as green energy source, and the novel photo-flow reactor platform developed with an integrated system enabling a downstream process in a time and labor-efficient manner which facilitates the Achmatowicz rearrangement, resulting in a fast (10 min) formation of the dihydropyranone products.
RESUMO
Hydrogen is a clean-burning fuel with water as its only by-product, yet its widespread adoption is hampered by logistical challenges. Liquid organic hydrogen carriers, such as alcohols from sustainable sources, can be converted to hydrogen through aqueous-phase reforming (APR), a promising technology that bypasses the energy-intensive vaporization of feedstocks. However, the hydrothermal conditions of APR pose significant challenges to catalyst stability, which is crucial for its industrial deployment. This review focuses on the stability of catalysts in APR, particularly in sustaining hydrogen production over extended durations or multiple reaction cycles. Additionally, we explore the potential of ultrasound-assisted APR, where sonolysis enables hydrogen production without external heating. Although the technological readiness of ultrasound-assisted or -induced APR currently trails behind thermal APR, the development of catalysts optimized for ultrasound use may unlock new possibilities in the efficient hydrogen production from alcohols.
RESUMO
Drought stress is one of the main abiotic stresses that limit plant growth and affect fruit quality and yield. Plants primarily lose water through leaf transpiration, and wax effectively reduces the rate of water loss from the leaves. However, the relationship between water loss and the wax formation mechanism in goji (Lycium barbarum) leaves remains unclear. 'Ningqi I' goji and 'Huangguo' goji are two common varieties. In this study, 'Ningqi I' goji and 'Huangguo' goji were used as samples of leaf material to detect the differences in the water loss rate, chlorophyll leaching rate, wax phenotype, wax content, and components of the two materials. The differences in wax-synthesis-related pathways were analyzed using the transcriptome and metabolome methods, and the correlation among the wax components, wax synthesis genes, and transcription factors was analyzed. The results show that the leaf permeability of 'Ningqi I' goji was significantly lower than that of 'Huangguo' goji. The total wax content of the 'Ningqi I' goji leaves was 2.32 times that of the 'Huangguo' goji leaves, and the epidermal wax membrane was dense. The main components of the wax of 'Ningqi I' goji were alkanes, alcohols, esters, and fatty acids, the amounts of which were 191.65%, 153.01%, 6.09%, and 9.56% higher than those of 'Huangguo' goji, respectively. In the transcriptome analysis, twenty-two differentially expressed genes (DEGs) and six transcription factors (TFs) were screened for wax synthesis; during the metabolomics analysis, 11 differential metabolites were screened, which were dominated by lipids, some of which, like D-Glucaro-1, 4-Lactone, phosphatidic acid (PA), and phosphatidylcholine (PE), serve as prerequisites for wax synthesis, and were significantly positively correlated with wax components such as alkanes by the correlation analysis. A combined omics analysis showed that DEGs such as LbaWSD1, LbaKCS1, and LbaFAR2, and transcription factors such as LbaMYB306, LbaMYB60, and LbaMYBS3 were strongly correlated with wax components such as alkanes and alcohols. The high expression of DEGs and transcription factors is an important reason for the high wax content in the leaf epidermis of 'Ningqi I' goji plants. Therefore, by regulating the expression of wax-synthesis-related genes, the accumulation of leaf epidermal wax can be promoted, and the epidermal permeability of goji leaves can be weakened, thereby reducing the water loss rate of goji leaves. The research results can lay a foundation for cultivating drought-tolerant goji varieties.
Assuntos
Regulação da Expressão Gênica de Plantas , Lycium , Metaboloma , Folhas de Planta , Transcriptoma , Água , Ceras , Ceras/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Água/metabolismo , Lycium/metabolismo , Lycium/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
Science is challenging because we do not know what we do not know. Commercial chemicals are often marketed with >99% purity, but 0.5-1% impurity can impact results and cloud data interpretation. We recently developed an assay for farnesol and aromatic fusel alcohols from Candida albicans. During proof-of-concept experiments using RPMI-1640 growth media, the buffering compound was switched from MOPS obtained from Acros Organics to MOPS obtained from Sigma-Aldrich, both labeled 99% + purity. We observed a twofold decrease in growth, along with a three- to fivefold increase in farnesol production per cell upon the switch. ICP-MS showed that trace Mn(II) was present in Acros MOPS but absent in Sigma MOPS. Optimal growth was achieved by the addition of Mn(II), Zn(II), and Fe(II). We established upper and lower limits for Fe(II), Zn(II), Cu(II), and Mn(II) that allowed similar growth and then assessed 16 different mineral combinations in RPMI-1640 base media. The results show an increased production of farnesol and the aromatic fusel alcohols when Zn(II) is abundant, and a further increase in the aromatic fusel alcohols when both Fe(II) and Zn(II) are abundant. Finally, antifungal susceptibility testing displayed no significant difference between RPMI/MOPS with and without mineral supplementation. Supplemental Mn(II) was most needed for cell growth, while supplemental Zn(II) was most needed for the production of farnesol and the aromatic fusel alcohols. To avoid these artifacts due to metal contamination, we now use a modified RPMI supplemented with 1 mg/ L of Cu(II), Zn(II), Mn(II), and Fe(II). IMPORTANCE: The dimorphic fungus Candida albicans is a major opportunistic pathogen of humans. RPMI-1640 is a chemically defined growth medium commonly used with C. albicans. We identified over 32,000 publications with keywords RPMI and C. albicans. Additionally, Antifungal Susceptibility Testing (AFST) protocols in the United States (CLSI) and Europe (EUCAST) utilize RPMI as a base media to assess drug efficacy against clinical fungal isolates. RPMI contains many nutrients but no added trace metals. We found that the growth characteristics with RPMI were dependent on which MOPS buffer was chosen and the contamination of that buffer by trace levels of Mn(II) and Zn(II). Added Mn(II) was most needed for cell growth while added Zn(II) was most needed for secretion of farnesol and other signaling molecules.
RESUMO
Geometrically defined allylic alcohols with SE, SZ, RE and RZ stereoisomers serve as valuable intermediates in synthetic chemistry, attributed to the stereoselective transformations enabled by the alkenyl and hydroxyl functionalities. When an ideal scenario presents itself with four distinct stereoisomers as potential products, the simultaneous control vicinal stereochemistry in a single step would offer a direct pathway to any desired stereoisomer. Here, we unveil a metallaphotoredox migration strategy to access stereodefined allylic alcohols through vinylic C-H activation with aldehydes. This method harnesses a chiral nickel catalyst in concert with a photocatalyst to enable a 1,4-Ni migration by using readily accessible 2-vinyl iodoarenes as starting materials. The efficacy of this methodology is highlighted by the precise construction of all stereoisomers of allylic alcohols bearing analogous substituents and the efficient synthesis of key intermediates en route to Myristinin family. Experimental and computational studies have shed light on pivotal aspects including the synergy of metal catalysis and photocatalysis, the driving forces behind the migration, and the determination of absolute configuration in the C-H addition process.